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 ABSTRACT 

 The present investigation is concerned with the reflection and transmission coefficients of plane 
waves at the interface of generalized thermoelastic solid half space and heat conducting micropolar 
fluid half- space. The amplitude ratios of various reflected and transmitted waves with various 
angle of incidence have been computed numerically and depicted graphically. Micropolarity and 
thermal relaxation effects are shown on the amplitude ratios for specific model. Some special and 
particular cases are also deduced from the present investigation. 
                                                                                            2012 IAU, Arak Branch. All rights 
reserved. 
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1    INTRODUCTION 

 HE theory of microfluids was introduced by Eringen [1]. A microfluid in addition to its classical translatory 
degrees of freedom represented by velocity field, possesses three gyration vector fields. As a subclass of these 

fluids, Eringen introduced the micropolar fluids [2] in which the local fluid elements were allowed to undergo only 
rigid rotations without stretch. Micropolar fluids can support couple stress, the body couples, asymmetric stress 
tensor and possesses a rotational field, which is independent of the velocity of fluid. A large class of fluids such as 
anisotropic fluids, liquid crystals with rigid molecules, magnetic fluids, cloud with dust, muddy fluids, 
biologicaltropic fluids, dirty fluids (dusty air, snow) over airfoil can be modeled more realistically as micropolar 
fluids. Various authors notably Ariman et.al. [3- 4], Riha [5], Eringen and Kafadar [6], Brulin [7], Gorla [8], Eringen 
[9], Aydemir and Venart [10], Hsia and Cheng [11], Hsia et al. [12] investigated different types of problem in 
micropolar fluid and heat conducting micropolar fluid.The theory of thermoelasticity deals with the effect of 
mechanical and thermal disturbances on an elastic body. The theory of uncoupled thermoelasticity consists of the 
heat equation, which is independent of mechanical effects and the equation of motion contains the temperature as a 
known function. Biot [13] formulated the theory of coupled thermoelasticity to eliminate the paradox inherent in the 
classical uncoupled theory that elastic changes have no effect on the temperature. The heat equations for both 
theories are of parabolic type predicting infinite speed of propagation for heat waves contrary to physical 
observations. 

To overcome this drawback, two generalizations of coupled theory were introduced. The first is due to Lord and 
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Shulman [14], who obtained a wave-type heat equation by postulating a new law of heat conduction to replace the 
classical Fourier's law.  

The second generalization to the coupled theory of elasticity is known as the theory of thermoelasticity with two 
relaxation times or the theory of temperature-rate dependent thermoelasticity is given by Green and Lindsay [15]. A 
comprehensive review on thermoelasticity is available in the standard text e.g Dhaliwal and Singh [16] and Ignaczak 
and Starzewski [17] .  

Various authors investigated the problems of reflection and transmission of plane waves at an interface of 
micropolar/micropolar elastic half- spaces. Tomar and Gogna [18-20], Kumar et al. [21-22], Singh and Tomar [23]  
have discussed the longitudinal waves at an interface of micropolar fluid/micropolar solid half- spaces. Inspite of 
these no work has been done at the interface of heat conducting elastic and micropolar fluid media. 

In this paper, we study the problem of reflection of plane waves at an interface of generalized thermoelastic solid 
half-space and heat conducting micropolar fluid half-space. Micropolarity and thermal relaxation effects on the 
amplitude ratios for incidence of various plane waves that is Longitudinal wave (P-wave), Thermal wave (T-wave), 
Transverse wave (SV-wave) are computed numerically and illustrated graphically. 

The exact nature of the earth is not known. One has to take different appropriate theoretical model to investigate 
the wave propagation problems. The study is motivated by the need for a better understanding of the role of 
interface on the propagation of plane waves between generalized thermoelastic solid half-space and heat conducting 
micropolar fluid half-space. All most all the oil companies rely on the sesmic interpretation for selecting the sites for 
exploratory oil wells. Seismic wavemethods also have higher accuracy, high resolution and are more economical as 
compared to drilling which is costly and time consuming. The model considered shows the kinds of waves travel 
through the medium which provides lot of information about the interior of earth. At the interface of these two 
media new types of waves encountered in micropolar fluid media which are not investigated thouroughly. Although 
it is a theoretical model but it has a great application in science, engineering and geophysics. 

2    BASIC EQUATIONS 

Following Lord and Shulman [14] and Green and Lindsay [15], the field equations for an isotropic and 
homogeneous elastic medium in the context of generalized theory of thermoelasticity, without body forces and heat 
sources, are given by:  
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and the constitutive relations are  
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where symbols have their symbolic meaning. For Lord Shulman (L-S) theory 0 1  , 1 = 0 and for Green-Lindsay 

(G-L) theory 0 0  , 1 > 0 . The thermal relaxation time 0  and 1  satisfy the inequalities 0 1 0    for G-L 
theory only. 

Following Ciarletta [24], the field equations and the constitutive relations for heat conducting micropolar fluids 
without body forces, body couples and heat sources are given by:  
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and superscript f  denotes physical quantities and material constants related to the fluid 

The constitutive relations are 
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where , r j,= , =ij j i jir ij iv      and symbols have their usual meaning as defined by Ciarletta [25]. 

3    FORMULATION OF THE PROBLEM 

We consider a homogeneous, isotropic generalized thermoelastic half-space (medium 1M ) in contact with heat 

conducting micropolar fluid half-space (medium 2M ). The rectangular Cartesian co-ordinate system O 1 2 3x x x  

having origin on the surface 3 0x   seperating the two media is taken. Let us take the 1x -axis along the interface 

between two half-spaces namely 1M ( 30 < <x  ) and 2M ( 3< < 0x ) in such a way that 3x -axis is pointing 

vertically downward into the medium 1M . The geometry of the problem is shown in Fig. 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 
Geometry of the problem. 

 
For two dimensional problem in 1 3x x -plane, we take the displacement vector u


, velocity vector v


 and 

microrotation velocity vector 


 as: 
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We take the following non dimensional quantities  
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The expressions relating the displacement components 1 3,u u and velocity component 1 3,v v  to the potential 

functions ,s  f and ,s f   in dimensionless form are taken as : 
 

1 1 3 3
1 3 3 1

( , ) = ( ( , ) ( , )), ( , ) = ( ( , ) ( , )),s f s f s f s fu v u v
x x x x

   
         

   
 (12)

4    BOUNDARY CONDITIONS 

The boundary conditions at the interface 3 0x   are the continuity of components of normal stress, tangential stress, 
normal velocity, tangential velocity, thermodynamic temperature and normal component of heat flux and vanishing 
of tangential couple stress. Mathematically these can be written as : 
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5    REFRLECTION AND TRANSMISSION 

We consider Longitudinal wave (P-wave), Thermal wave (T-wave) and Transverse wave (SV-wave) propagating 
through the medium 1M  which we designate as the region 3 > 0x  and incident at the plane 3 0x   with its direction 

of propagation with angle 0  normal to the surface. Corresponding to each incident wave, we get reflected P-wave, 

T-wave and SV-wave in medium 1M  and transmitted Longitudinal displacement wave (LD-wave), Thermal wave 
(T-wave), coupled transverse displacement and coupled transverse microrotational waves (CD-I wave and CD-II 
wave) in medium 2M  as shown in Fig. 1. 

In order to solve the Eqs. (13)-(20), we assume the solutions of the system of the form:  
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where k is the wave number,  is the angular frequency and *
2, , , , , , ,s s f f f fT T       are arbitrary constants. 

In view of Eq. (14) and with the aid of (1), (2), (4)-(7) and (10)-(12), the appropriate potentials for medium 1M  

and medium 2M  are taken as: 
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and 1 2,V V are the velocities of P-wave, T-wave in medium 1M and these are roots of the Eq. (I-1) as given in 

Appendix I and 3

1

1
V

a
 is the velocity of SV-wave in medium 1M . 1 2 3 4, , ,V V V V are the velocities of transmitted 

coupled LD-wave, T-wave, CD-I wave and CD-II wave in medium 2M and these are roots of Eq. (I-2) and (I-3) as 

given in Appendix I. 

0 03,iS S  are the amplitudes of incident (P-wave, T-wave) and SV-wave respectively. iS and 3S  are the 

amplitudes of reflected (P-wave, T-wave) and SV-wave and ,i jS S are the amplitudes of transmitted longitudinal 

displacement wave, thermal wave and transverse wave coupled with microrotational wave respectively. 

 Eq. (17) represents the relation between ( f and fT ) ; ( f and *f ). 
 
Following Singh and Tomar [23] , the extension of the Snell's law is given by:  
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where 
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Making use of the values of *, , , , , ,s s f f f fT T      and 2  given by Eqs. (15)-(18) in the boundary conditions 

(13) and with the help of Eqs. (3), (9), (11), (12), (19) and (20), we obtain a system of seven non-homogeneous 
equations which can be written as : 
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where the values of ija are given in Appendix II 

For incident P-wave:  
 

*
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For incident T-wave:  
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For incident SV-wave:  
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(22)

 
where 1 2 3, ,Z Z Z are the amplitude ratios of reflected P-wave, T-wave and SV-wave in medium 1M  and 

4 5 6 7, , ,Z Z Z Z  are the amplitude ratios of transmitted LD-wave, T-wave and coupled CD-I, CD-II waves in 

medium 2M . 

6    SPECIAL CASES 

1.   If 0 11, = 0   , in Eq. (21), then we obtain the corresponding amplitude ratios at an interface of thermoelastic 
solid half-space and heat conducting micropolar fluid half-space for L-S theory. 
2.  If 0 10, > 0   , in Eq. (21), then we obtain the corresponding amplitude ratios at an interface of thermoelastic 
solid half-space and heat conducting micropolar fluid half-space for G-L theory.  
3. Neglecting the micropolar effect in medium 2M  i.e. let 0fK  , we obtain the amplitude ratios at the interface 
of heat conducting elastic solid and fluid media. 

7    NUMERICAL RESULTS AND DISCUSSION 

The following values of relevant parameters for both the half- spaces for numerical computations are taken. 
Following Singh and Tomar [23], the values of micropolar constants for medium 1M  are taken as:  
 

10 2 9 2 3 3= 0.209730 10 , = 0.91822 10 , = 0.0034 10 ,Nm Nm Kgm          

 
and thermal Parameters are taken from Dhaliwal and Singh [16]:  
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Following Singh and Tomar [24], the values of micropolar constants for medium 2M  are taken as:  
 



215                   Propagation of Waves at an Interface of Heat Conducting Elastic Solid and Micropolar Fluid Media 

© 2012 IAU, Arak Branch 

8 2 8 2 8 2

3 3 16 2 2

= 1.5 10 , = 0.03 10 , = 0.000223 10 ,

0.0000222 sec, = 0.8 10 , = 0.00400 10

f f f

f f

Nsecm Nsecm K Nsecm

N Kgm I Nsec m

  

  

    

    
 

 

 
Thermal Parameters for the medium 2M  are taken as of comparable magnitude:  
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The values of amplitude ratios have been computed at different angles of incidence. 
In Figs. 2-22, the variations of amplitude ratios at an interface of heat conducting elastic solid half-space and 

micropolar fluid half-space have been represented by solid line for L-S theory (LS1) and by small dashes line for G-
L theory (GL1) respectively. Similarly, the variations of amplitude ratios at an interface of heat conducting elastic 
solid half-space and micropolar fluid half-space have been represented by medium dashes line for L-S theory (LS2) 
and by large dashes line for G-L theory (GL2) respectively. 

7.1 P-Wave Incident 

Variations of amplitude ratios ;1 7iZ i  with the angle of incidence 
0  , for incident P- wave are shown in Figs. 

2 through 8. 
Fig. 2 depicts that the values of 1Z for LS1 and GL1 decrease in the range 0 0

00 < < 65  and then increase in 

the further range. It is noticed that the values of 1Z for LS1 remain more than the values for LG1 in the whole 

range. The values of 1Z for LS2 and GL2 increase and the values for LS1 remain less than the values for GL2 in 

the whole domain.  
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Fig.2 

Variation of 1Z with angle of incidence (P-wave). 

 
 
Fig. 3 depicts that the values of 2Z for LS1 and GL1 oscillate as 0  increases and the values for LS2 and GL2 

decrease  in the whole range, but the values for GL2 remain more than the values for LS2 in the whole range. The 
values for LS1 are greater than the values for GL1 in the whole range, except for some finite range, where the 
behavior is reversed.  
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Fig.3 

Variation of 2Z with angle of incidence (P-wave). 

 
Fig. 4 shows that the values of 

3Z for LS2 and GL2 increase in the interval 0 0
00 < < 52 and then decrease 

with increase in 0 . It is observed, that the values for LS1 in comparison with LS2 and GL1 in comparison with 
GL2 remain more in the whole domain that reveals the effect of micropolarity. 
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Fig.4 

Variation of 3Z with angle of incidence (P-wave). 

 
Fig. 5 depicts that the values of 

4Z  for GL1 are greater than the values for LS1 in the whole range, except near 

the grazing incidence, where the behavior is reversed. The values for LS2 and GL2 decrease in the whole range, but 
the values for GL2 remain more than the values for LS2 in the whole range. The values for 4Z  for LS1 and GL1 

are magnified by multiplying its original value by 102 and LS2, GL2 by 10. 
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Fig.5 

Variation of 4Z with angle of incidence (P-wave). 

Fig. 6 depicts that the values of
5Z  for LS1, GL1 decrease in the range 0 0

00 < < 65  and 0 0
00 < < 50  

respectively and in the remaining range, the behavior is reversed and the values for LS1 are greater than the values 
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for GL1 in the whole domain. The values for 5Z  for LS1 and GL1 are magnified by multiplying its original value 

by 102 and LS2, GL2 by 10. 
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Fig.6 

Variation of 5Z with angle of incidence (P-wave). 

 
Fig. 7 shows that the behavior of

6Z  for LS1 in comparison with GL1 and LS2 in comparison with GL2 is 

similar in the whole  range with difference in magnitude. The values of amplitude ratio for GL1 in comparison with 
LS1 and LS2  in comparison with GL2 are greater in the whole range. The values of 6Z for LS1, GL1, LS2 and 

GL2 are magnified by multiplying its original value by 10 2 .   
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Fig.7 

Variation of 6Z with angle of incidence (P-wave). 

 
Fig. 8 depicts that the values of 7Z  for LS1 and GL1 increase in the range 0 0

00 < < 52  and decrease in the 

further range. The values of amplitude ratio for GL1 remain more than the values for LS1 in the whole domain. The 

values for 7Z  for LS1 and GL1 are magnified by multiplying its original value by 106. 
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Fig.8 

Variation of 7Z with angle of incidence (P-wave).   
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7.2 T-Wave Incident 

Variations of amplitude ratios ;1 7,iZ i   with the angle of incidence 0 , for incident T-wave are shown in Figs. 

9-15. 

Fig. 9 depicts that the behavior of variation of 1Z  for LS1, GL1, LS2 and GL2 is oscillatory as 0  increases 

and the values of amplitude ratio for LS1 in comparison with GL1, except near the normal incidence and LS2 in 
comparison with GL2 remain more in the whole range. 
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Fig.9 

Variation of 1Z with angle of incidence (T-wave) .        

 

Fig. 10 depicts that the behavior of variation of 2Z for LS1 in comparison with GL1 and LS2 in comparison 

with GL2 is similar in the whole range with difference in magnitude. The values of amplitude ratio for GL1 remain 
more than the values for LS1 in range 0 0

00 < < 56 and in the further range, the behavior is reversed and the values 

for GL2 remain more than the values for LS2 in the range 0 0
00 < < 66 and reversed behavior is observed in the 

further range. 
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Fig.10 

Variation of 2Z with angle of incidence (T-wave).                

 

It is depicted from fig. 11 that the values of 3Z for LS1, GL1, LS2 and GL2  first increase and then decrease 

with increase in 0  and the values of amplitude ratio for LS2 remain more than the values of amplitude ratio for 

GL2 in the whole range and the maximum value is attained by LS1 within the interval 0 0
060 < < 70 . The values 

of amplitude ratio for LS1 in comparison with LS2 and GL1 in comparison with GL2 remain more in the whole 
range due to the effect of micropolarity. 

Fig. 12 depicts that the values of 4Z  for LS2 and GL2 decrease with increase in 0 , but the values for LS1 and 

GL1 oscillate. The values of amplitude ratio for LS1 in comparison with GL1 and LS2 in comparison with GL2 
remain more in the whole range. The values for 4Z  for LS1 and GL1 are magnified by multiplying its original 

value by 10.   
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Fig. 13 depicts that the values of 5Z  for is similar as that for LS1, GL1, LS2 and GL2 decrease in the whole range 

with slight increase in the values for GL1, LS1 near the grazing incidence. The values for 5Z  for LS1, GL1, LS2 

and GL2 are magnified by multiplying its original value by 10. 
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Fig.11 

Variation of 3Z with angle of incidence (T-wave).      
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Fig.12 

Variation of 4Z with angle of incidence (T-wave). 
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Fig.13 

Variation of 5Z with angle of incidence (T-wave). 

 
Fig. 14 depicts that the values of 6Z  for LS1 and GL1 increase with increase in 0 , except near the grazing 

incidence, where the behavior is reversed. The values of amplitude ratio for LS2 and GL2, first increase and then 
decrease with increase in 0  with slight difference in their magnitude. The values for LS1 remain more than the 
values for GL1 in the whole  range, except near the grazing incidence, where the behavior is reversed. The values 

for 6Z for LS1, GL1 are magnified by multiplying its original value by 10 and LS2, GL2 are magnified by 

multiplying its original value by 102. 
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Fig.14 

Variation of 6Z with angle of incidence (T-wave). 

 
Fig. 15 depicts the values of 7Z  for LS1 remain more than the values for GL1 in the whole range, except near 

the grazing incidence, where the behavior is reversed. The values for 7Z  for LS1 and GL1 are magnified by 

multiplying its original value by 106.                  
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Fig.15 

Variation of 7Z with angle of incidence for (T-wave) .        

7.3 SV-Wave Incident 

Variations of amplitude ratios ;1 7,iZ i  with the angle of incidence 0 , for incident SV-wave are shown in 

Figs. 16-22. 
Fig. 16 depicts that the behavior of 1Z  for LS1, GL1, LS2 and GL2  is oscillatory as 0  increases. The values 

for LS1 and GL1 attain peak value at 0
0 45  . The values for GL2 and LS2 attain minima at 0

0 45  . 
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Fig.16 

Variation of 1Z with angle of incidence (SV- wave).       
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Fig. 17 shows that the behavior of variation of 2Z  for LS1 in comparison with GL1 and LS2 in comparison 

with GL2 is similar in the whole range with difference in magnitude. The values of amplitude ratio for GL2 remain 
more than the values for LS2 in the whole range. 
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Fig.17 

Variation of 2Z with angle of incidence (SV- wave). 

 
Fig. 18 depicts that the values of 3Z  for LS1, GL1, LS2 and GL2 oscillate with increase in 0 . The behavior of 

oscillation of LS1 in comparison with GL1 and LS2 in comparison with GL2 is similar with difference in their 
magnitude values. 
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Fig.18 

Variation of 3Z with angle of incidence (SV-Wave). 

 
Fig. 19 shows that the values of 4Z  for LS1 remain more than the values for LS1 in the whole domain. The 

values for LS2 and GL2 increase with 0   
with oscillation within the range 0 0

042 < < 47 . The values for 4Z  for 

LS1 and GL1 ,LS1 and GL2 are magnified by multiplying its original value by 10.  
Fig. 20 depicts that the values of 5Z  for GL1 attain peak value at 0

0 45  . The values for LS2 and GL2 oscillate 

with slight difference in their magnitudes. The values for 5Z  for LS1, GL1, LS2 and GL2 are magnified by 

multiplying its original value by 10. 
Fig. 21 depicts that the values of 6Z for LS1 and GL1 oscillate in the whole range with difference in 

magnitude. The values for GL2 remain more than the values for LS2 in the whole range .The values for 6Z  for 

LS1, GL1, LS2 and GL2 are magnified by multiplying its original value by 10 2 .  
Fig. 22 depicts that the values of 7Z  for LS1 and GL1 attain maximum value at the normal incidence. The 

magnitude of amplitude ratios for LS1 and GL1 is very small. The values for 7Z  for LS1 and GL1 are magnified 

by multiplying its original value by 106.                  
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Fig.19 

Variation of 4Z with angle of incidence (SV- wave). 
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Fig.20 

Variation of 5Z with angle of incidence (SV- Wave). 
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Fig.21 

Variation of 6Z with angle of incidence (SV-Wave). 
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Fig.22 

Variation of 7Z with angle of incidence (SV-wave).    

8    CONCLUSION 

Detailed numerical calculations have been presented for the cases of incidence of P-wave, T-wave and SV-wave at 
the plane surface of model considered. Appreciable micropolarity and thermal relaxation effects have been observed 
on amplitude ratios, for incidence of various plane waves (P-wave ,T-wave and SV-wave). It is observed that the 
values of amplitude ratios are more oscillatory in case of incidence of SV-wave as compared to the values of 

amplitude ratios for incidence of P-wave and T-wave. The values of 4,2,1; iZi  for GL2 remain more than the 

values for LS2 when P-wave is incident. It is noticed that the values of amplitude ratios 53;  iiZi for LS1 

(with one relaxation time) are greater than the values for GL1 (with two relaxation times), when T-wave is incident. 
The values of amplitude ratios of reflected SV-wave and reflected CD-I wave  for LS1 in comparison with LS2 and 
GL1 in comparison with GL2 are greater (when T-wave is incident) that reveals the effect of micropolarity. 
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and 
2 2

2 2
1 3

=
x x

 
 

 
 is the Laplacian operator 
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