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 ABSTRACT 

 This article presents an exact solution for an axisymmetric functionally graded piezoelectric (FGP) 
rotating disk with constant thickness subjected to an electric field and thermal gradient. All 
mechanical, thermal and piezoelectric properties except for Poisson’s ratio are taken in the form of 
power functions in radial direction. After solving the heat transfer equation, first a symmetric 
distribution of temperature is produced. The gradient of displacement in axial direction is then 
obtained by assuming stress equation in axial direction to be zero. The electric potential gradient is 
attained by charge and electric displacement equations. Substituting these terms in the equations 
for the dimensionless stresses in the radial and circumferential directions yield these stresses and 
using them in the mechanical equilibrium equation a nonhomogeneous second order differential 
equation is produced that by solving it, the dimensionless displacement in radial direction can be 
achieved. The study results for a FGP rotating hollow disk are presented graphically in the form of 
distributions for displacement, stresses and electrical potential. 

© 2011 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

ITH advances of functionally graded piezoelectric material (FGPM) in industrial applications such as 
producing sensors and actuators, these materials have attracted much attention in recent years. Functionally 

graded materials (FGMs) are made of two material phases that has an intentional graded transition from one 
material at one surface to another material at the opposite surface; ceramics and metals are examples of these 

groups of materials. This transition allows the creations of multiple properties without implementing any mechanical 
interface. When a piezoelectric material is exposed to a stress field, electricity is produced due to polarization of 
material; apart from this, mechanical and thermal properties of FGPM are fairly similar to FGM. Galic and Horgan 
[1] presented a radially polarized piezoelectric cylinder under internal pressure. They presented an analytical 
solution to the axisymmetric problem of an infinitely long, radially polarized, radially orthotropic piezoelectric 
hollow circular cylinder. Chen et al. [2] studied the problem of a piezoceramic hollow sphere based on 3D equations 
of piezoelasticity. They investigated the effects of electroelastic field in a FGPM hollow sphere under mechanical 
and electric loading. Ding et al. [3] analyzed the dynamic responses of a functionally graded (FG) pyroelectric 
hollow sphere for spherically symmetric problems by solving a Volttera integral equation of the second kind using 
an interpolation polynomial to approximate the unknown function. They extended this problem for cylinder with 
plane strain assumption [4]. The exact solution for thermal-electro-elastic transient response in piezoelectric hollow 
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structures was derived by Dai and Wang [5]. They showed that the response histories and distributions of stresses, 
electric displacement and electric potential interact with each other in a case of the transversely isotropic 
piezoelectric hollow sphere. Chen et al. [6] analyzed a FGPM hollow cylinder. They assumed that only the 
piezoelectric coefficient was varied quadratically in the radial direction while the other material parameters are 
assumed to be constant. The thermoelastic analysis of a FG rotating disk was presented by Hosseini Kordkheili and 
Naghdabadi [7], who investigated the influences of property gradation, centrifugal body loading and thermal loading 
on stresses and deformation. Bayat et al. [8] also studied the thermo elastic analysis of a FG rotating disk with small 
and large deflections. Later, they [9] investigated thermo elastic analysis for axisymmetric rotating disk made of 
FGM with variable thickness. Thermoelastic solution of a FG variable thickness rotating disk with bending based on 
the first-order shear deformation theory was also presented by Bayat et al. [10]. Oota and Tanigawa [11] studied the 
transient piezothermoelastic problem of a FG thermo-piezoelectric hollow sphere due to a uniform heat supply using 
the Laplace transformation method. Saadatfar and Razavi [12] investigated piezoelectric hollow cylinder with 
thermal gradient and used an analytical solution to the axisymmetric problem of a radially polarized, radially 
orthotropic piezoelectric hollow cylinder with thermal gradient. A 3D elasticity solution for FG rotating disks was 
also investigated by Asghari and Ghafoori [13] and suggested that although for the thin disks problems the 2D 
elasticity solution provided appropriate results, for the thick disks, a 3D elasticity solution should be used. 
Khoshgoftar et al. [14] studied thermoelastic analysis of a thick walled cylinder made of FGPM. They investigated 
the thermopiezoelectric behavior of a thick walled cylinder with FGM under the temperature gradient and inner and 
outer pressures. Hassani et al. [15] presented distributions of stress and strain components of rotating disks with non-
uniform thickness and material properties subjected to thermo-elastic loading under different boundary conditions. 
Later they [16] investigated semi-exact solution for thermo-mechanical analysis of FG elastic-strain hardening 
rotating disks. Since rotating-disk systems are widely used in many industrial applications such as: aircraft engines, 
computer disk drivers, gas turbine engineering as fixed-free rotating disks and magnetic bearing systems as free-free 
rotating disks, therefore, investigation of rotating disks can be useful in designing such applications. 

However, investigation into 3D solution for FGPM hollow rotating disk, placed in an electric field with a 
temperature gradient, has not been found in the literature. In this article, an analytical method is developed to 
determine stresses, displacement and electric potential fields. Initially, the heat transfer equation in the cylindrical 
coordinate system under inner and outer boundary conditions is solved in order to obtain the temperature 
distribution. Then, by substituting the electric displacement and temperature distribution in the dimensionless radial 
and circumferential stresses, theses stresses is obtained as a function of displacement. Finally, using equilibrium 
equation, and stress components, a displacement equation is presented which its solution at the corresponding 
boundary conditions yields the displacement, stresses components and electric potential. 

2    TEMPERATURE DISTRIBUTION 

Consider a FGPM rotating disk under electric, thermal and mechanical loadings Fig. 1. In this section, using the 
assumed boundary conditions, a solution is presented to the symmetric, steady state, heat transfer equation in the 
cylindrical coordinate system Eq. (1) as expressed by [2,14]: 

 

( )1
( ) ( ) 0, ( )rk r T r a r b

r
¢¢ = £ £  (1)

 

 
 

Fig. 1 
Configuration of a radially polarized FGPM rotating disk. 
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where a  and b  are the inner and outer radii, respectively. Boundary conditions for Eq. (1) are defined according to 
[14, 17] as below: 
 

11 12 1( ) ( )Z T a Z T a f¢+ =  (2a)
 

21 22 2( ) ( )Z T b Z T b f¢+ = (2b) 
 

In Eq. (2), ( 1,2; 1,2)ijZ i j= =  are the thermal constants which depend on the thermal conductivity and thermal 

convection. 1f  and 2f  are constants obtained at the inner and outer radii, respectively. ( )k r  is assumed as a power 

function of r in Eq. (3): 
 

0( )k r k r =  (3)
 

 
In which   is a parameter indicating the nonhomogeneous extent of the material and 0k  is the nominal thermal 

conduction coefficient. Substituting Eq. (3) into Eq. (1) and integrating twice yields [2]: 
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By assuming the defined boundary conditions Eqs. (2a), (2b), 1Y  and 2Y  constants in Eq. (4) are obtained as 

follows: 
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(5b) 

3    The GOVERNING EQUATION 

The governing equation of a nonhomogeneous rotating disk is presented using a cylindrical system. The disk rotates 
about z axis with an angular velocity of  . The axisymmetric aspect of the problem implies that shear stress 
components, ( , , )r z u     are negligible and assumed to be zero; similarly, / ¶ ¶  for all parameters are equal to 

zero. Also, since there is no stress in z direction, rz  and zz  are taken to be zero. Based on these assumptions, the 

constitutive relations could be expressed as follows [12, 18]: 
 

33 13 13 33 , 1 ( )rr rr zz rc c c e T r     = + + + -  (6a)
 

13 1211 31 , 2 ( )rr zz rc c c e T r     = + + + -  (6b)
 

11 13 1 3 3,2 1 ( )zz rr z rz Tc c c e r     = + + + -  (6c)
 

33 31 31 ,33 1 ( )rr zz rrrD e e e p T r    = + + - -  (6d)
 

 
where [12, 13]: 
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In the above equations, 33, , ,ij ij ijc e    and 1p   are the elastic stiffnesses, piezoelectric constants, thermal 

expansion coefficients, dielectric constant and pyroelectric constant, respectively. Also, ,ii ii   and rrD  represent 

stress, strain tensors and radial electric displacement, respectively. The equilibrium equation is as follows [7]: 
 

2 0rrrr r
r r

 
 

-¶
+ + =

¶
 (8)

 

 
The charge equation of electro-statics without free charge density can be expressed [14] as follows: 
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Since the stress component in z direction is zero, using Eq. (6c), displacement gradient in z direction is: 
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Substituting Eq. (10) into Eqs. (6a), (6b) and (6d) provides the radial and circumferential stresses as well as the 

electric displacement terms as follow: 
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In this work, the Poisson’s ratio is considered as a constant while other material parameters such as elastic 

stiffnesses, piezoelectric constant, dielectric constant and thermal expansion coefficients are assumed to vary along 
the radial coordinate as bellow [4]: 
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where 3 33 1, , , ,ij i iC E P   and 0  are known constants. To present the result, the following non-dimensional terms 

are introduced: 
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in which:  
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Eqs. (4), (8), (9) and (11) can therefore be rewritten in the following form: 
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where 1 2,  I I  are constants and can be obtained from the boundary conditions in Eq. (2). Using Eq. (16b), the 

following equation is obtained as 
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where F is a constant. Substituting Eq. (18) into Eq. (15c) yields 
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Using Eqs. (19), (15a) and (15b) can be rewritten as: 
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where 
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Substituting Eqs. (20a) and (20b) into Eq. (16a), the following differential equation is obtained as a function of 

nondimensional radial displacement:  
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The solution to Eq. (22) can be written as 
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The electrostatic potential is obtained from Eq. (19) 
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where q is constant and: 
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Then, Eqs. (20a) and (20b) can be rewritten as: 
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4    STEPS OF APPLIED METHODS 

The following steps have been developed for obtaining results: 
1- The temperature distribution of the disk is produced by solving the heat transfer equation. 
2- The gradient of displacement in axial direction is obtained by assuming stress equation in axial direction to be 
zero. 
3- The dimensionless electric potential gradient is attained by dimensionless charge and electric displacement 
equations. 
4- Dimensionless radial and circumferential stresses are gained in terms of dimensionless radial displacement by 
substituting the results achieved in steps 2 and 3. 
5- A nonhomogeneous second order differential equation is produced by substituting dimensionless stresses in the 
mechanical equilibrium equation. 
6- Dimensionless radial displacement is attained in terms of dimensionless radius of the disk by solving the 
differential equation. 
7- Dimensionless stresses in radial and circumferential directions and the electrostatic potential are obtained. 

5    NUMERICAL RESULTS AND DISCUSSION 

Table 1. presented the PZT4 material properties as FGPM material for analysis of the rotating disk [12, 18]. von-
Mises stress for cylindrical coordinate system is considered as 
 

2 2
V r r     = + -  (31)
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Table 1 
Mechanical and electrical properties of PZT_4 

C11 139 (GPA)  
1  2×10-5 (K-1)  

31E  -5.2 (c/m2)  b 0.1 (m) 

C12 77.8 (GPA)  
2  2×10-5 (K-1) 

33E  15.1 (c/m2) 
0  7500 (kg/m3) 

C13 74.3 (GPA)  
3  2×10-5 (K-1) 

33W  0.562×10-8 (c/Vm)    100 (rad/sec) 

C33 115 (GPA)        

 
 

Numerical results are presented diagrammatically (see Figs. 2-11) in terms of dimensionless stresses, electric 
potential and displacement as a function of the rotating disks dimensionless radius from RS to R1. The boundary 
conditions for PZT4 are considered as two cases: 

 
case1 (free-free) :  ( ) 0, ( 1) 0, ( ) 0, ( 1) 1r rR S R R S R   = = = = = = = =  (32a)

 

case2 (fixed-free):  ( ) 0, ( 1) 0, ( ) 0, ( 1) 1ru R S R R S R  = = = = = = = =  (32b)
 

 
In both cases, the temperatures at inner and outer radii are 0aT C= 

 
and 30 ,bT C=   respectively. It should be 

noted that values of the nonhomogeneous extent ( )  considered in the diagrams presented here corresponds to 4 

discrete numbers of -0.5, -0.25, 0.25 and 0.5; i.e. 2 positive and 2 negative values. Since   exists in the 

denominators of the Eqs. (28) and (17), whenever   takes the value of 0.0 or tends to a value very near it, there is 

no real solution for the problem as parameters such as stresses and electric potential tend to infinity. The comments 
made below regarding ,  corresponds only to the values mentioned above. The distribution of r  versus 

dimensionless radius of the disk for case 1 is presented in Fig. 2.Three major factors that increase the radial stress in 
this article are: piezoelectric reaction, centrifugal force and thermal gradient. For free-free boundary conditions, 
piezoelectric reaction and centrifugal force cause tension in the disk while thermal gradient cause compression in it. 
As can be seen r  is compressive, so temperature gradient is the dominant factor in the value of radial stress in the 

mentioned boundary conditions. Also the values of maximum dimensionless radial stress decrease with increasing 
  and they tend toward higher values of R  with increasing .  

Fig. 3 shows the distribution of r  for fixed-free boundary conditions, i.e. case 2. Radial stress is compressive 

along the radius of the disk for fixed-free boundary conditions, too. It is observed from Fig. 3 that the values of 
radial stresses are decreased along the radius of the disk. Also the value of r  increases as   is increased. Figs. 4 

and 5 depict the distribution of   for both cases of boundary conditions discussed above (free-free and fixed-free, 

respectively). It is seen form Figs. 4 and 5 that   is compressive for inner layers of the disk, while for outer layers, 

  is tensile. Also, the values of   reduce with increasing   for both cases. Figs. 6 and 7 show the dimensionless 

von-Mises stress ( )V  distribution versus the dimensionless radius of the disk for cases 1 and 2, respectively. It is 

obvious form Figs. 6 and 7 that V  is decreased with increasing .  Fig. 6 demonstrates that the minimum of V  

takes place at the middle layers of the disk, while it is higher at inner and outer layers of the disk. Moreover, for case 
2, as can be seen from Fig. 7, the maximum value of von-Mises stress takes place at outer layers of the rotating disk. 
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Distribution of the dimensionless radial stress versus the 
dimensionless radius of the disk for free-free boundary 
conditions, 0 C inT  and 30 C. outT  



Exact Solution for Electrothermoelastic Behaviors of a Radially Polarized FGPM Rotating Disk                   252 

© 2011 IAU, Arak Branch 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2
x 10

-5


r

Diemsnionless Radius (R)

 

 

= -0.5
= -0.25
= 0.25
= 0.5

Fig. 3 
Distribution of the dimensionless radial stress versus the 
dimensionless radius of the disk for fixed-free boundary 
conditions, 0 C inT  and 30 C. outT  
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Fig. 4 
Distribution of the dimensionless circumferential stress 
versus the dimensionless radius of the disk for free-free 
boundary conditions, 0 C inT  and 30 C. outT  
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Fig. 5 
Distribution of the dimensionless circumferential stress 
versus the dimensionless radius of the disk for fixed-free 
boundary conditions, 0 C inT  and 30 C. outT  
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Fig. 7 
Distribution of the dimensionless von Mises stress versus 
the dimensionless radius of the disk for fixed-free 
boundary conditions, 0 C inT  and 30 C. outT  
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Fig. 8 
Distribution of the electric potential versus the 
dimensionless radius of the disk for free-free boundary 
conditions, 0 C inT  and 30 C. outT  
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Fig. 9 
Distribution of the electric potential versus the 
dimensionless radius of the disk for fixed-free boundary 
conditions, 0 C inT  and 30 C. outT  
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Fig. 10 
Dimensionless radial displacement versus the 
dimensionless radius of the disk for free-free boundary 
conditions, 0 C inT  and 30 C. outT  

 
 
 
The variations of the electric potential ( ( ))V  along the dimensionless radius of the disk are presented in Figs. 8 

and 9 for cases 1 and 2, respectively. For both cases, the maximum value of   increases as   is increased. Also the 

maximum value of   in case 1 is higher than those for case 2. In addition, it is observed from Figs. 8 and 9 that in 
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lower values of dimensionless radius,   rises sharply up to R0.48 and R0.5 for cases 1 and 2 respectively, where 

a maximum is observed, before   decreases slightly. 

Figs. 10 and 11 illustrate the dimensionless radial displacement versus the dimensionless radius of the disk for 
cases 1 and 2, respectively. It is obvious form Figs. 10 and 11 that the dimensionless radial displacement is 
increased with increasing R for both cases; also it decreases as   is increased. As can be seen form Fig. 10, the 

values of dimensionless radial displacement are negative at the inner surfaces of the disk. Therefore, the effect of 
thermal deformation is dominant rather than the deformation caused by rotation of the disk. In case 2, Figs 11 shows 
that the dimensionless radial displacement becomes negative especially for positive values of 0. 

Figs. 12 and 13 indicate the effect of the temperature at inner radius of the disk on the dimensionless radial stress 
for free-free and fixed-free boundary conditions, respectively. As can be seen, the magnitude of dimensionless radial 
stress is increased by increasing the temperature at inner radius of the disk. Also increasing the temperature at inner 
radius of the disk has a similar effect on the dimensionless radial stress for both boundary conditions. In addition, 
the variation of the radial stresses is decreased with increasing the radius of the disk for both cases of boundary 
conditions. Figs. 14 and 15 show the effect of outer surface temperature on the dimensionless radial stress for both 
boundary conditions, free-free and fixed-free, respectively. The inner surface temperature is constant for all 
cases ( 0 C)inT =  , four values are considered for outer surface temperature ( 0,10,20,30 C)outT =   and 0.5. =-  In 

the case 0,in outT T= =  the radial stress caused by temperature equals to zero, and only piezoelectric and centrifugal 

effects cause radial stress in the disk. It is seen for two boundary conditions, that the first curves of these 
two figures are smaller than other curves, and the temperature is the dominant source of radial stress. Raising the 
outer surface temperature causes increase of the radial stress on the disk in pressure form. Also, the maximum value 
of dimensionless radial stress is greater in fixed-free boundary conditions. 
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Fig. 11 
Dimensionless radial displacement versus the 
dimensionless radius of the disk for fixed-free boundary 
conditions, 0 C inT  and 30 C. outT  
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Distribution of the dimensionless radial stress versus the 
dimensionless radius of the disk for free-free boundary 
condition, 0 C inT  and 30 C. outT  
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Fig. 13 
Distribution of the dimensionless radial stress versus the 
dimensionless radius of the disk for fixed-free boundary 
condition, 0 C inT  and 30 C. outT  
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Fig. 14 
Distribution of the dimensionless radial stress versus the 
dimensionless radius of the disk for free-free boundary 
condition, 0 C inT  and 30 C. outT  
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Fig. 15 
Distribution of the dimensionless radial stress versus the 
dimensionless radius of the disk for fixed-free boundary 
condition, 0 C inT  and 30 C. outT  
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Distribution of the dimensionless radial stress versus the 
dimensionless radius of the disk for free-free boundary 
condition, 0 C inT  and 30 C. outT  
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Fig. 17 
Distribution of the dimensionless radial stress versus the 
dimensionless radius of the disk for fixed-free boundary 
condition, 0 C inT  and 30 C. outT  
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Dimensionless mass of disk versus non-homogeneity 
parameter of the rotating disk. 
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Figs. 16 and 17 show the effect of piezoelectric properties on the dimensionless radial stress in the disk for free-
free and fixed-free boundary conditions, respectively. Two non-homogeneity parameters are 
considered ( 0.5, 0.25). =- -  The two first curve of each diagram are drawn for FGM disk (piezoelectric properties 

are vanished) and other two curves of each diagram are drawn for FGPM disk (piezoelectric properties are 
considered). As seen in Fig 16, the piezoelectric properties cause increase of pressure in the disk. In Fig 17, the 
piezoelectric properties have different effect; the negative radial stress is decreased until radius 0.4 but increased a 
bit after radius 0.4 for each non-homogeneity parameter. These effects show that imposed electric field on the 
FGPM disk causes negative radial strain. The effect of in-homogeneity parameter on the dimensionless mass and 
therefore, the weight of the rotating disk for PZT_4 is presented in Fig. 18. The following formulation is used to 
calculate the dimensionless mass of the rotating disk: 
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It is seen from Fig. 18 that the dimensionless mass and therefore the weight of the rotating disk decrease as   is 

increased. Also it can be concluded from Eq. (33) that the value of dimensionless mass of the disk is independent 
from the material properties. 

6    CONCLUSIONS 

In this article, an exact solution was presented for a nonhomogeneous FGPM disk rotating about its axis at constant 
angular velocity, subjected to an electric field and thermal gradient in plane stress, using piezoelasticity theory. All 
mechanical, thermal and piezoelectric properties except for Poisson’s ratio were taken in the form of continuous 
functions of dimensionless radius of the disk and are simulated in the form of power functions in radial direction.  
Following presentation of the temperature distribution in the disk and assuming stress in z  direction to be zero, the 
electric potential gradient was obtained by charge and electric displacement equations. Using the resulting stresses 
in radial and circumferential directions and the equilibrium equation, the displacement in radial direction was 
obtained. Dimensionless electro-thermo-mechanical stress distributions, displacement and electric potential curves 
for different values of in-homogeneity material parameter   and inner and outer temperature and boundary 

conditions were drawn and discussed in details for a popular industrial piezocermaic material such as PZT_4. The 
following conclusions could be made from the dimensionless diagrams produced: 

1. Distribution of stress, electric potential and electrical field can be controlled by selecting the FGPM 
material with appropriate mechanical and thermal properties. 

2. The radial stresses for both free-free and fixed-free boundary conditions are compressive, which shows that 
stresses caused by thermal gradient are dominant. 

3. Increasing the nonhomogeneous parameter   considered for the discrete values studied here led to the 

reduction of value of radial and circumferential stresses and the radial displacement for both free-free and 
fixed-free boundary conditions. 

4. Dimensionless von-Mises stresses decreased by increasing   for both free-free and fixed-free boundary 

conditions. 
5. The absolute values of all maximum  ’s for free-free boundary conditions are higher than those for fixed-

free boundary conditions. 
6. Increasing the temperature of the inner and outer layers of the disk cause increasing the value of radial 

stresses for both free-free and fixed-free boundary conditions. 
7. The values of dimensionless radial stresses of the disk increases considering the piezoelectric effect for 

free-free boundary conditions and it almost decreases for fixed-free boundary conditions. 
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