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ABSTRACT 
In this paper, a study on the vibration of thin cylindrical shells made of a functionally gradient 
material (FGM) composed of stainless steel and nickel is presented. The effects of the FGM 
configuration are taken into account by studying the frequencies of two FG cylindrical shells. 
Type I FG cylindrical shell has nickel on its inner surface and stainless steel on its outer surface 
and Type II FG cylindrical shell has stainless steel on its inner surface and nickel on its outer 
surface. The study is carried out based on third order shear deformation shell theory (TSDT). The 
objective is to study the natural frequencies, the influence of constituent volume fractions and the 
effects of configurations of the constituent materials on the frequencies. The properties are graded 
in the thickness direction according to the volume fraction power-law distribution. The analysis is 
carried out with strains-displacement relations from Love's shell theory. The governing equations 
are obtained using energy functional with the Rayleigh-Ritz method. Results are presented on the 
frequency characteristics and the influences of constituent various volume fractions for Type I and 
II FG cylindrical shells and simply supported boundary conditions on the frequencies. 

© 2009 JSM. All rights reserved 
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1    INTRODUCTION 

YLINDRICAL shells  have found many applications in the industry. They are often used as load bearing 
structures for aircrafts, ships and buildings. The study of the vibration of cylindrical shells is an important 

aspect in the successful applications of the cylindrical shells. The study of the free vibrations of cylindrical shells 
has been carried out extensively. Arnold and Warburton [1], Ludwig and Krieg [2], Chung [3], Soedel [4], Forsberg 
[5], Bhimaraddi [6], Soldatos [7], Bert and Kumar [8], and Soedel [9] are among those who have studied the 
vibrations of cylindrical shells. The concept of functionally gradient materials (FGMs) was first introduced in 1984 
by a group of materials scientists in Japan, [10, 11], as a means of preparing thermal barrier materials. Since then, 
FGMs have attracted much interest as heat-shielding materials. FGMs are made by combining different materials 
using power metallurgy methods [12]. They possess variations in constituent volume fractions that lead to 
continuous change in the composition, microstructure, porosity, etc. and this results in gradients in the mechanical 
and thermal properties [13, 14]. Studies on FGMs have been extensive but are largely confined to analysis of 
thermal stress and deformation [15-17]. Najafizadeh and Isvandzibaei [18] presented the vibration of functionally 
graded cylindrical shells based on higher order shear deformation plate theory with ring support. The advantage of 
FGMs is that desired mechanical properties can be tailored and this holds enormous application potential for FGMs.  

In this paper, a study on the vibration of cylindrical shells composed of functionally gradient material (FGM) is 
presented. The considered functionally gradient material is composed of stainless steel and nickel where the volume 
fractions follow a power-law distribution. The objective is to study the natural frequencies, the influence of 
constituent volume fractions, the effects of configurations of the constituent materials on the frequencies for two 
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kinds of FG cylindrical shell and the influence of simply supported boundary conditions on the frequencies. The 
analysis of the functionally graded cylindrical shell is carried out using third order shear deformation shell theory 
and solved using Rayleigh-Ritz method with obtained energy functional using an energy approach. The 
displacement fields employed consist of some beam eigenfunctions of vibrations that guarantee satisfaction of edge 
boundary conditions. Studies are carried out for functionally graded cylindrical shells with simply supported-simply 
supported SS-SS boundary condition.  

2    FUNCTIONALLY GRADIENT MATERIALS 

Functionally gradient materials (FGM) are obtained by combining two or more materials. Most of the functionally 
gradient materials are employed in high-temperature environments and many of the constituent materials may 
possess temperature-dependent properties. The material P  can be expressed as a function of temperature [19], as 
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where 211 ,,, PPPP −  and 3P  are the coefficients of temperature )K(T  expressed in Kelvin and are unique to the 
constituent materials. The material properties P of FGMs are a function of the material properties and volume 
fractions of the constituent material, and are expressed as 
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where jP  and fjV  are, respectively, the material property and volume fraction of the constituent material .j  The 
volume fractions of all the constituent materials should add up to one, i.e. 
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For a cylindrical shell with a uniform thickness h  and a reference surface at its middle surface, the volume 

fraction can be written as 
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where N  is the power-law exponent, ∞≤≤ N0 . For a functionally gradient material with two constituent 
materials, the Young's modulus E , Poisson ratio ν  and the mass density ρ  can be expressed as 
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From these equations, when 2 2/ 2 , , ,z h E E ν ν= − = =  and 2ρρ = , and when 1 1/ 2, , ,z h E E ν ν= − = =  

and 1ρρ = . The material properties vary continuously from material 2 at the inner surface of the cylindrical shell to 
material 1 at the outer surface of the cylindrical shell. 
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3    STRAINS-DISPLACEMENT RELATIONSHIPS 

The strain-displacement relationships for a thin shell are [9], 
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where 1A  and 2A  are the fundamental form parameters or Lame parameters, 1U , 2U  and 3U  are the displacement 
at any point ( 1α , 2α , 3α ), 1R  and 2R are the radius of curvature related to 1α , 2α  and 3α  respectively. The third-
order theory of Reddy used in the present study is based on the following displacement field 
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These equations can be reduced by satisfying the stress-free conditions on the top and bottom faces of the 

laminates, which are equivalent to 02313 ==∈∈  at 
2
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where 21 3
4
h

C = . Substituting Eq. (15) into nonlinear strain-displacement relation (8) - (13) we get 

 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

′
′
′

+
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈
∈
∈

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈
∈
∈

12

22

11
3
3

12

22

11

3
0
12

0
22

0
11

12

22

11

k

k

k

k

k

k

αα  (16) 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
∈
∈

3
23

3
133

32
23

2
132

30
23

0
13

23

13

γ
γα

γ
γα

γ
γ  (17) 

4    FORMULATIONS 

Consider a cylindrical shell which as shown in Fig.1. R  is the radius, L  is the length and h is the thickness. The 
reference surface is chosen to be the middle surface of the cylindrical shell where an orthogonal coordinate system 

,  ,  x zθ  is fixed. The deformations of the shell with reference to this coordinate system are denoted by 1U , 2U , and 

3U  in the , ,x θ  and z  directions, respectively. For a thin cylindrical shell, plane stress condition can be assumed. 
The constitutive relation for a thin cylindrical shell is consequently given by the two-dimensional Hook’s law as 
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where { }σ  is the stress vector, { }ε  is the strain vector and [ ]Q  is the reduced stiffness matrix. The stress vector for 
plane stress condition is  
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where 11σ is the stress in x direction, 22σ  the stress in the θ  direction and 12σ  is the shear stress on the θx  plane 
and 13σ  is the shear stress on the zx  plane and 23σ  is the shear stress on the zθ  plane. The strain vector is defined 
as 
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where 11ε  is the strain in x direction, 22ε  the strain in the θ  direction and 12ε  is the shear strain on the θx  plane 

and 13ε  is the shear strain on the zx  plane and 23ε  is the shear strain on the zθ  plane. The reduced stiffness [ ]Q  
matrix is given as 
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Fig. 1 
Geometry of a cylindrical shell. 

 
 
For an isotropic cylindrical shell, the reduced stiffness ijQ  ( i , j=1, 2 and 6) are defined as 
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where E  is the Young's modulus and ν  is Poisson’s ratio. For a thin cylindrical shell, the force and moment results 
are defined as 
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The constitutive equation is obtained as 
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where }{N  and { }ε  are defined as 
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and ][S  is defined as 
 



M.R. Isvandzibaei and P.J. Awasare                   195 
 

© 2009 IAU, Arak Branch 

[ ]

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ] ⎟

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

′′
′′′
′′

=

GFD

EDA

HGE

HFE

FDB

EBA

S  (31) 

 
where A, B, E, D, F, H, and G are the extensional, coupling and bending stiffness matrices and ijQ  are functions of 
z  for functionally gradient materials. Here ijA  denote the extensional stiffness, ijD  the bending stiffness, ijB  the 
bending-extensional coupling stiffness and ijijijij HGFE ,,,  are the extensional, bending, coupling, and higher-order 
stiffness. Defining 
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The strain energy and kinetic energy of a cylindrical shell can be defined as 
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where ρ  is the mass density, { }ε  is the strain vector and { }σ  is the stress vector. By substituting from Eq. (18), the 
strain and kinetic energies can be written as 
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where { }ε  is the strain vector defined in Eq. (30) and ][S  is the stiffness matrix defined in relation (31). The 
parameter Tρ  is the density per unit length defined as 
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 The displacement fields for a cylindrical shell can be written as 
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where, A , B , C , D  and E  are the constants denoting the amplitudes of the vibrations in the θ ,x  and z  directions, 
)(xφ  is the axial function that satisfies the geometric boundary conditions, n  denotes the number of circumferential 

waves in the mode shape and ω  is the natural angular frequency of the vibration. The axial function )(xφ is chosen 
as the beam function as 
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where )4,...,1( =iiα are some constants with value 0 or 1 chosen according to the boundary conditions. mλ  are the 
roots of some transcendental equations and mζ  are some parameters dependent on mλ . The )4,...,1( =iiα , the 
transcendental equations and the parameters mζ  for the simply supported boundary condition considered. The 
geometric boundary condition for simply supported boundary condition can be expressed mathematically in terms of 

)(xφ as 
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To determine the natural frequencies, the Rayleigh-Ritz method is used. The energy functional Π  is defined by 
the Lagrangian function as 
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Substituting Eq. (38) into Eqs. (35) and (36) and minimizing the energy functional Π  with respect to the 
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In Eq. (41), Tmax and Umax are the maximum kinetic energy and strain energy, respectively. In Eq. (42), the five 

governing eigenvalue equations can be obtained. These five governing eigenvalue equation can be expressed in 
matrix form as 
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(43) 
 

The eigenvalue equations are solved by imposing the non-trivial solutions condition and equating the 
determinant of the characteristic matrix ][ ijC  to zero. Expanding this determinant, a polynomial in even powers of 
ω  is obtained 
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where )5,4,3,2,1,0( =iiβ  are some constants. Eq. (44) is solved and five positive and five negative roots are 
obtained. The five positive roots obtained are the natural angular frequencies of the cylindrical shell in the x , θ , 
and z  directions. The smallest of the five roots is the natural angular frequency studied in the present study. 
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5    RESULTS AND DISCUSSION 

In this paper, studies are presented on the vibration of simply supported functionally graded (FG) cylindrical shell. 
The functionally gradient material (FGM) considered is composed of stainless steel and nickel and its properties are 
graded in the thickness direction according to the volume fraction power-law distribution. The influence of 
constituent volume fractions is studied by varying the volume fractions of the stainless steel and nickel. This is 
carried out by varying the value of the power law exponent N . The effects of the FGM configuration are 
investigated by studying the frequencies of two FG cylindrical shells. Type I FG cylindrical shell and Type II FG 
cylindrical shell, Type I FG cylindrical shell has nickel on its inner surface and stainless steel on its outer surface 
and Type II FG cylindrical shell has stainless steel on its inner surface and nickel on its outer surface. The material 
properties for stainless steel and nickel, calculated at 300 KT = , are presented in Table 1. To validate the present 
analysis, results for cylindrical shells are compared with Chung [3]. The comparisons show that the present results 
agreed well with those in the literature. Tables 3 and 4 show the variations of the volume fractions fV  of nickel and 
stainless steel, respectively, in the thickness direction z  for Type I FG cylindrical shell. In the Table 1 the volume 
fraction of Stainless Steel fssV  increased from 0 at 0.5z h= −  to 1 at 0.5z h= and in the Table 2 the volume 
fraction for nickel fNV  decreased from 1 at 0.5z h= − to 0 at 0.5z h=  and the material properties on the inner 
surface of the Type I FG cylindrical shell are those of nickel and on the outer surface are those of stainless steel. 
 
 
Table 1 
Material properties at T=300 K 
Coefficients Stainless Steel    Nickel   
 E (N m-2) ν ρ (kg m-3)  E (N m-2) ν ρ (kg m-3) 
P0 201.04×109 0.3262 8166  223.95×109 0.3100 8900 
P-1 0 0 0  0 0 0 
P1 3.079×10-4 -2.002×10-4 0  -2.794×10-4 0 0 
P2 -6.534×10-7 3.797×10-7 0  -3.998×10-9 0 0 
P3 0 0 0  0 0 0 
 2.07788×1011 0.317756 8166  2.05098×1011 0.3100 8900 
 
 
Table 2 
 Comparison of frequency (rad / s)  parameter 2((1 ) ) /R Eω ν ρΩ = −  for a clamped-clamped isotropic cylindrical shell 

/L R  /R h  n  ω  Ω  
Chung [3] Present 

10 500 4   327.5406 0.01508 0.0154656 
10 20 2 1254.2173 0.05787 0.0592211 
2 20 3 1380.366 0.3117 0.235887 
 
 
Table 3 
Variations of the volume fractions fssV , in the thickness direction z  for a Type I FG cylindrical shell 
z  

fssV  

N=0.5 N=0.7 N=1 N=2 N=5 N=15 
-0.5h 
-0.4h 
-0.3h 
-0.2h 
-0.1h 
0 
0.1h 
0.2h 
0.3h 
0.4h 
0.5h 

0 
0.3162 
0.4472 
0.5477 
0.6324 
0.707 
0.7745 
0.8366 
0.8944 
0.9486 
1 

0 
0.1995 
0.3241 
0.4305 
0.5265 
0.6155 
0.6993 
0.7790 
0.8553 
0.9289 
1 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0 
0.01 
0.04 
0.09 
0.16 
0.25 
0.36 
0.49 
0.64 
0.81 
1 

0 
0.00001 
0.00032 
0.00243 
0.01024 
0.03125 
0.07776 
0.1680 
0.3276 
0.5904 
1 

0 
110 15 ×−  
27.310 11 ×−  

43.110 8 ×−  
0.00000107 
0.00003051 
0.0004701 
0.004747 
0.03518 
0.20589 
1 
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At z away from 0.5z h= , the rate of decrease of fNV  for N<1 is high compared to N>1, and at z  closer to 
0.5z h= , the rate of decrease of fNV  for N>1 is much higher than for N<1.  On the hand for fssV , at z  away 

from 0.5z h= , the rate of increase for N<1 is high compared to N>1, and at z  closer to 0.5z h= , the rate of 
increase of fssV  for N>1 is much higher than for N<1. Also, when fNV  is high, fssV  is low, and vice versa. At any 
z , the sum of fNV  and fssV  is 1. For the Type II FG cylindrical shell the behaviors of fNV  and fssV  are opposite to 
that the Type I FG cylindrical shell. In this section variations of natural frequencies with the circumferential wave 
number n for two Types functional graded cylindrical shells with different volume fractions are presented. 
 
 
Table 4 
Variations of the volume fractions fNV , in the thickness direction z  for a Type I FG cylindrical shell 
z  

fNV  

N=0.5 N=0.7 N=1 N=2 N=5 N=15 
-0.5h 
-0.4h 
-0.3h 
-0.2h 
-0.1h 
0 
0.1h 
0.2h 
0.3h 
0.4h 
0.5h 

1 
0.6837 
0.5527 
0.4522 
0.3675 
0.2928 
0.2254 
0.1633 
0.1055 
0.0513 
0 

1 
0.8004 
0.6758 
0.5694 
0.4734 
0.3844 
0.3006 
0.2209 
0.1449 
0.0710 
0 

1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 

1 
0.99 
0.96 
0.91 
0.84 
0.75 
0.64 
0.51 
0.36 
0.19 
0 

1 
0.9999 
0.9996 
0.9975 
0.9897 
0.9687 
0.9222 
0.8319 
0.6723 
0.4095 
0 

1 
1 
1 
0.9999 
0.9999 
0.9999 
0.9995 
0.9952 
0.9648 
0.7941 
0 

 
 
Table 5 
Variations of natural frequencies with the circumferential wave number n for a Type I FG cylindrical shell m=1, h/R=0.002, 
L/R=20 

n 
f(Hz) 
N=0.5 N=0.7 N=1 N=2 N=5 N=15 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

13.319 
  4.514 
  4.190 
  7.101 
11.345 
16.609 
22.848 
29.052 
38.219 
47.347 

13.267 
  4.496 
  4.173 
  7.074 
11.301 
16.545 
22.760 
29.937 
38.072 
47.166 

13.209 
  4.476 
  4.156 
  7.044 
11.254 
16.475 
22.664 
29.811 
37.912 
46.967 

13.101 
  4.440 
  4.123 
  6.989 
11.166 
16.348 
22.489 
29.580 
37.618 
46.604 

12.996 
  4.4046 
  4.0914 
  6.9357 
11.080 
16.222 
22.315 
29.351 
37.328 
46.244 

12.930 
  4.382 
  4.070 
  6.899 
11.022 
16.137 
22.199 
29.198 
37.133 
46.002 

 
 
Table 6 
Variations of natural frequencies with the circumferential wave number n for a Type II FG cylindrical shell m=1, h/R=0.002, 
L/R=20 

n 
f(Hz) 
N=0.5 N=0.7 N=1 N=2 N=5 N=15 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

     13.321 
     32.679 
     91.388 
  174.998 
  282.855 
  414.818 
  570.840 
  750.900 
  954.987 
1183.096 

    13.269 
    32.553 
    91.037 
  174.326 
  281.769 
  413.225 
  568.648 
  748.016 
  951.319 
1178.552 

    13.211 
    32.416 
    90.652 
  173.590 
  280.578 
  411.480 
  566.246 
  750.853 
  947.300 
1173.573 

    13.103 
    32.165 
    89.951 
  172.246 
  278.407 
  408.295 
  561.863 
  739.091 
  939.968 
1164.489 

    12.997 
    31.917 
    89.258 
  170.920 
  276.263 
  405.151 
  557.537 
  733.400 
  932.731 
1155.52 

    12.932 
    31.751 
    88.795 
  170.035 
  274.832 
  403.053 
  554.650 
  729.603 
  927.902 
1149.542 
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Table 7 
Variations of natural frequencies at different L/R ratios for a Type I FG cylindrical shell m=1, h/R=0.002 

L/R f(Hz) 
N=0.5 N=0.7 N=1 N=2 N=5 N=15 

0.2 
0.5 
1 
2 
5 
10 
20 
50 
100 

432.864 
172.483 
  85.837 
  42.630 
  16.628 
    8.456 
    4.190 
    1.466 
     0.550 

430.195 
171.816 
  85.505 
  42.465 
  16.563 
    8.423 
    4.174 
    1.460 
    0.547 

428.345 
171.072 
  85.138 
  42.283 
  16.492 
    8.387 
    4.156 
    1.454 
    0.545 

424.948 
169.724 
  84.462 
  41.948 
  16.361 
    8.321 
    4.123 
    1.442 
    0.541 

421.582 
168.389 
  83.795 
  41.617 
  16.231 
    8.256 
    4.091 
    1.431 
    0.5367 

419.430 
167.520 
  83.366 
  41.404 
  16.149 
    8.213 
    4.070 
    1.424 
    0.5340 

 
 
Table 8 
Variations of natural frequencies at different L/R ratios for a Type II FG cylindrical shell m=1, h/R=0.002 

L/R f(Hz) 
N=0.5 N=0.7 N=1 N=2 N=5 N=15 

0.2 
0.5 
1 
2 
5 
10 
20 
50 
100 

424.314 
169.469 
  84.335 
  41.883 
  16.339 
    8.305 
    4.114 
    1.439 
    0.541 

425.934 
170.103 
  84.659 
  42.043 
  16.401 
    8.336 
    4.130 
    1.445 
    0.5431 

427.752 
170.834 
  85.019 
  42.223 
  16.471 
     8.371 
     4.147 
     1.451 
     0.5455 

431.226 
172.217 
  85.708 
  42.656 
  16.605 
    8.439 
    4.181 
    1.462 
    0.5501 

434.793 
173.641 
  86.417 
  42.917 
  16.743 
    8.508 
    4.215 
    1.474 
    0.5547 

437.152 
174.588 
  86.887 
  43.150 
  16.834 
    8.555 
    4.238 
    1.4830 
    0.5577 

Tables 5 and 6 show variations of natural frequencies for Type I FG cylindrical shell and Type II FG cylindrical shell. The 
influence of the constituent volume fraction on the frequencies for Type I and II FG cylindrical shells has been found to be 
different. For the Type I FG cylindrical shells, the natural frequencies decreased when N  increased, and for the Type II FG 
cylindrical shells, the natural frequencies increased when N  increased. In Types I and II FG cylindrical shells, the natural 
frequencies for all values of N  lie between those for a stainless steel and nickel cylindrical shells. For 1N < , the natural 
frequencies for Type I FG cylindrical shells are higher than for Type II FG cylindrical shells and for 1N > , the natural 
frequencies for Type II FG cylindrical shells are higher than Type I FG cylindrical shells. Tables 7 and 8 show variations of 
natural frequencies at different L/R ratios for Type I and Type II FG cylindrical shells. In Type I FG cylindrical shell, the natural 
frequencies decreased when N  increased, and for the Type II FG cylindrical shells, the natural frequencies increased when N  
increased. 

6    CONCLSIONS 

A study on the vibration of functionally graded (FG) cylindrical shell composed of stainless steel and nickel has 
been presented. The study was carried out for two types of functionally graded cylindrical shells where the 
configurations of the constituent materials in the functionally graded cylindrical shells are different. One is termed 
as a Type I FG cylindrical shell and has properties that vary continuously from nickel on its inner surface to stainless 
steel on its outer surface. The other is termed as a Type II FG cylindrical shell and has properties that vary 
continuously from stainless on its inner surface to nickel on its outer surface. The analysis of the functionally graded 
cylindrical shell is carried out using third order shear deformation shell theory and solved using Rayleigh-Ritz 
method with energy functional, obtained using an energy approach. Studies were made on the natural frequencies, 
the influence of constituent volume fractions, the effects of configurations of the constituent materials on the 
frequencies for two kinds of FG cylindrical shell and the influence of boundary conditions simply support on the 
frequencies. The study showed that the constituent volume fractions and the configurations of the constituent 
materials affect the natural frequencies. However, the functionally graded cylindrical shells exhibit interesting 
frequency characteristics when the constituent volume fractions are varied. This is done by varying the power law 
exponent N . The influence of the constituent volume fraction on the frequencies for Type I and II FG cylindrical 
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shells has been found to be different. For the Type I FG cylindrical shells, the natural frequencies decreased when 
N  increased, and for the Type II FG cylindrical shells, the natural frequencies increased when N  decreased. In 
Types I and II FG cylindrical shells, the natural frequencies for all values of N  lie between those for a stainless 
steel and nickel cylindrical shells. For 1<N , the natural frequencies for Type I FG cylindrical shells are higher than 
for Type II FG cylindrical shells and for 1>N , the natural frequencies for Type II FG cylindrical shells are higher 
than Type I FG cylindrical shells. Thus, the constituent volume fractions and the configurations of the constituent 
materials affect the natural frequencies. 
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