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 ABSTRACT 

 In this paper, static and dynamic behavior of a varactor of a micro-phase shifter under DC, step 
DC and AC voltages and effects of the residual stress on the phase diagram have been studied. By 
presenting a mathematical modeling, Galerkin-based step by step linearization method (SSLM) 
and Galerkin-based reduced order model have been used to solve the governing static and 
dynamic equations, respectively. The calculated static and dynamic pull-in voltages have been 
validated by previous experimental and theoretical results and a good agreement has been 
achieved. Then the frequency response and phase diagram of the system have been studied. It has 
been shown that increasing the bias voltage shifts down the phase diagram and left the frequency 
response. Also increasing the damping ratio shifts up the phase diagram. Finally, the effect of 
residual stress on the phase diagram has been studied. 

© 2011 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HANKS to recent advances in the technology of micro electromechanical systems (MEMS), it is known that 
Micro electromechanical systems (MEMS) play an important role in modern technologies such as atomic force 

microscope (AFM), sensing sequence-specific DNA, and detection of single electron spin, mass sensors, chemical 
sensors, and pressure sensors [1,2]. MEMS devices are generally classified according to their actuation mechanisms. 
Actuation mechanisms for MEMS vary depending on the suitability to the application at hand. The most common 
actuation mechanisms are electrostatic, pneumatic, thermal, and piezoelectric [3]. Electro statically actuated devices 
form a broad class of MEMS devices due to their simplicity, as they require few mechanical components and small 
voltage levels for actuation [3], which the electrostatic actuation is inherently non-linear. Micro beams (e.g., fixed-
fixed and cantilever micro beams) under voltage driving are widely used in many MEMS devices such as capacitive 
micro-switches, micro phase shifters and resonant micro-sensors. These devices are fabricated, to some extent, in a 
more mature stage than some other MEMS devices. One of the most important issues in the electro statically-
actuated micro-devices is the pull-in instability. The pull-in instability is a discontinuity related to the interplay of 
the elastic and electrostatic forces. When a potential difference is applied between a conducting structure and a 
ground level, the structure deforms due to electrostatic forces. The elastic forces grow about linearly with 
displacement whereas the electrostatic forces grow inversely proportional to the square of the distance. When the 
voltage is increased the displacement grows until at one point the growth rate of the electrostatic force exceeds than 
the elastic force and the system cannot reach a force balance without a physical contact, thus pull-in instability 

______ 
* Corresponding author. Tel.: +98 914 461 1138. 
   E-mail address: S.ahouighazvin@gmail.com (S. Ahouighazvin). 

T
 



209                   S. Ahouighazvin et al. 

© 2011 IAU, Arak Branch 

occurs. The critical voltage is known as “pull-in voltage”. Some previous studies predicted pull-in phenomena based 
on static analysis by considering static application of a DC voltage [4-5]. 

Phase shifters are key components of many communication and sensor systems. Most of existing phase shifters 
are based on semiconductor or ferrites technologies. High material and fabrication expenses, as well as high RF 
losses associated with the materials, hinder their applications [6]. Distributed MEMS transmission line (DMTL) 
phase shifter was first proposed by Barker and Rebeiz [7] using a quartz substrate .A series of MEMS air gap bridge 
varactors are placed over a coplanar waveguide (CPW) transmission line. Phase shifts are created by phase velocity 
changes induced by altering bridge parallel-plate capacitances. There are two classes of RF MEMS phase shifters 
namely analog and digital. The analog phase shifters provide a continuous variable phase shift from 0 to 360◦ using 
varactor capacitive switches [7]; whereas the digital phase shifters provide a discrete or quantized set of phase 
delays with 1 bit 180◦, 2 bit 180◦/90◦ set of delay networks which allow phase shifts of 0, 90, 180 and 270◦ 
depending on the combination of bits used [8]. When comparing to the other topologies, the distributed MEMS 
transmission line (DMTL) phase shifter on silicon wafer has the advantage of low cost, low loss and small size. In 
addition, the DMTL phase shifters demonstrated in this work have better performance [9] on simple coplanar 
waveguide (CPW) transmission lines because CPW based phase shifters are uniplanar. This is one of the main 
advantages as only one side of the substrate is used; eliminating the need for via-hole process and simplifying the 
fabrication and integration process with other components [10]. Though the phase shifting technique has many 
advantages, it is marred by a few inaccuracies due to the vibration and mechanical movement of the phase shifter 
itself. Much of the work reported to compensate these errors, to our knowledge, is on the theoretical side of the 
process. Not much work has been done to eliminate these errors [11]. One method to eliminate these errors was first 
conceived by Smith and more in their work of instantaneous phase shifting interferometry (IPSI) [12]. In spite of the 
many researches about the phase shifters, the mechanical behavior of the phase shifters had not been studied 
generally yet.  

In this paper, theoretically, the mechanical behavior of the micro-capacitor used as a varactor is studied. By 
applying a mathematical modeling and numerical solution, the static and dynamic response of the system to the DC, 
AC and a combination of these voltages is investigated. The effects of residual stresses on the dynamic and static 
instability of a micro-varactor is investigated. Also, the frequency response of the system for various applied DC 
voltage and the phase diagram for the first natural frequency and different damping ratios is studied. Then the effect 
of the assumed DC voltage on the phase shifting is investigated. Finally, the effect of residual stress on the phase 
diagram has been studied. 

2    MATHEMATICAL MODELING 

Fig. 1 shows the schematic view of the circuit of the phase shifter given in reference of [6]. In this paper, it is 
focused on the mechanical behavior of the varctor of Fig. 1 shown clearly in Fig. 2. The governing equation of 
motion for the transverse displacement of the beam w(x, t) actuated by an electrostatic load of voltage V is written as 
[5]: 
 
 
 

 Fig. 1 
A schematic view of the phase shifter circuit [6]. 

   
   

 

Fig. 2 
Schematic view of an electro statically actuated fixed-fixed 
micro beam. 
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where E  is dependent on the beam width b and film thickness h. A beam is considered wide when b ≥ 5h. Wide 
beams exhibit plane-strain conditions, and therefore, E~  becomes the plate modulus )1/( 2E , where E and   are 

the Young’s modulus and Poisson’s ratio, respectively. A beam is considered narrow when b < 5h.  In this case, E~  
simply becomes the Young’s modulus, E. 3( /12)I bh=  is the effective moment of inertia of the cross-section 
which is wide relative to thickness and width, ρ is density, ε and d are the dielectric constant of the gap medium and 
initial gap, respectively. The micro beam is subject to a viscous damping, which can be due to squeeze-film 
damping. This effect is approximated by an equivalent damping coefficient c per unit length [5]. The boundary 
conditions of the micro beam are written as follow: 
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2.1 Residual stress effects 

Residual stress, due to the inconsistency of both the thermal expansion coefficient and the crystal lattice period 
between the substrate and thin film, is unavoidable in surface micromachining techniques. Accurate and reliable data 
for residual stress are crucial to the proper design of MEMS devices that are related to these techniques [13, 14]. 
Considering the fabrication sequence of MEMS devices, residual force can be expressed as [15]: 

(1 )r rN bh = -  (3)
 

 
where r  is the biaxial residual stress [16], and υ is the Poisson’s ratio. Assuming the stretching and residual 

stresses effects, the governing differential equation takes the following form: 
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For convenience in analysis, this equation must be non-dimensionalized. In particular, both the transverse 

displacement, w, and the spatial coordinate, x, are normalized by characteristic lengths of the system and the gap 
size and beam length, respectively, according to: ˆ /w w d=  and  ˆ / .x x L=  Time is non-dimensionalized by a 

characteristic period of the system according to: ˆ /t t t*=  with  * 1/2( / ) .4t bhL EI=  Substituting these parameters 

into Eq. (4), the following non dimensional equation is obtained: 
 

24 2 2

14 2 2

ˆˆ ˆ ˆ ˆ ( )ˆˆ
ˆ ˆˆ ˆ ˆˆ ˆ 1 ( , )r

w w w w V t
c N

t w x tx t x


æ ö¶ ¶ ¶ ¶ ÷çé ù ÷+ + - = ç ÷ê ú çë û ÷÷ç¶ -¶ ¶ ¶ è ø
 (5)

 

 
The non-dimensional parameters appeared in Eq. (5) are: 
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3    NUMERICAL SOLUTION 
3.1 Static analysis 

In the static analysis there is no exist time derivatives, so using Eq. 5 the governed equation describing the static 
deflection of the micro beam can be obtained as follow: 

 
24 2

14 2

d d
ˆ( , ) 0

1 ( )d d
s s

s r
s

w w V
L w V N

w xx x


æ ö÷çé ù ÷= - - =ç ÷ê ú çë û ÷ç -è ø

 
    (7)

 

 
where the ˆ ˆ( )sw x  for fixed-fixed end micro beam must be satisfied same boundary condition as mentioned in Eq. 

(2). Due to the nonlinearity of derived equation, the solution is complicated and time consuming. Direct applying 
Galerkin based reduced order model create a set of nonlinear algebraic equation. In this paper, we use a method to 
solve it which consists of two steps. In the first step, we use step by step linearization method (SSLM), and in the 
second, Galerkin method for solving the linear obtained equation is used. Because of considerable value of 
ŵ respect to initial gap especially when the applied voltage increases, the linearizing respect to ŵ , may cause some 
considerable errors, therefore, to minimize the value of errors, the method of step-by-step applied voltage increasing 

is proposed and the governing equation is linearized at each step [17]. To use SSLM, it is supposed that the ˆ k
sw  is 

the displacement of beam due to the applied voltage .kV  Therefore, by increasing the applied voltage to a new 
value, the displacement can be written as: 
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when 
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Therefore, Eq. (7) can be rewritten as follow: 
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By considering small value of δV , it is expected that ψ would be small enough, hence using of Calculus of 

Variation Theory and Taylor’s series expansion about ˆ kw , and applying the truncation to first order of it for suitable 
value of δV, it is possible to obtain desired accuracy. The linearized equation to calculate ψ can be expressed as: 
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The obtained linear differential equation is solved by Galerkin based reduced order model. ˆ( )x  based on 

function spaces can be expressed as: 
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where ˆ( )j x  is the ith shape function that satisfies the boundary conditions. The unknown ˆ( ),x , is approximated by 

truncating the summation series to a finite number, n: 
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By substituting the Eq. (12) into Eq. (11), and multiplying by  xi ˆ as a weight function in Galerkin method and 

then integrating the outcome from ˆ 0x   to 1, the Galerkin based reduced-order model is generated. 

3.2 Dynamic analysis 

In the numerical solution it is considered that the micro beam is deflected by a DC voltage, VDC and then the 
dynamic characteristics and forced response of the system considered about these conditions. So total deflection of 
the micro beam consists of two parts as: 

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , )s dw x t w x w x t= +  (14)
 

 
where ˆ ˆ( )sw x  introduces the static deflection of the beam and ˆˆ ˆ( , )dw x t  denotes the dynamic deflection about ˆ ˆ( ).sw x  

Because of the applied AC voltage in the model is small enough than DC voltage 
DCAC VV   by linearizing Eq. (5) 

about calculated ˆ ˆ( )sw x  small linear vibrations are studied by following equation: 
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where ACV V =  and .dw w =  The 

A CV is small AC voltage and equal to 0 sin  ( )V t   and   is excitation 

frequency. 
Subtracting Eq. (15), the linearized equation of motion about equilibrium position can be obtained in the 

following form: 
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In order to solve this equation, a Galerkin-based reduced order model can be used [18]. So ˆ

dw  can be expressed 

as: 
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where ˆ( )j x  is the jth shape function that satisfies the boundary conditions. The unknown ˆˆ ˆ( , );dw x t  can be 

approximated by truncating the summation series to a finite number, N: 
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In this paper, ˆ( )j x   is selected as the jth undamped linear mode shape of the straight micro beam. By 

substituting the Eq. (18) into Eq. (20) and multiplying by ˆ( )i x  as a weight function in Galerkin method and then 

integrating the outcome from ˆ 0x =  to 1; the Galerkin-based reduced order model is generated as: 
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where , , mechM C K  and elecK  are mass, damping, mechanical and electrical stiffness matrixes, respectively. Also F  
introduces the forcing vector. The mentioned matrices and vector are given by: 
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The same procedure is used to study the response of the system to the step DC voltage, where the Eq. (19) is 

written as follow: 
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where F introduces the forcing vector as follow: 
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Now, Eq. (21) can be integrated over time by various integration methods such as Rung-Kuta method where 
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

 in each time step of integration take the value of previous step.  
By applying the procedures mentioned, the static and dynamic stabilities and frequency response of the system is 

gained.  

3.3 Dynamic Analysis 

It is known that there is a phase shifting,   between the applied AC voltage and harmonic vibration of the 

microbeam. For study the phase diagram under various damping ratios and DC voltages the following formula is 
applied [19]: 
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where n  and   are fundamental and excitation frequency of the system.   is the damping ratio. The fundamental 

frequency is varied by variable DC voltage. 

4    RESULTS AND DISCUSSION 

For verification of our numerical solution it is considered a micro beam with the geometric and material properties 
listed in Table 1 [15]. In Tables 2 and 3 the calculated pull-in voltages are compared to previous works for the fixed-
fixed and cantilever micro beams with properties of Table 1, respectively. It is shown that the calculated pull-in 
voltages are in good agreement with previous works. For validation of dynamic results with previous works, a fixed-
fixed micro beam is considered with the specifications of the pressure sensor used by Hung and Senturia [21]: 
 

3149 GPa, 2330 kg/m , 610 μm, 40 μm, 2.2 μm and 2.3 μmE L b h d       
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Table 1 
The values of design variables 

Design variable  Value 
B 50 m  

H 3 m  
D 1 m  
E 16 9 GPa 
  2331 kg/ 3m  
  8.85 PF/m 
V 0.06 

 
 
Table 2 
Comparison of the pull-in voltage for a fixed-fixed microbeam 

 Residual stress (MPa) Our residual Energy model [20] MEMCAD [20] 
L=350 0  100  -25 20.1V  35.3V  13.8V 20.2V  35.4V  13.8V 20.3V  35.8V  13.7V 
L=250 0  100  -25 39.5V  57.3V  33.4V 39.5V  56.9V  33.7V 40.1V  57.6V  33.6V 

 
 
Table 3 
Comparison of the pull-in voltage for a cantilever microbeam ( 150 )L m=  

 Our result Cosolve simulation [20] Closed form 2D model [20] 
Pull-in voltage (v) 17.0 16.9 16.8 

 
 
 

 

Fig. 3 
Comparison of the pull-in time for no damping 
case without the stretching effects. 

   
   

Fig. 4 
The frequency response of the system for various 
Vdc. 

 
 

Because h is given as a nominal value, it is modified to match the experimental pull-in voltage .Accordingly, 
thickness is obtained h2.135 m. They have considered a residual stress of -3.7 MPa. In Fig. 3 the calculated pull-
in time obtained using proposed method is compared with the theoretical and experimental results of Hung and 
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Senturia [21] for various values of step DC voltage. The pull-in time is found by monitoring the beam response over 
time for a sudden rise in the displacement; at that point the time is reported as the pull-in time [22]. As Fig. 2 
illustrates, calculated results are in excellent agreement with the theoretical and experimental results. It is shown that 
for no damping case before V8.18 V the pull in instability does not occur, so this step DC voltage can be 
introduced as dynamic pull-in voltage for the microbeam. Fig. 4 illustrates the frequency response of the system for 
various DC voltages. It is shown that increasing the DC voltage shifts left the frequency diagram. Because, 
increasing the DC voltage decreases the stiffness and consequently the fundamental frequency of the system.  
 
 
 

 
Fig. 5 
Phase Diagram for Various Damping Ratios. 

  
  

 

Fig. 6 
Effects of DC voltage on the phase diagram. 
 
 

  
  

 

Fig. 7 
Effects of the residual stress on the phase 
diagram. 
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Due to the decreasing of the stiffness, maximum amplitude of the microbeam increases. Also, the rate of the 
frequency shifting and amplitude increasing is raised near the pull-in voltage. This can be due to the higher rate of 
stiffness decreasing near the pull-in voltage. Fig. 5 shows the phase diagram of the system versus various damping 
ratio. It is shown that the higher damping shifts right the diagram. In Fig. 6, it is illustrated that by increasing the 
applied DC voltage phase diagram shifts left. Fig. 7 shows the phase diagram of the system versus various residual 
stresses. It is shown that the higher residual stress shifts down the diagram. 

5    CONCLUSIONS 

In the presented work static and dynamic response of a micro-varactor of a phase shifter to DC, step DC and AC 
voltages were studied. By presenting a mathematical modeling Galerkin-based step by step linearization method 
(SSLM) and Galerkin-based reduced order model were used to solve the governing static and dynamic equations, 
respectively. Then by applying these methods static and dynamic pull-in voltages were obtained and validated by 
previous experimental and theoretical results and a good agreement were achieved. It was shown that applying a DC 
voltage shifts left the frequency response. It was concluded that it can be due to the decreasing of the total stiffness 
of the system. Then the effects of the applied DC voltage and damping on the phase diagram were studied. It was 
illustrated that the DC voltage and damping ratio shifts down and up this diagram, respectively. Then the frequency 
response and phase diagram of the system has been studied. It has been shown that applying the DC voltage shifts 
down the phase diagram and frequency response. Finally, the effects of the various residual stresses on the phase 
diagram were studied. It was illustrated that the higher residual stress shifts down and decrease residual stress shift 
up this diagram. 
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