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 ABSTRACT 

 This paper deals with  free vibration analysis of continuously graded fiber  

reinforced (CGFR) truncated conical shell based on third-order shear deformation 

theory (TSDT), by developing special power-law distributions. The orthotropic 

(CGFR) truncated conical shell are clamped and simply supported at the both ends. 

It is assumed to have a smooth variation of fibers volume fraction in the thickness 

direction. Symmetric and classic volume fraction profiles are examined. The 

appropriate displacement functions which  identically satisfy the axisymmertic 

conditions are used to simplify the motion equations to a set of coupled ordinary 

differential equation with variable coefficients, which can be solved by generalized 

differential quadrature method (GDQM), to obtain the natural frequencies. The fast 

rate of convergence of the method is observed. To validate the results, comparisons 

are made with the available solutions for isotropic and CGM isotropic truncated 

conical shells. The effect of various geometrical parameters on the vibrational 

behavior of the CGFR truncated conical shell is investigated. This literature mainly 

contributes to illustrate the impact of the power-law distributions on the vibrarional 

behavior of orthotropic continuous grading truncated conical shell. This paper is also 

supposed to present useful results for continuouly graded  fibers volume fraction in 

the thickness direction of a truncated conical shell and comparison with similar 

discrete laminated composite one.                                                                                  

                                                 © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 RUNCATED conical shells are extensively employed in a  wide range  of  engineering  fields  due  to  their  

special  geometric  shapes. Thus, the investigation of their vibrational behavior has been interesting for 

designers. Moreover, because of the needs to apply in severe high temperature environments, usage of continuous 

grading truncated conical shell has become more and more common. One of the advantages of CGMs is that one can 

design directional properties into them almost on demand. CGMs are heterogeneous materials and have properties 

that vary constantly as a function of position within the material. CGM is created by smoothly changing the volume 

fraction of its constituent materials. Compared with the analysis of continuous grading plates (Malekzadeh [1], 

Hosseini-Hashemi et al.[2], Pan and Han [3], Yas and SobhaniAragh [4]) and continuous grading spheres (Chen [5], 
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Chiroiu and Munteanu [6]) as well as continuous grading cylindrical shells (Bahtui and Eslami 2007[7], Haddadpour 

et al. 2007[8], SobhaniAragh and Yas [9-11], Yas and SobhaniAragh [12]), the investigation of continuous grading 

truncated conical shell is limited in number. 

Thambiratnam, and Zhuge [13] presented a  simple  finite  element method  for  the  axial symmetry of  free 

vibration  analysis  of  conical  shells  with  uniform  or varying  wall  thickness. Tong [14] used a particularly 

convenient coordinate system, a simple and obtained exact solution for the Donnell-type governing equations of the 

free vibration of composite laminated conical shells, with orthotropic stretching-bending coupling.  The solution was 

in the form of a power series. Leissa [15] investigated the effects of semi-vertex angles and different boundary 

conditions on the frequency behavior of conical shells. Liew and Lim [16] studied the vibration analysis of shallow 

conical shells via a global Ritz formulation based on the energy principle. Next (Liew and Lim [17]),  a  formulation  

for  the  free  vibration  of moderately  thick conical  shell panels founded on  shear deformable  theory  was  also  

offered  by  them. The Generalized  Differential  Quadrature  Method  was employed  to  investigate  the  free  

vibration  of  composite laminated  conical  shells  by  Shu [18].The vibration  characteristics  of  open  conically  

curved, isotropic  shell  panels  using  a  h–p  version  of  finite element  method  was  studied  by  Bardell  et  al. 

[19]. Wang et al. [20] presented the procedures in which the DQM is applied to the study of free vibration of 

truncated conical shells with a variety of boundary conditions based on Love's first approximation theory. The 

stability of truncated conical shells of continuous grading material subjected to external pressure was investigated by 

Sofiyev [21]. Liew et al. [22] considered the free vibration analysis of thin conical shells under different boundary 

conditions based on the classical thin-shell theory. The analysis was carried out using the element-free kp-Ritz 

method.  

Bhangale et al. [23] presented a finite element formulation based on First-Order Shear Deformation Theory 

(FSDT) to study the thermal buckling and vibrational behavior of truncated FGM conical shells in a high-

temperature environment. 

Tornabene [24] studied the dynamic behavior of moderately thick functionally graded conical with a four-

parameter power-law distribution based on the First-order Shear Deformation Theory (FSDT). Materials were 

assumed to be isotropic and inhomogeneous through the thickness direction. Malekzadeh et al. [25] Investigated a 

three-dimensional (3D) free vibration analysis of the functionally graded (FG) truncated conical shells subjected to 

thermal environment. The material properties are assumed to be temperature dependent and graded in the radius 

direction. The differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to solve 

the thermal and thermo-mechanical governing equations. Sofiyev [26] studied the non-linear vibration of truncated 

conical shells made of functionally graded materials using the large deformation theory with von Karman–Donnell-

type of kinematic non-linearity. The material properties of FGMs are assumed to vary continuously through the 

thickness of the shell. SobhaniAragh and Yas [9] studied static and free vibration characteristics of continuous 

grading fiber-reinforced (CGFR) cylindrical shells are considered based on the three-dimensional theory of 

elasticity, by making use of a generalized power-law distribution. They presented formulation, the cylindrical shell 

was assumed to be made of an orthotropic material. These authors (SobhaniAragh and Yas [10]) studied; three-

dimensional analysis of thermal stresses in four-parameter continuously graded fiber reinforced cylindrical panel 

subjected to thermal load is studied. The cylindrical panel was assumed to be made of an orthotropic material. The 

continuously graded fiber reinforced panel had a smooth variation in matrix volume fraction in the radial direction. 

In the above mentioned papers, the material mostly assumed isotropic CGM conical shells, but in some practical 

usage, some materials are orthotropic. This research is motivated by lack of researches concerning to the effect of 

the parameters of power-law distributions on the vibration behavior of orthotropic continuous grading truncated 

conical shell. The purpose of this present study is to obtain free vibration solution for CGFR truncated conical shell 

with power-law distribution.CGFRs are new composite materials that are microscopically inhomogeneous and the 

mechanical properties vary continuously in one direction. This is achieved by gradually changing the volume 

fraction of the fiber reinforcement in the thickness direction, to obtain smooth variation of material properties and 

optimum response which is great advantage over discrete laminated structures. To the authors’ best knowledge, 

there is not investigation in the open literature for free vibration of CGFR truncated conical shell which is made of 

orthotropic material, and no results for continuous grading of matrix volume fraction in the thickness direction of a 

truncated conical shell are available. In this study, influence of continuous grading of fiber reinforcement (CGFR) 

and choice of the power-law distributions of fibers on the vibration behavior of CGFR truncated conical shell is 

illustrated. Moreover, numerical results of CGFR truncated conical shells with arbitrary variation of volume fraction 

reinforcement in the shell’s thickness compared with discretely laminated composite truncated conical shell. 

Although, in this paper the considered theory in comparison with the previous literatures, which were mostly based 

on the first- order shear deformation theory, is optimized and for achieving more precise results, third order shearing 

deformation theory is employed to achieve governing equations in this study.  
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2    PROBLEM FORMULATIONS 

In this section, geometry, volume fraction distribution in thickness direction for orthotropic FGM, and governing 

equations of motion for truncated conical shell are described.  

2.1 CGFR material properties 

Consider a CGFR truncated conical shell with constant thickness h as shown in Fig. 1. Let ( , , )r z coordinate 

system be located on the middle surface of the shell in the unstressed reference configuration.  The coordinate x is 

measured along the cone generator with origin at the semi-vertex, the angle   is the circumferential coordinate, and 

z is the thickness coordinate. Let 1R  and 2R denote the radii of the truncated cone at small and large edges, 

respectively.  is the semi-vertex angle of the truncated cone and L is truncated cone length along x direction. If R 

denotes the radius of the truncated cone at any point along the x direction, then: 

 

1 2sin( )R x L x L    (1) 

 

Linear strain–displacement relation is assumed. Furthermore, by using third-order shear deformation shell 

theory, displacement fields can be written as (Reddy [27]): 
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where 0 0,U V  denote the in-plane displacements on the mid-plane, 0W  is the transverse displacement, ,x    are 

the slopes of the normal to the mid-surface in the z  and x z surfaces, respectively, , ( , )i i i x    are the 

higher-order displacement parameters defined at the mid-plane, and t is the time. 

Strain–displacement relations for truncated conical shell are expressed as: 
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(3) 

 

By setting 0  , semi-vertex angle of the truncated conical shell formulation can be reduced to the formulation 

of cylindrical shells. Besides, the present formulation is also applicable to the analysis of annular plates by 

letting / 2  . 

The mechanical constitutive relation that relates the stresses to the strains in this coordinate can be explained as: 
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(4) 

where 0z z   . 

The equation of motion and related boundary conditions can be derived by using Hamilton's principle.The 

dynamic version of Hamilton's principle can be expressed as: 
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where KE and PE are kinetic energy and potential energy, respectively. This function can be written as: 
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(6) 

 
By substituting variation of kinetic and potential energy in Hamilton principle, applying side condition and by 

part integration, in the absence of body forces, the governing equations are as follows: 
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Upon substituting these parameters in motion equations and obtaining motion equations in terms of displacement 

components, the coefficients can be expressed as: 
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Clamped-Clamped(C-C) and Simply-Simply(S-S) boundary conditions can be described as follows: 
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For normal mode analysis, the following solutions may be assumed for the displacement components[28,29]: 
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where “m” is circumferential wave number respectively, and w is the natural angular frequency of the vibration. The 

truncated conical has continuouly graded fiber volume fraction through the thickness direction. In the present 

analysis, it is assumed that fiber angle of the fiber reinforced truncated conical shell is constant with respect to the x-

axis in the x   surface. The effective mechanical properties of the fiber reinforced truncated conical shell are 

obtained based on a micromechanical model as follows (Vasiliev and Morozov [30]): 
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where , ,f f f
ii ij
E G and f are elasticity modulus, shear modulus, Poisson’s ratio and density of the fiber, and 

, ,m m m
ii iiE G and m are corresponding properties for the matrix. fV and m

V are the fiber and matrix volume 

fractions  respectively and are related by 1f mV V . 

 



                                                                                                                                                                 M.H.Yas et al.                  217 
 

© 2016 IAU, Arak Branch 

       

 

 

 

 

 

 

 

 

 

 

Fig.1 

Conical shell coordinate system. 

 

In this case, the volume fraction of the fibers has continuous variations in the thickness direction. Two models 

for fiber volume fractions variations in the thickness direction are considered which are described as follows: 

The first model is according to Eq. (13). For even power (P), fibers volume fraction variations are symmetric: 
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where iV  and oV  which have values that range from 0 to 1, denote the volume fractions (matrix or fiber) on the 

inner and outer surfaces, respectively. The exponent P controls the volume fraction profile through the shell’s 

thickness. 

According to symmetrical model, changes in fiber`s volume fraction occur from 0.75 on internal surface 

(z / 2)h   to 0 at  mid-surface, and again reach to 0.75 in periphery z / 2h  of the cone. The symmetrical 

distribution of fibers` volume fraction along thickness of the cone is shown in Fig. 2. As observed in Fig. 2 , the 

variations tend  toward 0% volume fraction of  fiber throughout the thickness of the cone for large values of even 

power indices, which are similar to a homogenous orthotropic cone with 0% volume fraction of  fiber and 100%  

matrix throughout thickness. Non dimensional parameter η /z h  is introduced for thickness of the cone. 

 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

V
f



 

 

p=2

p=4

p=6

p=8

p=10

p=12

p=14

 

 

 

 

 

 

 

Fig.2 

Symmetric variations of fibers volume fractions through 

the  thickness for functionally orthotropic truncated conical 

shell according to Eq. (13). 

 

 

The second model is according to Eq. (14) which is called the classical model: 
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Based on Classical model, fibers` volume fraction reaches to 0.75 in periphery from zero on internal surface of 

truncated cone continuously. According to this relation, iV and oV which have values that range from 0 to 1, denote 

the volume fractions (matrix or fiber) on the inner and outer surfaces, respectively. Fig. 3 illustrates this distribution 

per different power indices. According to this Figure fibers volume fraction is zero in (z / 2)h  and 0.75  

in z / 2h . 
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The variations tend toward 0% volume fraction of fiber for large values of power indices, which is similar to a 

homogenous orthotropic cone with 0% of fibers and 100% of the matrix volume fraction throughout the cone 

thickness. 
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Fig.3 

Classic variations of fibers volume fractions through the 

thickness for functionally graded orthotropic truncated 

conical shell according to Eq. (14). 

3    SOLUTION PROCEDURE  

At this stage, the transversely discretized governing differential equations and the related boundary conditions are 

transformed into the algebraic equations via the GDQ method. 

It is difficult to solve the equations of motion analytically, if it could not be possible. Hence, one should use a 

semi-analytical or numerical method to find a solution. Differential quadrature method (DQM) is applied to solve 

the equations in this literature.  

The essence of the differential quadrature method is that the partial derivative of a function, with respect to a 

space variable at a given sampling point, is approximated as a weighted linear sum of the discrete points in the 

desire direction. In order to show the DQ estimation, consider a smooth function ( )f having its field on a domain 

0<x<a. Let in the given domain the function values be known or desired on a grid of sampling points. According to 

DQ method, for higher order derivatives of the function ( )f  can be expressed by one recursion formula (Bert and 

Malik [31]): 
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(15) 

 

where the superscript m, denote the order of the derivative. 

From this equation, one can perceive that the weighting coefficients ( )m
inA  and the select of sampling points are 

the essential components of DQ approximations. In order to obtain the weighting coefficients, a set of test functions 

should be employed in Eq. (15). For polynomial basis functions DQ, a set of Lagrange polynomials are employed as 

test functions. The weighting coefficients for the first-order derivatives in 
i
-direction are thus achieved as (Bert 

and Malik [31]): 
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where 
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(17) 
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The weighting coefficients of the second-order derivative can be obtained as (Bert and Malik [31]): 

 
2[ ] [ ][ ] [ ]in in in inB A A A      (18) 

 

Eq. (18) being applied to Eqs. (15)- (17), equations of motion (7) based on displacement field by GDQ method 

are discretized as Appendix A.That i=2,…, N-1. Hence, for Clamped-Clamped (C-C) boundary conditions: 

 

0 0 0 0 , 1,i i i xi i xi i xi iu v w i N                  (19) 

 

and for Simply-Simply(S-S) boundary conditions at the both ends of the truncated conical shell is discretized as 

Appendix A: 

In order to carry out the eigenvalue analysis, the domain and boundary degrees of freedom are separated and in 

vector forms. They are denoted as {d} and {b}, respectively. Based on this definition, the discretized form of the 

motion equations and the related boundary conditions take the following forms: 

Equations of motion (Appendix A (1-9)): 

 

 
     2[[ ] [ ]] [ ] 0db dd

b
K K M d

d


 
  

 
 

 

(20) 

 

Boundary conditions (Eqs. (19) or Appendix A (10)): 

 

     [ ] [ ] 0bd bbK d K b   (21) 

 

By eliminating the boundary degrees of freedom in Eq. (20), using Eq. (21), this equation turn into: 

 

   2([ ] [ ]) 0K M d   (22) 

 

where 1[ ] [ ] [ ][ ] [ ]dd db bb bdK K K K K  . The above eigenvalue system of equations can be solved to find the 

natural frequencies and mode shapes of the orthotropic CG truncated conical shell. 

4    RESULTS AND DISCUSSION  

4.1 Verification of the results  

There is a comparison in the form of some examples to validate the derived equations and applied numerical 

method. In Table 1. comparison has been made between the present results which are based on third-order theory by 

GDQM and FEM for the first three natural frequencies of isotropic CG truncated conical shell with Clamped - 

Clamped boundary condition. In this table the results are presented for different  power index as well as the radius to 

thickness ratio. As noticed there is good agreement between the results. 

The  effective material properties of  the isotropic CG shell  are  assumed  to  vary  as  follows:  

 

3 3

( ) ( )( / 0.5)

( ) ( )( / 0.5)
70 , 380

2702 , 3800

0.3

P
m c c

P
m c c

m c

m c

E z E E z h E

z z h
E GPa E GPa

kg kg

m m
v

   

 

   

   
 

 



 

 

 

(23) 

 

Further comparisons were made with the references Liew [22], and Irie et al. [32 ] for the homogenous isotropic 

truncated conical shell in Tables 2-3. In reference [22] analysis is carried out using the element-free kp-Ritz method. 

This method is developed based on the kernel particle concept; the hybrid displacement field is approximated by the 

product of kernel particle (kp) functions in the longitudinal direction, and harmonic functions in the circumferential 
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direction. By combining the kernel particle concept with the Ritz procedure, eigenequations for the free vibration of 

conical shells are derived. Study is based on the classical thin-shell theory. Also in reference [32] the natural 

frequencies are obtained for truncated conical shells of uniform thickness under nine combinations of boundary 

conditions. In the both references formulation is based on a classical thin-shell theory. The results for values of 

circumferential wave number and different angles of the cone are presented. 

The comparison shows that the present results agree well with those in the literatures and it is observed there is 

good agreement between the results. 
 

Table 1 

Comparison of dimensionless natural frequency of isotropic CG truncated conical shell with (C-C) boundary 

condition 0
2( / 1, / , 30 )m mL R h E      . 

  p=0 p=0.5 p=1 p=5 

2 /R h   Present FEM Present FEM Present FEM Present FEM 

5 m=0 0.3173 0.3174 0.4591 0.4616 0.5047 0.5014 0.5830 0.5864 

 m=1 0.2782 0.2777 0.4028 0.4069 0.4423 0.4457 0.5108 0.5100 

 m=2 0.2689 0.2677 0.3887 0.3946 0.4253 0.4301 0.4914 0.4908 

10 m=0 0.1330 0.1330 0.1942 0.1965 0.2137 0.2160 0.2453 0.2468 

 m=1 0.1124 0.1124 0.1639 0.1650 0.1801 0.1812 0.2067 0.2073 

 m=2 0.0973 0.0971 0.1408 0.1418 0.1539 0.1547 0.1767 0.1769 

 

Table 2  

Comparison of dimensionless natural frequency of isotropic truncated conical shell with (C-C) boundary conditions 

2
2 2 2( / 0.01, sin( ) / 0.5, (1 ) / )h R L R R v E       . 

 030   045   060   

m Present Irie [32] Present Irie [32] Liew [22] Present Irie [32] 

0 0.9925 0.9930 0.8726 0.8731 0.8732 0.6682 0.6685 

1 0.8775 0.8776 0.8117 0.8120 0.8120 0.6313 0.6316 

2 0.6420 0.6422 0.6694 0.6696 0.6696 0.5520 0.5523 

3 0.4799 0.4803 0.5426 0.5430 0.5428 0.4780 0.4785 

4 0.3808 0.3816 0.4563 0.4570 0.4565 0.4290 0.4298 

5 0.3299 0.3311 0.4085 0.4095 0.4088 0.4083 0.4093 

6 0.3200 0.3216 0.3956 0.3970 0.3961 0.4145 0.4159 

7 0.3429 0.3450 0.4133 0.4151 0.4141 0.4448 0.4466 

8 0.3883 0.3906 0.4555 0.4577 0.4567 0.4950 0.4972 

9 0.4478 0.4505 0.5159 0.5186 0.5175 0.5612 0.5640 

 
Table 3  

Comparison of dimensionless natural frequency of isotropic truncated conical shell with (S-S) boundary conditions 

2
2 2 2( / 0.01, sin( ) / 0.5, (1 ) / )h R L R R v E       . 

 030   045   060   

m Present Irie [32] Present Irie [32] Liew [22] Present Irie [32] 

0 0.1524 0.1527 0.2230 0.2233 0.2234 0.2348 0.2350 

1 0.6506 0.6567 0.5419 0.5462 0.5462 0.4040 0.4065 

2 0.6116 0.6189 0.6263 0.6310 0.6309 0.4796 0.4821 

3 0.4106 0.4157 0.5005 0.5065 0.5061 0.4276 0.4317 

4 0.2955 0.2988 0.3899 0.3947 0.3941 0.3645 0.3687 

5 0.2507 0.2535 0.3310 0.3348 0.3337 0.3322 0.3359 

6 0.2583 0.2612 0.3215 0.3248 0.3235 0.3368 0.3402 

7 0.2966 0.2996 0.3491 0.3524 0.3510 0.3716 0.3748 

8 0.3497 0.3529 0.3998 0.4033 0.4019 0.4270 0.4305 

9 0.4115 0.4152 0.4645 0.4684 0.4671 0.4964 0.5004 
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4.2 Convergence  

The rate of convergence is investigated in Table 4. for various geometric parameters. As one can observe fast rate of 

convergence of the method is quite eviden and it is found only 11 grid points in the thickness direction can yield 

accurate results. 

 
Table 4  
Rate of convergence for the first three non-dimensional natural frequencies in terms of (C-C) boundary condition for CG 

truncated conical shell classic distribution of fiber 2
2 2( / 1 , (1 ) / ,p=1)m m mL R R v E     . 

2 /R h     N=5 N=7 N=9 N=11 N=13 N=15 

10 30 m=0 1.2984 1.2944 1.2940 1.2940 1.2940 1.2940 

  m=1 1.0884 1.0922 1.0920 1.0920 1.0921 1.0921 

  m=2 0.9432 0.9525 0.9521 0.9522 0.9522 0.9522 

 60 m=0 1.0362 1.0545 1.0521 1.0521 1.0522 1.0522 

  m=1 0.8907 0.9251 0.9222 0.9223 0.9223 0.9223 

  m=2 0.9050 0.9345 0.9313 0.9314 0.9314 0.9314 

20 30 m=0 1.1806 1.1621 1.1586 1.1585 1.1585 1.1585 

  m=1 0.9540 0.9554 0.9543 0.9543 0.9543 0.9543 

  m=2 0.7388 0.7478 0.7472 0.7472 0.7472 0.7472 

 60 m=0 0.9001 0.8832 0.8773 0.8773 0.8773 0.8773 

  m=1 0.7229 0.7414 0.7364 0.7364 0.7364 0.7364 

  m=2 0.5967 0.6270 0.6220 0.6219 0.6219 0.6219 

 
The results related to free vibration of CG fiber reinforced truncated conical shell are presented for two different 

symmetric and classic distributions. For this purpose dimensionless parameter 2
2 (1 ) /m m mR v E    is used 

for the natural frequency   which , ,m m mE   are Poisson`s ratio, Young`s modulus and density respectively. In 

this paper, Tungsten and Copper are used as fiber and matrix, respectively which their material properties are given 

in Table 5. 

 
Table 5  

Mechanical properties of the fiber and matrix. 
v 3( / )kg m E (GPa)  

0.31 8960 115 Copper 

0.28 19300 400 Tungsten 

 

As observed in Figs. 4(a)-(c) , the first three natural frequencies decrease with the increase of fibers volume 

fraction power versus volume fraction power for both classic and symmetric fibers distributions. The obtained 

natural frequency values for symmetrical distribution of fibers volume fraction are more than natural frequency 

values for classic distribution. This just occurs in a special range of volume fraction index for symmetrical 

distribution. But, the resulting natural frequencies from both distribution of fibers volume fraction are equal for large 

values of fiber volume fraction power. That is because of the fibers volume fraction tends toward zero throughout 

the thickness of truncated conical shell with the increase of power and only 100% of matrix is remained as  

demonstrated in Figs. 2 and 3. 

It shows that non-dimensional natural frequency tends to constant values for larger values of the volume fraction 

power. 
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Fig.4 

Comparison of the first three non-dimensional frequencies variations versus volume fraction index for CGFR with classic and 

symmetric fibers distribution, (a) m=0, (b) m=1, (c) m=2, 2 2( / 1, / 20, 60 , )L R R h C C    . 

 
In fact, the orthotropic CG truncated conical shell is approached to a homogenous orthotropic truncated conical 

shell for larger  power values. This case can be clearly seen in Figs. 5(a)-(c) and 6(a)-(c) for the first three 

frequencies of classic and symmetric distributions in truncated conical shell for zero power ( 0P  ) which are the 

demonstrator of an orthotropic homogenous truncated conical shell with 75% fiber and 25% matrix, infinite 

power( P   )  which indicates an orthotropic homogenous truncated conical shell with 0% fiber and 100% matrix, 

and different power values of fibers volume fraction for orthotropic CG truncated conical shell through the thickness 

direction. 

Figs. 5(a)-(c) and 6(a)-(c) show that the natural frequencies of orthotropic CG fiber reinforced truncated conical 

shell tend toward  the natural frequencies of the orthotropic homogenous truncated conical shell with 0.75 fiber and 

0.25 matrix for small power values, and also tend toward the natural frequencies of orthotropic homogenous 

truncated conical shell with 0% fibers and 100% matrix for large power values.  
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Fig.5 

Variations of CGM fiber reinforced truncated conical shell in comparison with orthotropic truncated conical shell versus 

volume fraction power for classic distribution, (a) m=0, (b) m=1, (c) m=2, 2 2( / 1, / 20, 60 , ).L R R h C C      
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Fig.6 

Variations of CGM fiber reinforced truncated conical shell in comparison with orthotropic truncated conical shell versus 

volume fraction power for symmetrical distribution, (a) m=0, (b) m=1, (c) m=2, 2 2( / 1, / 20, 2, 60 , )L R R h m C C     . 

 
In Figs. 7(a)-(c), we characterize the vibration response of CG fiber reinforced truncated conical shell against 

values of large radius to thickness ratio for symmetric distribution of fibers at different values of semi-vertex angle. 

As expected non-dimensional natural frequency decreases with the increase of radius to thickness ratio. Also  

decrease of first three natural frequency are observed for symmetrical distribution by increasing semi-vertex angle of 

truncated cone at constant  large radius to thickness ratio.  
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Fig.7 

Variations of first three non-dimensional natural frequency versus lager radius to thickness ratio for symmetrical distribution of 

fibers in CGM, (a) m=0, (b) m=1, (c) m=2, 2( / 0.5, 2, )L R P C C   . 

 

Figs. 8(a)-(c) demonstrates variations of first three non-dimensional natural frequency against frustum`s semi-

vertex angle from zero degree ,which make the cone transformed to cylinder, up to 90 degrees, which is transmuted 

to annular  plate, for two different powers volume fraction (0 and 6). Zero power converts the geometry to a 

homogenous orthotropic truncated conical shell, but non-zero power of material changes to orthotropic CGM, in 

which fibers volume fraction changes continuously along the thickness. In this figure, by increasing the semi-vertex 

angle of truncated conical shell, slight increase and then sever decrease of natural frequency is observed. The higher 

and lower rate of natural frequency are assigned to 30 degrees and 90 degrees, which are transmuted to an annular 

plate, respectively. Also, as observed, the natural frequency of homogenous orthotropic truncated conical shell is 

higher than that of CGFR. 

 

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P=0

P=6

 
(a) 

0 20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

P=0

P=6

 
(b) 

0 20 40 60 80 100

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

P=0

P=6

 
(c) 

 

Fig.8 

Variations of first three non-dimensional natural frequency versus semi-vertex for symmetrical distribution of fibers in CGM, 

(a) m=0, (b) m=1, (c) m=2, 2 2( / 1, / 20, , )L R R h C C   . 

 
Variations of first three natural frequencies of CGFR shell  against S rtio, which are defined as 2sin /L R , are 

illustrated for different semi-vertex angle values in Figs. 9(a)-(c). 
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Fig.9 

Variations of first three non-dimensional frequency CG fiber reinforced with classic distribution versus parameter s for different 

values of semi-vertex angle, (a) m=0, (b) m=1, (c) m=2, 2( / 20,p 2 , ).R h C C     

 

Figs. 10(a)-(b) is plots of non-dimensional natural frequency versus circumferential wave number for different 

values of volume fraction power and semi-vertex angle. It is observed that, generally non-dimensional natural 

frequency increases. In this figure, reduction of natural frequency occures for wave number less than 3, and then 

increases for  greater wave number. These figures are shown for different fibers volume fraction through the 

thickness, and also semi vertex angle parameters. This case happens for both distributions.  
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Fig.10 

Variations of first non-dimensional natural frequency versus circumferential wave number for different distributions of fibers in 

CGM, (a) Symmetric, (b) Classic, 2 2( / 1, / 20, )L R R h C C   .  

 

Figs.11(a)-(b) shows comparison between orthotropic CGFR and composite multi-layers truncated conical 

shells. In this analogy, results of a composite truncated conical shell with 3 and 5 layers are presented in which the 

volume fraction ratio of fiber to matrix is different in each layer according to Table 6. 
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Fig.11 

Comparison of first non-dimensional frequency CG fiber reinforced with a Symmetric distribution and multi-layer,(a) 

Symmetric(P=2), (b) Classic(P=1) 2( / 20, 45, 0, ).R h m C C     

‏
Table 6  

Material volume fractions of 3-layer, 5-layer and fiber reinforced FGM. 

Type of distribution   

Classic distribution Symmetric distribution  Type of truncated conical shell 

0% Fiber, 100% Matrix 75% Fiber, 25% Matrix First layer 3 layers 

37.5% Fiber, 62.5% Matrix 0% Fiber, 100% Matrix Second layer  

75% Fiber, 25% Matrix 75% Fiber, 25% Matrix‏Third layer  

0% Fiber, 100% Matrix 75% Fiber, 25% Matrix First layer 5 layers 

18.75% Fiber, 81.25% Matrix 37.5% Fiber, 62.5% Matrix Second layer  

37.5% Fiber, 62.5% Matrix 0% Fiber, 100% Matrix Third layer  

56.25% Fiber, 43.75% Matrix 37.5% Fiber, 62.5% Matrix Forth layer  

75% Fiber, 25% Matrix 75% Fiber, 25% Matrix Fifth layer  

0% Fiber, 100% Matrix 75% Fiber, 25% Matrix Inner surface Fiber rein forced FGM 

75% Fiber, 25% Matrix 75% Fiber, 25% Matrix Outer surface  

‏
The natural frequency of orthotropic continuously graded fiber reinforced truncated conical shell is much smaller 

than multilayer composite for small values of S ratios. This difference becomes less for larger values of S ratios.  

Although it is observed that the natural frequency of composite truncated conical shell is inclined to orthotropic 

CGFR truncated conical shell with increasing layers in composite truncated conical shell, it will be equaled with  

high number of layers. 

Tables 7-8., show the first to fourth non-dimensional frequency at different semi-vertex angles, volume fraction 

power and greater radius to thickness ratio for two different distributions of symmetric and classic fibers volume 

fractions through the thickness of truncated conical shell.  
 

Table 7  

First to forth non-dimensional natural frequencies for symmetric distribution and S-S boundary condition (L/R2=1). 

   
2 / 10R h     

2 / 20R h    

  P=2 P=6 P=10 P=2 P=6 P=10 

30   m=0 0.28907 0.283139 0.280188 0.240689 0.236572 0.234536 

 m=1 0.716776 0.7132 0.711668 0.684675 0.682438 0.681856 

 m=2 0.759657 0.749933 0.744743 0.652537 0.648931 0.647438 

 m=3 0.810414 0.79363 0.784079 0.555835 0.545883 0.540797 

60   m=0 0.485535 0.472557 0.464862 0.380249 0.37174 0.367408 

 m=1 0.663694 0.651739 0.644827 0.554365 0.547101 0.543374 

 m=2 0.753739 0.738385 0.729152 0.523671 0.516385 0.512395 

 m=3 1.055988 1.032326 1.017193 0.614513 0.600143 0.591489 

75   m=0 0.473237 0.459266 0.449059 0.319331 0.309539 0.303907 

 m=1 0.539492 0.522997 0.512969 0.374284 0.366454 0.36185 

 m=2 0.782706 0.761759 0.748233 0.453693 0.442407 0.435457 

 m=3 1.146109 1.118988 1.100975 0.630357 0.612773 0.601727 
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Table 8  

First to forth non-dimensional natural frequencies for classic distribution and S-S boundary condition (L/R2=1). 

   
2 / 10R h     

2 / 20R h    

  P=1 P=5 P=10 P=1 P=5 P=10 

30   m=0 0.281444 0.280588 0.280282 0.236364 0.235518 0.234943 

 m=1 0.71062 0.704412 0.706152 0.684437 0.678117 0.679115 

 m=2 0.745926 0.750754 0.749165 0.650596 0.649511 0.649017 

 m=3 0.774372 0.790829 0.78826 0.541634 0.545716 0.542858 

60   m=0 0.459969 0.454397 0.454508 0.369439 0.363599 0.362844 

 m=1 0.632146 0.628295 0.629851 0.542928 0.536587 0.536653 

 m=2 0.716244 0.729192 0.72815 0.508388 0.512272 0.511536 

 m=3 0.983089 1.010068 1.010181 0.573843 0.587654 0.586494 

75   m=0 0.434473 0.433752 0.434406 0.302044 0.296917 0.29599 

 m=1 0.486569 0.490122 0.490714 0.354377 0.353248 0.353424 

 m=2 0.720835 0.738188 0.738032 0.421889 0.429945 0.429474 

 m=3 1.058898 1.088337 1.08935 0.577476 0.594102 0.593201 

5   CONCLUSIONS 

In this study, free vibrations of CGFR throughout the thickness of truncated conical shell are investigated. The 

governing equations of motion for orthotropic CG conical shell based on TSDT are derived and solved by GDQ 

method which has the higher accuracy and convergence rate. Two different types of fiber distributions through the 

thickness including symmetric and classic profiles are considered and compared with each-other. 

From this study some conclusions are made as follows:  

Decrease of first  three non-dimensional natural frequencies with the increase of fibers volume fraction power for 

both symmetric and classic profiles of fibers volume fraction at constant 2R / h and 2L / R . 

The non-dimensional natural frequency of symmetric distribution is larger than classic one for specific volume 

fraction power. 

The non-dimensional natural frequency decreased by increasing the greater radius to thickness ratio. 

The natural frequency decreased  by increasing the  semi-vertex angle of truncated conical shell which gets close 

to the geometry of annular plate at constant 2R / h and 2L / R . 

The non-dimensional natural frequency of the laminated composite is greater than  similar orthotropic CG 

truncated conical shell.  There is a large difference between non-dimensional natural frequency values of orthotropic 

CG truncated conical shell and laminated composite. This difference becomes less with increasing the layers of the 

laminated composite one.  

APPENDIX A 

Equations of motion (7) based on displacement field by GDQ method are discretized as: 

2 2
11 11 11 11 11 22 22 22 22

0 0 02 2 2 2 2 2 2 2 2 2 2

2 2
33 33 33 33 44 44

2 2 2 2 2 2 2 2

cos
( ) ( ) ( ) ( )

sin sin sin sin sin sin sin

( ) ( ) ( )
sin sin sin sin

i i i xi i

xi i

L m T mL mT L L m T mL mT
u v w

x x x x x x x x x

L m T mL mT L m T

x x x x x x






 

      

 
   

 
           
 

      44 44

2 2

(1) (2) (1) (1) (1) (2)11 11 22
11 0 11 11 0 0 22

1 1 1 1

(1) (1)33
22 22 3

1

( )
sin sin

cos
( ) ( ) ( ) ( ) ( )

sin sin

( ) ( ) (
sin

xi i

N N N N

j j j xjij ij ij ij ij ij
j j j j

N

jij ij
j

mL mT

x x
A B Am

c A c u c T B v c w c A c
x x x x

Am
c T B c A

x x





 
 




 




   



  

     

   

   


(2) (1) (1) (2)44

3 33 33 44

1 1 1

(1) 2
44 44 1 0 2 3 4

1

) ( ) ( ) ( )
sin

( ) ( ) ( )
sin

N N N

xj j xjij ij ij ij
j j j

N

j i xi xi xiij
j

Am
c c T B c A c

x x

m
c T B I u I I I

x





  


    


  



   

      

  



 

 

 

 

 

(A.1) 



228                         Free Vibration Analysis of Continuously Graded Fiber Reinforced…. 

© 2016 IAU, Arak Branch 

2 2
11 11 11 11 11 11 11

0 0 02 2 2 2 2 2 2 2 2 2 2

2 2
3322 22 22 22 11 22

2 2 2 2 2 2 2 2

cos cos cos
( ) ( )

sin sin sin sin sin sin
cos cos

( ) ( ) (
sinsin sin sin sin si

i i i

xi i

mL mT m L T q mL mq
u v w

x x x x x x x
mLmL mT m L T q q

xx x x x x x


  

     
 

 
   

 
        
 

        33

2

2 2
33 33 3322 44 44

2 2 2 2 2 2 2

2 2
(1) (1)3344 44 44 11

11 11 02 2 2 2 2
1

)
n sin

cos2 cos
( ) ( )

sinsin sin sin sin
3 cos cos

( ) ( ) ( ) (
sin sinsin sin

xi

i xi

N

i jij ij
j

mT

x
m L T qq mL mT

xx x x x x
qm L T q Tm

c T B u c T
x x xx x x






 


 

   
 


   

 

      

       
(2)

11 0

1

(1) (1) (2) (1)22
22 22 22 33 33

1 1 1

(1) (2) (1) (1) (2)33 44
33 44 44 44

1 1

)

( ) ( ) ( ) ( ) ( )
sin sin

( ) ( ) ( ) ( )
sin

N

jij
j

N N N

xj j xjij ij ij ij
j j j

N N

j xjij ij ij ij ij
j j

c v

Tm m
c T B c T c c T B

x x x

T Tm
c T c c T B c T c

x x x



 

  
 

  




  

 

      

    



  

  2
1 0 2 3 4

1

( )
N

j i i i i

j

I v I I I     


    

 

 

 

 

 

 

 

(A.2) 

 
2 2

11 11 11 11 11
0 0 02 2 2 2 2 2 2 2 2

3311 22 22 22 11 22

2 2 2 2 2 2

33

cos cos cos cos
( ) ( )

sin sin sin sin sin
coscos cos cos 2

( ) ( ) ( )
sinsin sin sin sin

co
(

i i i

xi i xi

L mL mq L m q
u v w

x x x x x
LK L mL mq mq K

x x xx x x x
mL



   

    
  

  
   

 
      
 

      

  33 3322 44

2 2 2 2 2

(1)3344 44
11 02 2 2 2

1

(1) (2)11 22
11 0 11

1

s cos 32 cos
) ( )

sinsin sin sin
3cos cos cos

( ) ( ) ( )
sin sinsin sin

cos
(( ) ( ) ) (( )

sin

i xi

N

i jij
j

N

jij ij
j

mq Kmq L

x xx x x
mqmL mq

B c u
x xx x

K B
c K c w K

x x





  
 

  
  


  









    

    

  




(1) (1)33

22

1 1

(1) 244
33 1 0

1

cos
) ((2 ) )

sin

cos
((3 ) ) ( )

sin

N N

xj xjij ij
j j

N

xj iij
j

B
c K c

x

B
K c I w

x


 




 



 



 

   

 



 

 

 

 

 

 

 

(A.3) 

 
22

33 3322 22 22 22 22
0 0 0 112 2 2 2 2 2 2 2 2

2
33 33 44 44 44 44

222 2 2 2 2 2 2

55
33 2

cos
( ) ( ) ( )

sin sin sin sin sin

( ) (2 ) ( )
sin sin sin sin sin

(3

i i i xi

i xi i

L m TL m T mL mT L
u v w K

x x x x x x x

mL mT L m T mL mT
K

x x x x x x
L

K
x

 




    

  
    

 
          
 

       


2

(1) (2)55 55 55 22
22 02 2 2 2

1

(1) (1) (1) (2)3322
22 22 0 11 0 33

1 1 1

(1)
33

) ( ) (( ) ( ) )
sin sin sin

cos
( ) ( ) ( ) (( ) ( ) )

sin sin

( ) (
sin

N

xi i jij ij
j

N N N

j j xjij ij ij ij
j j j

ij

m T mL mT A
c A c u

xx x x

ABm
c T B v c K w c A c

x x x

m
c T B

x

 
  




 





  

     

     





  

(1) (2) (1)44
33 44 44 44

1 1 1

(1) (2) (1) 255
55 55 55 2 0 3 4 5

1 1

) (( ) ( ) ) ( ) ( )
sin

(( ) ( ) ) ( ) ( ) ( )
sin

N N N

j xj jij ij ij
j j j

N N

xj j i xi xi xiij ij ij
j j

A m
c A c c T B

x x

A m
c A c c T B I u I I I

x x

 



  


     


  

 

    

       

  

 

 

 

 

 

 

 

 

(A.4) 

 
2 2

22 22 22 22 11 22 11 22 22
0 0 02 2 2 2 2 2 2 2 2 2 2

2
33 33 33 33 322

112 2 2 2 2

cos cos cos cos
( ) ( )

sin sinsin sin sin sin sin sin
cos

( ) (
sinsin sin sin

i i i

xi

mL mT m L T q q mq mL mq
u v w

x xx x x x x x x
mL mT m L T qq

q
xx x x x

   

      



  

 
          
 

       
2

3 44 44

2 2 2 2

22 2
33 55 55 55 5544 44 44

22 332 2 2 2 2 2 2 2 2 2

2
5544

2 2

cos
) ( )

sin sin sin
3 cos cos

( 2 ) ( ) ( 3
sinsin sin sin sin sin

cos4 cos
) ( )

sin sinsin

i xi

i xi

i

mL mT

x x x
q mL mT m L Tm L T q

q q
xx x x x x x x

qq m

x xx








 

  
 

 
    




 

  

           

 
(1) (1) (2) (1)22

22 22 0 22 0 33 33

1 1 1

(1) (2) (1) (1) (2)33 44
33 44 44 44

1 1 1

( ) (( ) ( ) ) ( ) ( )
sin

(( ) ( ) ) ( ) ( ) (( ) ( ) ) (
sin sin

N N N

j j xjij ij ij ij
j j j

N N N

j xj jij ij ij ij ij
j j j

T m
c T B u c T c v c T B

x x

T Tm m
c T c c T B c T c

x x x x
 




  
 

  

  

    

      

  

  
(1)

55 55

1

(1) (2) 255
55 2 0 3 4 5

1

) ( )

(( ) ( ) ) ( )

N

xjij
j

N

j i i i iij ij
j

c T B

T
c T c I v I I I

x
   



    





 

     





 

 

 

 

 

 

 

(A.5) 



                                                                                                                                                                 M.H.Yas et al.                  229 
 

© 2016 IAU, Arak Branch 

2 2
33 33 33 33 33 44 44

0 0 0 222 2 2 2 2 2 2 2 2

2
55 55 55 55 6644 44

33 332 2 2 2 2 2 2

cos
( ) ( ) (2 )

sin sin sin sin sin

( ) (4 ) ( ) (6
sin sin sin sin sin

i i i xi

i xi i

L m T mL mT L L m T
u v w K

x x x x x x x

L m T mL mT LmL mT
K K

x x x x x x x
 




    

  
    

 
          
 

        
2

66

2 2 2

(1) (2) (1)66 66 33
33 0 33 33 02 2

1 1

(1) (1) (2) (1)33 44
22 0 44 44

1 1

)
sin

( ) (( ) ( ) ) ( ) ( )
sinsin sin

cos
( 2 ) (( ) ( ) ) ( ) (

sin sin

xi

N N

i j jij ij ij
j j

N N

j xjij ij ij ij
j j

m T

x
mL mT A m

c A c u c T B v
x xx x

B A m
c K w c A c c T

x x x







 




 

 

 



      

   

 

  44

1

(1) (2) (1) (1) (2)55 66
55 55 55 66

1 1 1

(1) 2
66 66 3 0 4 5 6

1

)

(( ) ( ) ) ( ) ( ) (( ) ( ) )
sin

( ) ( ) ( )
sin

N

j

j
N N N

xj j xjij ij ij ij ij
j j j

N

j i xi xi xiij
j

B

A Am
c A c c T B c A c

x x x

m
c T B I u I I I

x









  


    




  





     

     



  



 

 

 

 

 

 

 

(A.6) 

 
2 2

33 33 33 33 33 33 3322 22
0 0 02 2 2 2 2 2 2 2 2 2 2

2
3344 44 44 44

222 2 2 2 2

cos cos cos2 cos 2
( ) ( )

sin sinsin sin sin sin sin sin
3 cos

( ) ( 2
sinsin sin sin

i i i

xi

mL mT m L T q mL mqq mq
u v w

x xx x x x x x x
qmL mT m L T

q
xx x x x

  

      



  

 
          
 

      
2

55 5544

2 2 2 2

2 2 2
55 55 55 66 66 66 6644

33 442 2 2 2 2 2 2 2 2 2

2
55 66

2 2

cos
) ( )

sin sin sin
cos4 cos

( 4 ) ( ) ( 6
sinsin sin sin sin sin

5 cos cos
) (

sin ssin

i xi

i xi

i

mL mTq

x x x
m L T q mL mT m L Tq

q q
xx x x x x x x

q q m

x xx








 

   


 
    

 


 

   

           

 
(1) (1) (2)33

33 33 0 33 0

1 1

(1) (1) (2) (1)44
44 44 44 55 55

1 1 1

(1) (2)55
55

1

) ( ) (( ) ( ) )
in

( ) ( ) (( ) ( ) ) ( ) ( )
sin sin

(( ) ( ) ) (

N N

j jij ij ij
j j

N N N

xj j xjij ij ij ij
j j j

N

jij ij
j

T
c T B u c T c v

x

Tm m
c T B c T c c T B

x x x

T m
c T c

x x







  
 



 

  



   

     

 

 

  


(1) (1) (2)66

66 66 66

1 1
2

3 0 4 5 6

) ( ) (( ) ( ) )
sin

( )

N N

xj jij ij ij
j j

i i i i

T
c T B c T c

x

I v I I I



  

 


   
 

   

   

 

 

 

 

 

 

 

 

(A.7) 

 
22

55 5544 44 44 44 44
0 0 0 332 2 2 2 2 2 2 2 2

2
55 55 66 66 66 66

442 2 2 2 2 2 2

77
55

cos
( ) ( ) (3 )

sin sin sin sin sin

( ) (6 ) ( )
sin sin sin sin sin

(9

i i i xi

i xi i

L m TL m T mL mT L
u v w K

x x x x x x x

mL mT L m T mL mT
K

x x x x x x
L

K
x

 




    

  
    

 
          
 

       


2

(1) (2)77 77 77 44
44 02 2 2 2 2

1

(1) (1) (1) (2)5544
44 44 0 33 0 55

1 1 1

(1)
55

) ( ) (( ) ( ) )
sin sin sin

cos
( ) ( ) ( 3 ) (( ) ( ) )

sin sin

( ) (
sin

N

xi i jij ij
j

N N N

j j xjij ij ij ij
j j j

ij

m T mL mT A
c A c u

xx x x

ABm
c T B v c K w c A c

x x x

m
c T

x

 
  




 





  

     

    





  

(1) (2) (1)66
55 66 66 66

1 1 1

(1) (2) (1) 277
77 77 77 4 0 5 6 7

1 1

) (( ) ( ) ) ( ) ( )
sin

(( ) ( ) ) ( ) ( ) ( )
sin

N N N

j xj jij ij ij
j j j

N N

xj j i xi xi xiij ij ij
j j

A m
B c A c c T B

x x

A m
c A c c T B I u I I I

x x

 



  


     


  

 

   

        

  

 

 

 

 

 

 

 

(A.8) 

 
2 2

33 3344 44 44 44 44 44 44
0 0 02 2 2 2 2 2 2 2 2 2 2

2
55 55 55 55 44

332 2 2 2 2

3 cos 3cos cos cos
( ) ( )

sin sinsin sin sin sin sin sin
4 cos

( ) ( 3
sinsin sin sin

i i i

xi

q mqmL mT m L T q mL mq
u v w

x xx x x x x x x
mL mT m L T q

q
xx x x x

   

      



  

 
          
 

      
2

55 66 66

2 2 2 2

2 2 2
66 66 55 66 77 77 77 77

44 552 2 2 2 2 2 2 2 2 2

2
66 77

2 2

cos
) ( )

sin sin sin
5 cos cos

( 6 ) ( ) ( 9
sinsin sin sin sin sin

6 cos cos
) (

sin ssin

i xi

i xi

i

q mL mT

x x x
m L T q q mL mT m L T

q q
xx x x x x x x

q q m

x xx








 

   
 

 
    

 


 

   

           

 
(1) (1) (2) (1)44

44 44 0 44 0 55 55

1 1 1

(1) (2) (1) (1) (2)55 66
55 66 66 66

1 1 1

) ( ) (( ) ( ) ) ( ) ( )
in sin

(( ) ( ) ) ( ) ( ) (( ) ( ) ) (
sin

N N N

j j xjij ij ij ij
j j j

N N N

j xj jij ij ij ij ij
j j j

T m
c T B u c T c v c T B

x x

T Tm m
c T c c T B c T c

x x x x
 


 

  


  

  

    

      

  

  
(1)

77 77

1

(1) (2) 277
77 4 0 5 6 7

1

) ( )
sin

(( ) ( ) ) ( )

N

xjij
j

N

j i i i iij ij
j

c T B

T
c T c I v I I I

x
   




    







      





 

 

 

 

 

 

(A.9) 

 



230                         Free Vibration Analysis of Continuously Graded Fiber Reinforced…. 

© 2016 IAU, Arak Branch 

Simply-Simply(S-S) boundary conditions at the both ends of the truncated conical shell are discretized as: 
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