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ABSTRACT
Embryogenesis, regeneration and cell differentiation in microbiological entities are influenced by
mechanical forces. Therefore, development of mechanical properties of these materials is
important. Neural network technique is a useful method which can be used to obtain cell
deformation by the means of force-geometric deformation data or vice versa. Prior to insertion in
the needle injection process, deformation and geometry of cell under external point-load is a key
element to understand the interaction between cell and needle. In this paper, the goal is the
prediction of cell membrane deformation under a certain force and to visually estimate the force of
indentation on the membrane from membrane geometries. The neural network input and output
parameters are associated to a three dimensional model without the assumption of the adherent
affects. The neural network is modeled by applying error back propagation algorithm. In order to
validate the strength of the developed neural network model, the results are compared with the
experimental data on mouse oocyte and mouse embryos that are captured from literature. The
results of the modeling match nicely the experimental findings.
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1 INTRODUCTION

IVING cells are always exposed to mechanical stimulations in the human body. Often, it is important for us to

investigate how cells mechanically react to physical loads and how the distribution and transmission of these
mechanical signals are ultimately converted to chemical and biological responses in the cells [1]. Consequently, to
understand the cell functions and behavior, the relationship between cellular deformations and mechanical forces in
living cells is important. In order to study the biomechanical properties of biological cells, there has recently been
extensive concentration in the literatures. Because of the heterogeneous nature of these biological cells, different
experimental techniques are used and devised to probe the response of cells such as: atomic force microscopy
(AFM) [2, 3], laser/optical tweezers [4], micro plate stretcher [S], micropipette aspiration [6],tapered micropipette
[7]. These different experimental techniques have led to a variety of different mechanical models developed by
various researchers to interpret and explain the experimental data such as: cortical shell liquid core models (or liquid
drop models), solid models, fractional derivative model, cytoskeletal models for adherent cells, spectrin-network
model for erythrocytes [1].

Artificial neural networks (ANNs) are computational networks that try to simulate the processes that happen in
the human brain and nervous system during pattern, identification, information filtering and functional controls [8].
In conjunction with the statistical approaches, this manner is one of the most powerful modeling techniques. In order
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to predict the mechanical alloying outputs, it seems this model is perfectly appropriate. The subtraction of cost and
time in all the experimental activities is the advantage of ANN modeling [9]. In this paper, utilizing neural network
technique, on one hand, cell membrane deformation under a certain force is predicted; and on the other hand, the
cell membrane geometries are used as input and related indentation force is predicted. In order to achieve this
purpose, the neural network input and output parameters are associated to a three dimensional model with no
adherent affects. The neural network is modeled by applying error back propagation algorithm. In order to validate
the strength of the developed neural network model, the results are compared with experimental data on mouse
oocyte and mouse embryos that captured from reference 16. The results of the modeling match nicely the
experimental findings. The accuracy and simplicity of the neural network model would enable scientists to develop a
platform for investigation and understanding of cell mechanics in cellular biology and tissue engineering.

In this paper, in the first step cell indentation experiment is presented and experimental data are to be used for
training the applied neural network that are extracted. In the second step, artificial neural network foundation is
explained and range of the data implemented to the neural network is defined. Results and conclusion of
implementing the neural network to embryo and oocyte are presented in the last part of the paper.

2 CELL INDENTATION EXPERIMENT TECHNIQUES

In order to study biological cell mechanics, another class of experimental techniques is cell-indentation experiment
In this experiment, cell displacement controlled indentation under external force that applied by a micropipette or
another cell poker on the surface of an individual cell is investigated. In other words, controlled displacement is
vertically applied to the top portion of a single cell and the displacement gradually increases and then corresponding
reaction force due to the cell to indenter is measured [11].

From experimental observations [see Fig. 1], the deformed cell can be shown in Fig. 2[10] .In this figure, three
geometric parameters, a, w and R are used to characterize the deformed cell shape.

Fig. 1.
Image from experimental observation of mouse oocyte in
cell indentation experiment in Ref.10.

Fig. 2
Indentation of a single cell by a micropipette in Ref.10
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In Fig. 2, c is the radius of the cell indenter tip and w, a and R are dimple depth, dimple radius and radius of the
semi-circular curved surface of the cell, respectively. Therefore, the relation between force and dimple depth is
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where £=c/a. In Eq. (1), v, E, h and F are Poisson ratio, Young’s modulus, thickness of membrane and

measured force, respectively [10]. This equation is complicated and a simpler equation is needed to explain the
relationship between indentation force and dimple depth. One of the methods by which this relationship could be
simplified is the method of the neural network.

3 FUNDATION OF ARTIFITIAL NEURAL NETWORKS

Artificial neural network (ANN) is a model that tries to simulate the brain and its education process. In this model,
processing essentials that interconnected to each other are called neurons or nodes which have weights associated
with each connection. A structure of ANN with different neurons (nodes) and layers is shown in Fig. 3.The relative
influence of the various neuron inputs to other neurons is represented by changing these weights [12]. There are
many different types of ANN. Among them, the feed-forward neural network - which the information is transmitted
in a forward direction - is common and suitable for modeling of a static (time in varying) train between input and
output signals. The input —output relationship between each node of the hidden layers is given by [9]:

y:f(zj:ijj+b) )

where x; is the output from the jth node of the previous layer, w; the weight of the connection between the jth node

and the current node and b is the bias of the current node. f is a function that can be nonlinear, e.g. log-sigmoid (Eq.
(3a)) or hyperbolic sigmoid (Eq. (3b)).

=1 (3a)
1_ —X
fx) = 1+fo (3b)

The input-output relationship of the output nodes is similar to that defined by Eq (2). Although the function f can
be of a different type, e.g., a linear function. In this paper, due to non-linearity of the structure the hyperbolic
sigmoid activation function is used (Eq. (3b)) between hidden layers and also for the input and output layers.
Learning phase and working phase are two different manipulating phases of ANN. In the learning phase, the
network is trained during a continuous process of simulation.

Hidden Layer

Input Layer
Output Layer

?

Processing Element

Fig. 3

Link . .
- Schematic representation of ANN.
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Minimizing of an error function is the goal of this stage and during this minimization procedure, connection
weights and biases are set. In this process, the outputs must be equal or close to targets. Using series of data sets that
captured from actual system's behavior is the most convenient method for training a neural network. The learning
algorithm may be categorized into two different paradigms called: supervised learning and unsupervised learning. In
supervised learning, which is used in this paper, an external teacher is required that can provide an adequate
mapping knowledge between the input and output signals. For each given input, the teacher provides the learning
system with desired outputs which is memorized by minimizing the discrepancy between the neural network outputs
and actual outputs. In this method, an optimization technique such as least square technique is used to minimize the
overall evaluation function. If we use least square method as an optimization method for neural network while
evaluation function is discrepancies between actual output signals and appropriate network output's signals, this
method is called "delta method" or "error back propagation method" that is implemented in this work [13], [14]. On
the other hand, unsupervised learning does not rely on an external teacher for guiding the learning process. The
teacher can be considered as a built in mechanism to learn method [14]. Improvements in better converges of neural
network model depends on better selection of initial conditions such as learning momentum, learning rate, initial
weights and thresholds, increasing the number of layers and increasing the number of neurons in each layers [15].

For example, in order to avoid the local minimum and reach to global minimum, learning rate can play an important
role [15], [13].

4 DATA COLLECTION

The input neural network parameters associated with the indentation experiment are dimple radius, dimple depth,
radius of the semi-circular curved surface of the cell and the external force which exerted to the cell that are denoted
by a, w, R and f, respectively. These parameters obtained from two sets of data associated to mouse oocyte and
mouse embryos. The ranges of input variable data used for the model are shown in Table 1 (for mouse oocyte) and
Table 2 (for mouse embryos). These tables are exerted from experimental observations by YU SUN and his co-
workers [16]. These experiments are performed statically; therefore a static neural network structure is implemented.

5 ARCHITECTURE OF THE NEURAL NETWORK MODEL

Architecture of the neural network model is summarized in Table 3. The model includes an input layer, a single
hidden layer and an output layer as shown in this table. In this model, six neurons are used in hidden layer and one
neuron in output layer. The initial weights and thresholds are generated randomly. Since the normalizing operation
depends on the selected transfer function, which adjusts the sum of the weights into an output, we normalized the
data between -1 and 1for hyperbolic sigmoid transfer function. Inputs and outputs are normalized as follows:

Table 1
Input variable data ranges used for mouse oocyte

Input variable

Mouse oocyte

Minimum value

Maximum value

Indentation's force (uN) 02.172 07.211
Dimple depth(um) 10.51 22.00
Dimple radius (um) 13.35 18.20
Radius of semi-circular curves(um) 11.96 15.80

Table 2

Input variable data ranges used for mouse embryos

Input variable

Mouse oocyte

Minimum value

Maximum value

Indentation's force (uUN) 01.052 13.390
Dimple depth(um) 11.754 25.155
Dimple radius (um) 18.375 23.079
Radius of semi-circular curves(um) 9.650 12.76
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Table 3
Key neural network model parameters for back propagation algorithm
Key parameter Value
Layers 3
Hidden layer 1
Neurons in hidden layer 6
Neurons in input layer 2
Neurons in output layer 1
Learn rule delta rule
Transfer function Hyperbolic sigmoid
Learning momentum
Learning rate 0.15
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In the first step, the network is trained to adjust the weights and thresholds between layers until output of
network are close to actual output and in the second step we used these adjusted weights and thresholds in our
network model. The error calculated in the output layer is the difference between the network output and the actual
output and for the model is the half of mean square (HMS) as follows:

i

6 RESULTS AND DISCUSSIONS

In order to predict the dimple depth due to an arbitrary exerted force on mouse oocyte and mouse embryos two sets
of networks are designed and tested. In these simulations, indentation force acts as one of inputs of the network and
the dimple depth is predicted in the output of the network .In a similar manner, to predict indentation force for a
certain dimple depth in mouse oocyte and mouse embryos also two sets of networks are designed. In these models,
the dimple depth is used as one of network’s input while the indentation force would be the output of the network.
Plots of the predicted force versus dimple depth in comparison with the experimental data for mouse oocyte and
mouse embryos are shown in Figs. 4 and 5, and their related error values versus the number of epochs (each time of
network’s training) also shown in Figs. 6 and 7 , respectively.
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According to Fig. 6, the smallest error value after 30000 epochs has reached to 0.0015 for mouse oocyte and this
value, in Fig. 7, has reached to 0.0051 after 40000 epochs for mouse embryos. There is not any gap between the
experimental data and neural network's output and good prediction occurs in both cases (Figs. 4 and 5). Plots of
predicted dimple depth versus indentation force in comparison with the experimental data for mouse oocyte and
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mouse embryos are also shown in Figs. 8 and 9, and their related error values versus the number of epochs are
shown in Figs. 10 and 11, respectively.
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In Fig. 10, the error value has decreased to 0.0014 after 50000 epochs for mouse oocyte and this value for mouse
embryos, in Fig. 11, has reached to 0.0026 after 70000 epochs. The very good agreement between the experimental
data and neural network's output also occurs in prediction of dimple depth for mouse oocyte and mouse embryos
(Figs. 8, 9). Consequently, the accuracy of ANN model in estimation is visibly confirmed in these figures.

In summary, ANN has the ability to accurately predict the mechanical behavior of biological cells .It seems that
this model could be extended to other experimental methods in biological cell studies .By means of this model, the
need for detailed experimental analysis of the processes can be reduced drastically. Since the governing equation
between measured force and dimple depth (Eq. (1)) is somewhat complex and subject to variations due to parametric
uncertainties, neural network modeling has been shown to be potentially capable of modeling such problems.

7 CONCLUSIONS

In this paper, the neural network model is applied to extract and estimate mechanical behaviors of mouse oocyte and
mouse embryos. In order to learn the underlying complex relationships between input and output cell membrane
geometries of normalized experimental data acquired from published literature, the neural network model is
implemented and trained. In one hand, the changes of the cell membrane dimple depth under a different indentation
forces is predicted and on the other hand, indentation force is estimated by the means of changing in the dimple
depth. Since the biological cell modeling studies are very challenging, the neural network modeling is used in this
study because of its ability in mimicking complex input-output relationships. The obtained mechanical properties
using the neural network model are in excellent agreement with the experimental observations.
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