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 ABSTRACT 

 This study is concerned to check the validity and applicability of a five parameter viscoelastic 
model for harmonic wave propagating in the non-homogeneous viscoelastic rods of varying 
density. The constitutive relation for five parameter model is first developed and validity of these 
relations is checked. The non-homogeneous viscoelastic rods are assumed to be initially 
unstressed and at rest. In this study, it is assumed that density, rigidity and viscosity

 
of the 

specimen i.e. rod are space dependent. The method of non-linear partial differential equation 
(Eikonal equation) has been used for finding the dispersion equation of harmonic waves in the 
rods. A method for treating reflection at the free end of the finite non-homogeneous viscoelastic 
rod is also presented. All the cases taken in this study are discussed numerically and graphically 
with MATLAB.                                                                                                                          
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1    INTRODUCTION 

 HE theory of viscoelasticity is useful in the field of solid mechanics, engineering, seismology, exploration and 
geophysics. Harmonic waves are waves that have vibrations perpendicular to their direction of travel i.e. waves 

in which the motion of the medium is in the perpendicular direction as the motion of the wave. The solutions of 
many problems related with wave-propagation for homogeneous media are available in many literatures of 
continuum mechanics of solids. In recent years, however, sufficient interest has arisen towards non-homogeneous 
bodies. Many researchers Alfrey [1], Barberan [2], Achenbach [3], Bhattacharya [4] and Acharya [5] formulated and 
developed the theory of elasticity. Further, Bert [6], Biot [7], Batra [8] successfully applied this theory to wave-
propagation in homogeneous, elastic media. On the basis of the theory of elasticity, the propagation of harmonic 
waves in isotropic or anisotropic materials have been evaluated numerically by White [9], Mirsky [10] and Tsai 
[11]. Murayama [12] and Schiffman et al. [13] have proposed higher order viscoelastic models of five and seven 
parameters to represent the soil behavior. Gurdarshan [14], Kakar et al.; [15] and Kaur et al.; [16] analyzed five 
parameter and four parameter viscoelastic models for different waves and also studied these models under dynamic 
loadings. Recently, Kakar and Kaur [17, 18] have studied the responses of five parameter and four parameter 
viscoelastic models for different waves in non-homogeneous viscoelastic rods.  
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In most of the literature, the problems of non-homogeneity are taken as independent of space coordinate. But in 
this study, we consider the wave propagation in non-homogeneous media, when density ' '  rigidity ' 'G  and             
viscosity ' '  of the material are space dependent such that the wave velocity is also space dependent.  Here it is 

assumed that density, rigidity and viscosity
 

of the specimen obey the law 0 1 ) (1 cos x  , 

0 2(1 cos )G G x and 0 3(1 cos )  x    respectively. The problem is solved with Eikonal equation when the 
wave equation is approximated using WKB theory. The displacements assumed in the problem are so small that 
under isothermal conditions, the linear constitutive laws hold.  The displacement and stress expressions are solved 
for time dependent displacement and stress boundary conditions. The paper ends with numerical analysis by taking 
material parameters. 

2    THE CONSTITUTIVE RELATION FOR FIVE PARAMETER MODEL 

We consider a five parameter model consists of two springs 1 1 2 2( ), ( )S G S G where 1G and 2G  are the modulli of 

elasticity associated to them and three dash-pots      2 2 2' 2' 3 3, ,D D D   where 2 , 2' and 3  are the Newtonian 

viscosity coefficients associates to these elements. The module of elasticity and viscosity coefficients are assumed to 
be space dependent i.e. functions of ' 'x  in inhomogeneous case taken into consideration. Unidirectional problem is 
formed by taking the material in the form of filament of non-homogeneous viscoelastic material by taking one end at 
x = 0. The co-ordinate x is measured positive in the direction of the axis of the filament. Time is specified by t, and 

,   and u  respectively specify the only non-zero components of stress, shearing strain and particle displacement. 
The model has been divided into three sections, I, II, III. In Fig.1, the section I, section II and section III has one 
spring 1 1( )S G , two dash-pots    2 2 2' 2',D D   one spring 2 2( )S G and one dash-pot  3 3D  respectively. [15, 17] 

Under the supper- supposition principle, strains are added in the case of series connections and stresses are added 
when they are in parallel. Now if 1a , 2a , 3a  be the three shearing strains elongations in respective sections connected 

in series, then total elongation is 1 2 3   . a a aa The total stress in the network remains the same. In each section 

but, in the case of section II which is sub-divided into two added sections i.e. 1 2    , where 1  and 2  are 

the stresses in the sub-sections. Relation for stress and strain for  2' 2'D   for section II (represented by single dash-

pot) is [23] 
 

1 2' 2 a   (1) 

 
Since the sub-section II is represented by a Maxwell- element, then the relation is expressed as: 
 

 2 2
2 2

1

η

 
 

 


D

G
D a  

 
(2) 

 
Since, 1 2     for Section II , therefore 

 
 

  
 
 
 
 
Fig. 1  
Five parameter viscoelastic model. 
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(3) 

 
For section I, for the spring 1 1( )S G , the stress-strain relation is given by 
 

1 1 G a  (4) 

 
For Section III; for the dash-pot  3 3D  , the stress –strain relation is given by 

 

   3 3 a 
              

 (5) 

 
The Stress-strain relation for the model representing the viscoelastic body for total stress ( )  and strain  a  can 

be obtained from Eq. (3), Eq. (4) and Eq. (5) as:  
 

   
2 21 1 2 2 1 2 1 2 2 2 2
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(6) 

 
Now we take 

 
1 ( )

( )
   i i i
ij ij

j j

G S G

Dj
 

                   
 

 
(7) 

where, ( )i iS G elastic modulus of spring and ( )jDj  = viscosity of dash-pot,
 

', ( 1,2 ; 2 ,2,3)  j
ij

i

i j
G


 . 

 Using, Eq. (6) and Eq. (7), we get 
 

  
          2 2

12' 13 22 22' 12' 22 13 22 22' 1 22 22' .              D D G D D a             (8) 

 
Put 1 12' 13 R   , 2 22 22' R    , 3 12' 22.R    , 4 13 2R R  in Eq. (8), we get 
 

  
       2 2 2

1 2 3 1 2 14 1 2               D R R D R R G D R D a G D G R D a  (9) 

 
The Eq. (9) can be written in terms of differential operator form as: 
 

  
   

2 2

1 0

, ,
 

 n m
n m

n m

D a x t D x t    
 

(10) 

 
where, the order m and n of sums on right hand side and left hand side in the Eq. (11) depends upon the structure of 
the mechanical model representing the viscoelastic body. n  and m  are the combinations of the material constants 

and 2 1 1 1 2 2 1 1 432 0 1,   ,  , , ,      R
d

G G R R R R D
dt

     . 

Eq. (10) is the required differential operator form of constitutive relation for the model for viscoelastic material. 
The time parameter ' 't is introduced into an experimental scheme in dynamic experiments by cyclic deformation of 
the specimen, frequency   of the oscillations plays the role of the time factor. The cyclic deformation is the 
fundamental process of determining the mechanical characteristics. The greatest preference is given to harmonic 
oscillations. A Harmonic action of the stress/strain produces a corresponding harmonic response in the strain/stress. 
Let us consider that shearing strain ( )a , induced in elastic body which can be expressed by a harmonic action as: 
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0  iwta a e  (11) 

 
where, 0a  is the amplitude,  is the frequency of oscillations and ' 't is the time.  

According to Hooke’s law, stress ' '  is:   
 

0    iwte   (12) 

 
where, 0 0 0 G  , at t=0 

For an elastic body, the strain and stress vary harmonically and there is no lack in the harmonic motion in phase 
as both have iwte  as a factor. Thus an elastic body responds instantaneously to the external action (strain/stress). The 
phase shift angle between strain and stress is zero. For an ideal viscous body, the Newton’s law of flow to a fluid 
body is as: 

 

0 0
2

0 
  
  iw

i t
tea i e


    

 
(13) 

 
where, 0  is the viscosity of the body and 0 0 0   a    at t=0  

Thus, for a viscous deformation, stress advances by the strain by a phase angle
2


. Thus the phase shift angle for 

the stress-strain under periodic harmonic deformation for elastic body is zero and for the viscous body, it is 
2


. 

Therefore the phase shift angle ‘ '  for the viscoelastic body must be between zero and 
2


 i.e. 0 .

2
 

 The 

lagging in phase of the strain behind the stress is due to the presence of relaxation processes in the case of 

viscoelastic body, as phase shift angle , is given by 0 .
2

 
  Hence, 

 

0  iwta a e  (14) 

 
(  )

0   i wte    (15) 

 
If we represent the projection of the stress vector on axis of co-ordinates by taking '   x  and '' ,    y where 

'  and ''  represent that real and imaginary parts respectively. If the strain is initially set harmonically, then the 
modulus of viscoelastic body with harmonic loading can be written as: 

 
* *

' '' *
* '

' ''

' '
     i G iG G

a aa a

   
 

 
(16) 

 
The phase angle   is given as: 
 

*

tan
'


G

G
  

 
(17) 

 
In the case of present model (Five-Parameter; two springs 1 1 2 2( ), ( )S G S G ; three dash-pots 

     2 2 2' 2' 3 3, ,D D D   which represents a linear viscoelastic behavior under a given action of loading, the stress 

is directly proportional to strain. This is also true for time dependent stress and strain relation i.e. for viscoelastic 
body, the stress is: 
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  *
0  iwtat G e  (18) 

 
where, 0  iwta a e   

Using, the relation  Ga  for an elastic body, the constitutive relation for the physical state representing the 
five parameter model is given by Eq. (9).                                                                       

Using Eq. (14), Eq. (16) in Eq. (9), we get 
 

    2 * 2
1 2 3 4 0 1 2 0 (  )      iwt iwtR aR i R R G e G R i a e     (19) 

 
On solving, we get 
 

 
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(20) 
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(21) 

 
Separate Eq. (21) into real and imaginary parts, we get 
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and loss tangent is given by 
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(24) 

 
 
To find the values of ''G , we put 
 

 
1 22 2 2
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
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where 

   22 2 2
2 3 4 1 ,  3 4 1 2 1 ,   ,   ,          A R R R B R C R E R R A C ER    

 
 

 
The rheological responses are discussed by plotting a graph between ''G and   and 'G  verses   for five 

parameter model. 
To calculate ''G at different frequencies, we assume the following values
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Table 1 
Material properties 
 1 1.0G  2 1.10G   2 0.1  2' 0.2   3 0.3   
Material  1.0 1.10  0.1 0.2  0.3  

 
 
Using the values taken in Table 1. , we get 
 

  1 2 3 48.33, 16.5, 55, 54.945, 1814.175, 8.33, 109.945, 24.83       R R R R A B C E   

 
Now 
 

  

    2 2
1 2 1 2 3 4'

1

       
R R R R

G
A

RG  
 

 
(26) 

 
where 
 

   1 2 3 4

22 2 2
18.33, 16.5, 55, 5  4.945,     A CR R ER R    

 
 

 
Figs. (2-3), has been plotted for five parameter model. It is quite clear from graph, form Fig. 2 and Fig. 3 for 
7 , there is peak for the graphs ''G verse and 'G verses , as the value of  increases both ''G and 'G decreases 

i.e. the exponential decay takes place. However, the decay in Fig. 3 is steeper as compared in Fig.2. 
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Fig. 2  

Variation of ''G verses   for five parameter model. 
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Fig. 3  

Variation of 'G verses   for five parameter model. 



Rheological Response and Validity of Viscoelastic Model Through Propagation of Harmonic Wave                   139 

© 2013 IAU, Arak Branch 

2.1 Discussion 

Moreover, after the removal of stress, the viscous strain in five parameter model is found to remain constant with 
time. For sufficiently large relaxation time for five parameter models, the stress in the rods will drop to zero. The 

phase shift angle ' '  for the viscoelastic body for five parameter model must be between zero and .
2


 

The use of five parameter models is mostly restricted in the field of rock mechanics. Thus, these models can be 
used in determining the time-dependent behavior of a viscoelastic medium. 

3    FORMULATION OF THE PROBLEM 

We consider the propagation of waves along the five parameter viscoelastic model and accordingly it as the uniaxial 
complex modulus *( )G i  that involved the mechanical property. Let the filament be very long and its one end be 
subjected to a steady state harmonic oscillation condition, then harmonic waves are propagated along the filament 
with a reduction in the direction of propagation. 

The equation of motion is: 
 

2 2

2 *( )

 



u u

x G i




 
 

(27) 

 
where ( , )u x   is the Fourier transformed displacement 

Let  
 

 
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2 2
3 4

1
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G

c G G
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where c  is phase velocity. 
 

1

2
4

2 2
3 4


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G

G G

 
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(30) 

 
where   is the reduction 

 The solution of Eq. (27) is of the form 
 

   

1
1

2
32

4 2 2
2 2 3 4
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(31) 

 
It can also be written as: 
 

( , )
    

x
i t

x cu x t Pe e


  
 

(32) 
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Thus the solution (32) represents the propagation of a harmonic wave moving in the positive x  direction with 
phase velocity c  and reduction   and the complex constant P is to be determined from boundary conditions. 

This method has been widely used to determine high frequency properties, not only with regard of *( )G i  but 
for stress states as well. Considering the propagation of transient disturbance along the filament and using the 
Fourier integral of synthesize the velocity from the solution given in Eq. (32).The resulting velocity is given by [24] 

 

( , ) ( )
     



 
x

i t
x cu x t F e e d


   

 
(33) 

 
where ( )F  is a complex function of frequency to be determined from specified end conditions. 

As we have from Eq .(17) and Eq. (22) , 
*

tan
'


G

G
  and  '' ' '' ) ( ) ( G i G iG   

Therefore, we can rewrite the expression for phase velocity c and reduction ζ  in Eq. (29) and Eq. (30) as: 
 

11
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1 tan
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c
   

 
(35) 

 
To give proper dispersion and attenuation of a pulse as it passes from one point of measurement to the other 

particularly, let 
 

1
1( , ) ( )




x x
u x t v t  (36) 

 
and 
 

2
2( , ) ( )


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x x
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(37) 
 

From Eq. (36), Eq. (37) and the Fourier transform inversion formula, we have 
 

   1
1( )

   i c x
F e v
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where,

  

 1 1
1

( )
2






  i tv v t e dt


 
 

(39) 

 
Using Eq. (38) in Eq. (33), and evaluating the result at 2x x , using Eq. (37), we get 
 

   2 12 1 /
1 2( ) ( )


     



 i t x x cx xv e e d v t
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(40) 

 
It is to be assumed that the duration of the disturbing pulse is very short that can be represented by a Fourier 

series rather than the Fourier integral and it would be expected an appropriate procedure for the cases in which very 
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short duration pulses are started by a dispersion  effects have broadened the pulse too much. Therefore, a basic time 
interval is taken which includes the main part of the which is represented by a Fourier series. 

Let  np  , where p  is the preselected basic frequency. 
Eq.(33) can be written as: 
 

( , ) ( ) cos sin



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c c
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Using the formula for sine and cosine of the difference of two angles, the Fourier series solution corresponding 

to the Fourier integral Solution given by Eq. (33) is of form 
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(41) 

 
where nA  and nB  are unknown constants. 

For the sake of convenience, let
  

.
           
   

x x x x
t t
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(42) 

 

In Eq. (41), replacing t  by 
x

t
v

 and  
x

c
 by 

x x

c v
 , we get  

 

' '
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(43) 

 
where
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n x
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and 
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n x
n n n n n n nD e A npx c v B npx c v  (46) 

 
The velocity v  should be taken to be near an average value of propagation of the pulse so that the plus will be 

maintained within the basic interval of the Fourier series representation. In the Fourier integral representation, the 
velocity is measured at two locations, 1x  and 2x  , as given by Eq. (36) and Eq. (37). To evaluate Eq. (43) at 1x x  , 
using Eq. (36),and in the usual way the coefficients are given by  
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(48) 
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The coefficients nA  and nB  are obtained from Eq.(45) and Eq. (46) as: 
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and 
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Thus Eqs. (43)-(46) specify the response with nA  and nB given by Eqs. (47)-(50). 

At 2x x  , using Eq.(37) to synthesize the plus into Fourier series 
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where 
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(53) 

 
To evaluate the solution of Eq. (43) at 2x x  and equate the result to Eq. (51).Using Eqs. (45)-(50), (52) and 

(53) ,the term by term equivalence of these two forms gives the two general relations
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(54) 

and 
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(55) 
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Considering with  '1v t  and  '2v t ,the particle velocities at two different locations on the filament are known 

from experimental measurements, Eqs.(54) and (55) include two equations in two unknowns, nc  and n  , for each 
value of n  .Then using Eqs. (29) and (30),we get 

 

 
1 1

2 2 22
3 1


   n n n n nG c c    

 
(56) 

 
and 

 

 
1 1

2 1 2 2 22
4 1


    n n n n n n nG c c      

 
(57) 

 
where n np  , 3nG  and 4nG  are values of 3G  and 4G  right to the n th frequency component. The real and 

imaginary parts of the complex modulus, *( )G i  , may be then found directly from Eq.(28) as: 
 

   2 2'
3 4 n n nG G G  (58) 

 
and 

 
"

3 42n n nG G G  (59) 

 
The described procedure for determining *( )G i  in the high frequency range has not been explicitly used. The 

simplest assumptions are to be made taking particular forms for phase velocity and reduction. The simplest 
assumption is 

Constantc   (60) 

and 
 
tan Constant    (61) 

 
where the reduction can be found from Eq. (35).For this, the frequency range of relevance is narrow enough, then 

*( )G i  is effectively constant in this region and therefore c  and tan  can then be found from a slight modification 
of the described procedure. 

3.1 Wave propagation for the non-homogeneous cases 

The stress strain relation for five parameter viscoelastic model is given by the Eq. (6). 
The equation of motion and strain-displacement relations are given by 
 

2

2
 

 


 
U

x t

   
 

(62) 

 




U

a
x

 
 

(63) 

 
where,  ( ) x   is the variable density of the material 

Differentiating Eq. (62) w.r.t x , we get 
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(64) 

 
Differentiating Eq. (63) w.r.t. t  ,we get 
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(65) 

 
Again differentiating w.r.t. t , 
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(66) 

 
Using Eq. (64) and Eq. (66), Eq. (8) gives 
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(67) 

4    SOLUTION OF THE PROBLEM 

Let the solution ( , )x t  of Eq. (67) be represented by the series [19] 
 

       0
0

, ,          0




   n n
n
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(68a) 

 
where 
 

1'  n nF F    where, n = 1, 2, 3………….   with  , 1n t nF F  and  , , 1 n x x nF h F  (68b) 

 
and for 0n  assume that 0 nA  and the derivatives of  may be obtained by term-wise differentiation of  Eq. 
(68a), the prime in  Eq. (69) denotes differentiation with respect to the argument concerned, and by using  Eq. (68b) 
and Eq.(11) we relate all '

nF s to 0F  by successive integrations.   

The Solution of Eq. (67) in the form of Eq. (68) can be obtained by taking a phase function ( )h x , ( )h x satisfies 
the Eikonal equation of geometrical optics [20] 

1

2

2

( ) 1
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(69) 

 
where c=c(x) is the variable wave speed for viscoelastic harmonic waves in a medium whose modulus of elasticity 

1G  .Using, Eq.(10), Eq.(11) and the successive derivatives of  ,x t   w.r.t.  ‘t’ and ‘x’  in Eq.(67), we get the 

amplitude function satisfy the equation 
 

         ' ' '
,

2' 3

1 1
2   "( )  0,1,2 ), (

           
   

n n nx
h x A x log h x h x A x Q n 

 
 

 
(70) 
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Since the wave is travelling along x-axis, therefore, integrating Eq. (70), we get 
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(71) 

 
Since Eq. (70) is a first order linear differential equation in  nA x .Therefore, the general solution of Eq. (70) 

can be obtained as:  
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(72)  

where,   l x c  and   
1 2

1 1
.
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

 
The plus ' '  sign is associated with wave traveling in the positive direction of x and the minus ' '  sign is 

associated with the waves travelling in the negative direction of x. 
Let an impulse of magnitude 0 

 
suddenly applied at the end 0x  of the rod and thereafter steadily maintained, 

that is  
 
  00, ( )t H t   (73) 

 
From  Eq. (68) and Eq. (73), we have   
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(74) 

Thus we choose [21] 
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  00 0 ( ) h and F H t    

(76) 
 
The solution of Eq. (67), for the waves travelling in the positive direction of x is generated by boundary stress 

Eq. (73), is 
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where,  nA x  are given recursively by Eq. (72) (with upper signs) in combination with Eq. (75). 

The first–term approximation leads to Eq. (72) is 
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The Eq. (76) represents a transient stress wave which starts from the end ‘x=0’ with amplitude’ 0' '  and moves 

in the positive direction of ‘x’ with velocity c(x). Hence, it is modulated by the factor  
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(77) 

 
Further terms in the approximate solution may be obtained recursively from Eq. (72). The solution of Eq. (74) 

applies until the wave moving in the positive direction of ‘x’ strikes either an interface (in the case of a composite 
rod) or at end (in the case of a finite rod). 

5    VALIDITY OF FIVE PARAMETER MODEL 

For the sake of concreteness and for studying the qualitative effect of non-homogeneity on the harmonic wave 
propagation in non-homogeneous five parameter viscoelastic rods, it is assumed that density  ' ' ,  rigidity  ' 'G

 
and 

viscosity ' '
 
of the specimen i.e. rod are space dependent and obey the laws  
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Therefore, from Eikonal equation of geometric optics  
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or 

 
Since, the exponential variation of modulus of rigidity G  and density   is similar, therefore sound speed is 

constant i.e. non-homogeneous has no effect on speed and phase of the wave is given  
0

   
x

h x
c

. So it becomes the 

case of semi non-homogeneous medium (a medium when characteristics are space dependent while the speed is 
independent of space variable). 

The amplitude function  nA x  satisfies the equation 
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As the amplitude function is given by Eq.(72), For this case 
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For the case of the value of first term approximation, the stress function is given by 
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Further terms in the approximation solution may be obtained from Eq. (85). 

 
Case 2. 

1 2 3        i.e. density   rigidity  viscosity,  then from Eq. (78), we get

 

 
From Eikonal equation of geometric optics  
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and Amplitude function ( )nA x is given by Eq. (72). 

For this case  
 

  0 0 1 2 1( ) 1 cos 1 cos ( )   l x G x x l x     

and  
 

0 3020 1(1 cos ) (1 c o  s ) (1 co ), s,    x xG G x      

 
 

2

2
210

10

1

1 cos

1 cos

( ) 1
 

     
 




dh x

dx

x

G G cx





 

 
(88) 

 
 

21

0 1

0 1 co
 

s

c
 

1 os






x

x

G
c





 
 

(89) 

     
     ' ' ''1

1
1 '

0
02' 03 13

sin
2  "( )  ,

1 cos

( 0,1,2

1 cos 1

)

1
( )

1 cosn n n

x
h x

x
h x A x h x A x Q

x x

n




 





     
 

  
  




  



 

 
 

(90) 



Rheological Response and Validity of Viscoelastic Model Through Propagation of Harmonic Wave                   149 

© 2013 IAU, Arak Branch 

  
 

  
 

0 0 1 2
1

3 02' 03

1 201 0

10 20 30 0

1 cos 1 cos 1 1
( ) ( )

2 1 cos

1 cos 1 cos1 1
( )

2 1 cos

       
   

     
   

x x

G x x
m x m x

x

x xG
m x dx dx

x

  

  

 
  

  

 
Therefore  
 

  
   

     
1

2
1 ''

1 1
10 0

1

2
1 2 1

( )
1 cos 1 cos

( ) (0  Q)
2 2


               

  

  
 
 
      

  
x x z

n n n

x

l x
exp m s ds c s exp

x x
A x A m z dz s ds

l s

 

 

  (92) 

For the case of the value of first term approximation, the stress function is given by 
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Eq. (93) gives a harmonic stress wave which starts from the end 0x  with amplitude 0  and moves with 

velocity,
 
 

21

0 1

0 1 cos

1 cos
 






G
c

x

x



 in the positive direction of x  and is modulated by the factor 

     
 

1

2
1 2 1 201 0

10 20 30

1 cos 1 cos 1 cos 1 cos1 1

2 2 1 cos

             

   
  


xx x x xG

exp dx
x

   
  

 (94) 

6    NUMERICAL ANALYSIS 

 

To see qualitative effect of non-homogeneity on the harmonic wave propagation in non-homogeneous five 
parameter viscoelastic rod, a graph is plotted between 0   and x  for Eq. (86) (semi-homogeneous case), by 

taking  4,  3,  0, 3, 4  . The material properties are as shown in Table.2       
 

Table 2 
Material properties 

  0   01G     02G   '
02G     03   02'  

Material  2.0 1.8  1.6 1.4  1.5 1.3 
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Fig. 4 
(Taking  = 4, 3, 0,-3,-4). 
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Fig. 5  
(Taking  = 4, 3, 0,-3,-4). 

 
For non- homogeneous case, Figure is plotted between 0  v/s x  by taking Eq.(93) as by taking 

1 2 32.2, 2.4, 2.6      in the Eq. (93) 
 

       
    

1

2
1 2 1 201 0

0 00 10 2 3

1 cos 1 cos 1 cos 1 cos1 1

2 2 1 co

,

s

      


    

    
    


xx x x xx t

exp H t
G

dx
x

h x
 



  
 

  

7    CONCLUSIONS 

When the density, rigidity and viscosity all are equal for the first material specimen, the sound speed is constant i.e. 

non-homogeneous has no effect on speed and phase of the wave is given  
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non-homogeneous medium (a medium when characteristics are space dependent while the speed is independent of 
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When the density, rigidity and viscosity are not equal for the second material specimen, the speed of sound is 

given as 
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