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 ABSTRACT 

 In this paper, a numerical analysis of stresses and displacements in FGM thick-walled 

cylindrical pressure vessel under internal pressure has been presented. The elastic modulus 

is assumed to be varying along the longitude of the pressure vessel with an exponential 

function continuously. The Poisson’s ratio is assumed to be constant. Whereas most of the 

previous studies about FGM thick-walled pressure vessels are on the basis of changing 

material properties along the radial direction, in this research, elastic analysis of 

cylindrical pressure vessel with exponential variations of elastic modulus along the 

longitudinal direction, under internal pressure, have been investigated. For the analysis of 

the vessel, the stiffness matrix of the cylindrical pressure vessel has been extracted by the 

usage of Galerkin Method and the numerical solution for axisymmetric cylindrical 

pressure vessel under internal pressure have been presented. Following that, displacements 

and stress distributions depending on inhomogeneity constant of FGM vessel along the 

longitudinal direction of elastic modulus, are illustrated and compared with those of the 

homogeneous case. The values which have been used in this study are arbitrary chosen to 

demonstrate the effect of inhomogeneity on displacements and stress distributions. Finally, 

the results are compared with the findings of finite element method (FEM).                         

                      © 2015 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 ECAUSE of good thermal and mechanical properties, the layered composites have been used widely in 

different branches of engineering. The main defect of these materials is rapid change in common limit of their 

layers that results stress concentration and undesirable effects. Although the functionally graded materials (FGM) 

have the mechanical and thermal properties of layered composites, they have not mentioned problem. The 

remarkable characteristics of these materials are for their composite essence and the changes of material properties 

gradually at common limit that result decrease of both residual stresses and concentration of stresses and increase 

the mechanical stresses bearing. Cylindrical shells are common structural elements in many engineering 

applications. For instance in exteriors of rockets and missiles or pressure vessels, the existence of pressure gradient 

along the longitudinal direction of the cylinder make the engineers to use cylindrical shell with variable thickness. 
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Nowadays, thick-walled cylindrical shells with constant thickness made of functionally graded material are used 

instead of homogenous cylinders with variable thickness. Besides limitation of designing and production processes 

of variable-thickness cylinders, it was shown that the mechanical properties of FG cylinders with varying material 

properties along the longitudinal direction were greatly improved in comparison with that of the common 

homogenous ones in mentioned structures. Furthermore, idea of FGM theory was used to the design of gradient 

ceramic nozzle. The purpose was to increase the erosion wear resistance at the entrance of the nozzle by the usage of 

varying mechanical properties of the constituent layers along the longitudinal direction in these laminated materials. 

Fukui and Yamanaka used the Navier solution for derivation of the governing equation of a thick-walled FGM 

tube under internal pressure and solved the obtained equation numerically by means of the Runge-Kutta method [1]. 

Tutuncu and Ozturk obtained the closed-form solutions for stresses and displacements in Functionally Graded 

cylindrical and spherical shells subjected to internal pressure with assumption of elastic modulus changes along the 

radial direction with exponential function [2]. Jabbari and Eslami presented solution of a FGM cylindrical vessel, 

under thermal and mechanical loading symmetrically [3]. Eipakchi et. al. have investigated homogenous and 

isotropic conical shells with variable thickness using FSDT and SSDT (second-order shear deformation theory) and 

solve the conducted equations by perturbation theory [4]. Eslami and Babaei analyzed FGM thick-walled sphere 

under the effect of mechanical and thermal stresses [5]. Dai and Fu obtained closed-form solution of FGM pressure 

vessels under the effect of uniform magnetic field [6]. Naghdabadi and Kordkheili formulated FGM plates and shells 

with changes of material properties along the radial direction using finite element method [7]. Hongjun et al. 

indicated the exact solution of FGM hollow cylinders in the state of plane strain with exponential function of 

elasticity modulus along the radius [8]. Zhifei et al. analyzed heterogeneous cylindrical shells with power function 

of elasticity modulus by the usage of multilayer method with homogeneous layers [9]. Thick-walled FGM cylinders 

in plane strain state with exponentially-varying material properties were solved by Tutuncu using Frobenius method 

[10]. Ghannad et al. present the general method of derivation and the analysis of internally pressurized thick-walled 

cylinders with clamped-clamped ends [11]. Ghannad et al. presented a closed form analytical solution for clamped-

clamped thick cylindrical shells with variable thickness subjected to constant internal pressure based on the first-

order shear deformation theory (FSDT) [12]. Gharooni and Ghannad investigate the general solution of rotating 

FGM pressurized thick hollow cylinder with exponentially varying properties under clamped-clamped conditions 

based on FSDT [13].           

Deng et al. indicated a model for the design of gradient ceramic nozzle materials by the purpose of reducing the 

tensile stress at the entry region of the nozzle during sand blasting processes [14]. Liu and Deng investigated the 

erosion behavior of the gradient ceramic nozzles in comparison with the common homologous ceramic nozzles [15]. 

The experimental and FEM results have shown that the ceramic nozzles with a gradient structure have superior 

erosion wear resistance and the surface Vickers hardness and indentation fracture toughness of gradient ceramic 

nozzle were greatly improved compared with that of the common homologous ones. Asgari and Akhlaghi 

considered transient thermal stresses in a thick hollow cylinder with finite length made of two-dimensional 

functionally graded material (2D-FGM) based on classical theory of thermoelasticity [16]. The volume fraction 

distribution of materials, geometry and thermal load are assumed to be axisymmetric but not uniform along the axial 

direction. Also the effects of material distribution in two radial and axial directions on the thermal stress distribution 

and time responses are studied. Asemi et al. studied a thick truncated hollow cone with finite length made of two-

dimensional functionally graded materials (2D-FGM) subjected to combined loads. The volume fraction distribution 

of materials and geometry are assumed to be axisymmetric but not uniform along the axial direction [17]. Ghannad 

et al. presented an analytical solution for deformations and stresses of axisymmetric clamped–clamped thick 

cylindrical shells with variable thickness made of functionally graded materials (FGMs) subjected to internal 

pressure by the usage of the first-order shear deformation theory (FSDT) and matched asymptotic method (MAM) 

of the perturbation theory [18]. The modulus of elasticity distribution was assumed to be the function of radial and 

longitudinal direction. 

It is obviously observed that most of the previous researches on FGM thick-walled cylinders and pressure 

vessels have been done on the FG materials with variation of material properties along the radial direction. 

Furthermore, scarce recent studies on FG cylinders with longitudinal variation of material properties are limited to 

finite element modeling of laminated ones. It was shown that using FG cylinders with varying material properties 

along the longitudinal direction improve mechanical properties and are suitable substitute for homogeneous 

cylinders with variable thickness in industries, especially in cases where pressure gradient along the longitudinal 

direction of the cylinder exist. In this article , therefore, a numerical method for elastic analysis of an internally 

pressurized thick-walled cylindrical pressure vessels made of functionally graded material with constant Poisson’s 

ratio and exponentially varying elastic modulus along the longitudinal direction have been presented. The stiffness 

http://www.sciencedirect.com/science/article/pii/S0263436806000229
http://www.scientific.net/author/Li_Li_Liu
http://www.scientific.net/author/Jian_Xin_Deng
http://link.springer.com/search?facet-author=%22Masoud+Asgari%22
http://link.springer.com/search?facet-author=%22Kamran+Asemi%22
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matrix of the cylindrical pressure vessel has been extracted by the usage of Galerkin Method. Finally, the results are 

compared with the findings of finite element method. 

2    EXTRACTING STIFFNESS MATRICES OF FG CYLINDRICAL PRESSURE VESSEL 

In this section, by the usage of equilibrium equations and Galerkin Method, the stiffness matrix of FGM thick-

walled cylindrical pressure vessel with exponential variation of elastic modulus along longitudinal direction has 

been extracted. The parameter r is the radius of each layer of pressure vessel and z is the length variable (see Fig. 1): 
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Fig.1 

Geometry of the thick pressure vessel. 

 

Parameters t and L are the thickness and the length of the cylinder, respectively. For the axisymmetric 

conditions, the equilibrium equations are: 
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By the usage of Galerkin Method, Eq. (1) varies as follows; 
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We have: 
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On the basis of Green Theorem, we have: 
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Applying Eq. (5) to Eq. (4) resulted: 
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The mechanical kinematic relations in the cylindrical coordinates system for an axisymmetric cylinder are: 

 









































r

w

z

u

z

w

r

u

r

u

rz

z

r











 

 

 

 

 

    

(7) 

 

where u and w are radial and axial components of displacement field respectively. 

Modulus of elasticity E is supposed to be an exponential function of longitudinal direction and assumed to vary 

as follows:  
 

  0
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where 
0

E  is the modulus of elasticity at the end boundary (clamped condition) of pressure vessel ( 0)z   and   is the 

FG material inhomogeneity constant which have been determined empirically. Fig. 2 shows the distribution of 

normalized elasticity modulus with respect to the normalized length in a heterogeneous cylinder for integer values 

of  . 

 

 

 

 

 

 

 

 

 

Fig.2 

Distribution of normalized elasticity modulus in FGM 

cylinder. 

 

On the basis of the constitutive equations for inhomogeneous and isotropic materials, the stress-strain relations 

are as follows: 
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(9) 

 

Considering elasticity modulus variation based on Eq. (8), the stiffness matrices of stress-strain relation for 

axisymmetric condition have been conducted. 
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Using triangular elements in numerical solution of cylinder yields to: 
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where 
i

r  and 
i

z  are the radial and longitudinal coordinates of triangular element nodes respectively. Furthermore,
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where  g  is  
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Using Eqs. (6) - (13), we have:  
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Considering very small triangular elements, the right hand side of Eq. (14) varies as follows by appropriate 

approximation. 
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where r and z  are the radial and longitudinal coordinates at the center of element, respectively and 
e

A  represent the 

area of element. 
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The similar derivation, as Eq. (1), has been used for Eq. (2). By the usage of Galerkin method, Eq. (2) is 

converted as follow: 
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Eq. (17) could be simplified as follow: 
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Using Eqs. (5) and (18), yields: 
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By the usage of Eqs. (7) to (13), Eq. (19) becomes: 
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Considering very small triangular elements, Eq. (20) by the usage of Eq. (16) and appropriate approximation 

yields: 
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The elements of stiffness matrices for FGM thick-walled cylindrical pressure vessel could be obtained. Stiffness 

matrices have 36 members (66), which have been resulted from left hand side of indicial Eqs. (15) and (21). Each 

of these two equations for i=1, 2 and 3 generate three equations and finally have been converted to six equations. 

From indicial Eq. (15), for i=1, 2 and 3, the elements of first, third and fifth lines, and from indicial Eq. (21), for i=1, 

2 and 3, the elements of second, fourth and six lines of the element stiffness matrices would be resulted, 

respectively. 

Considering 
ja  and 

jb  as the radial and axial displacements of triangular element's nodes named "j", 

respectively, in the left hand side of three expanded equations resulted from indicial Eq. (15), whatever is defined as 

the displacement's coefficient of 
ja  (for j=1, 2 and 3) are the odd elements of odd lines in stiffness matrices and 

whatever is defined as the coefficient of 
jb  (for j=1, 2 and 3) are the even elements of odd lines in stiffness matrices. 

Furthermore, in the left hand side of three equations resulted from Eq. (21), whatever defined as the coefficient of 

ja  (for j=1, 2 and 3) are the odd elements of even lines in stiffness matrices, and whatever defined as the coefficient 

of 
jb  (for j=1, 2 and 3) are the even elements of even lines in stiffness matrices, respectively. For instance, 
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construction of the elements in the first line of stiffness matrices, for j=1, 2, 3 and i=1, in Eqs. (15) and (21) have 

been shown in Eqs. (22) and (23). 
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     14 1 12 2 13 2 1 32 2 33 2 1 42 2 43 2e
K A C r C D C C D r C D C C C D C C         (24e) 

 

     16 1 12 3 13 3 1 32 3 33 3 1 42 3 43 3e
K A C r C D C C D r C D C C C D C C         (24f) 
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(25b) 
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(25c) 

 

   22 1 32 1 33 1 1 22 1 23 1e
K A C r C D C C D r C D C C       (25d) 

 

   24 1 32 2 33 2 1 22 2 23 2e
K A C r C D C C D r C D C C       (25e) 

 

   26 1 32 3 33 3 1 22 3 23 3e
K A C r C D C C D r C D C C       (25f) 

 

The other elements for j=1, 2, 3 and i=2, 3 in Eqs. (15) and (21) have been obtained in the similar state which 

result the element stiffness matrix finally. 

The only external stress on the boundary of cylinder with constant thickness under internal pressure is pr  , 

means that 
rz  and 

z  are equal to zero. Therefore, in expanded equations, the right side of indicial Eq. (20) is equal 

to zero. 

Considering the triangular element, as shown in Fig. 3, the only component of stress for all elements which 1-3 

lines are on the inner radius ( inrr  ) is pr  . Therefore, the only term of force for these elements in three 

equations resulted from indicial Eq. (15) is 
i r

c
r dz . 
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Fig.3 

Sample of triangular element under loading. 

 

In these elements, we have: 

 

 
31 3 1 3ir r r

p           (26) 

 

Therefore, the force vector have been conducted as follow: 

 

 1 3ir i i
F pr dz     (27) 

 

On the other hand, we have: 
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(28) 

 

where 
13
l  is the length correspond to 1-3 line of element. Therefore, the force vector components of the elements 

with 1-3 lines on inner radius are: 
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where 
inrrr  31

. 

Finally, the matrices form of six independent equations for these elements have been obtained: 
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(30) 

 

For other elements outside the boundary, the components of force vector (the right side of matrices form of Eq. 

(30)) are equal to zero. The numerical solution is carried out by writing the program in MAPLE 16. 
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3    NUMERICAL ANALYSIS OF PRESSURE VESSEL 

In order to prove the validity of the current solution for analyzing a FG cylinder, a numerical simulation has been 

investigated. The ANSYS 13 package was used in the static analysis of thick hollow cylinder with constant 

thickness. The internal pressure of the vessel is assumed to be constant with the value of 100MPap  . 

As a case study, a thick cylinder whose elasticity modulus varies along longitudinal direction has been 

considered by the following characteristics: 15cm
i

r  , 60cmL  and 4cmt  . The numerical and analytical results 

have been investigated for clamped-free boundary conditions. 

The basic elastic modulus is supposed to be 
0

200GPaE  . The value of Poisson’s ratio is 0.3 . In ANSYS 

simulation, the vessel along the longitudinal direction divided to 100 equal and joined layers by the assumption of 

inhomogeneity constant equal to 2 . The PLANE82 element in axisymmetric mode, which is an element with 

eight nodes and two translational degrees of freedom in the axial and radial directions per each node, was used for 

discretion. 

4    RESULTS AND DISCUSSION 

In Figs. 4 and 5, the radial and axial displacement distribution at middle layer of the cylinder resulted from semi 

analytical and numerical solution has been shown for 2 . The radial displacement increases around the clamped 

boundary while by increasing the length in the next parts of the vessel, the radial displacement decreases. The 

absolute value of axial displacement increases along the longitudinal direction. Considering shear stresses, the layers 

around the clamped boundary have been affected by clamped conditions and show different behavior in comparison 

with next parts of vessel.  

Figs. 6 - 10 show the distribution of radial, circumferential, axial, shear and von Mises stresses at middle layer of 

the vessel with the findings of both semi analytical solution and finite element method (FEM). Comparison of the 

results shows appropriate agreement between two methods. It is obviously apparent that stresses at points near the 

boundaries are different from the other areas under the effect of shear stresses resulted from clamped boundary 

condition. At points away from the boundaries, stresses does not show significant variations along the longitudinal 

direction, while at points near the boundaries, the reverse holds true. 

Because of compression along the radial direction, the radial stress at the middle layer of vessel is nearly 

negative (Fig. 6). Fig. 7 shows that the circumferential stress is also negative. Furthermore, the axial stress 

approximately from the half of the vessel close to the free end has the value of zero (Fig. 8). It is obviously observed 

from Fig. 9 that there are shear stresses near the clamped ends of the cylinder. The shear stresses at points away 

from the clamped boundary at different layers are zero while at points near the boundaries, the shear stresses are 

significant. Clamped b.c. cause axial and shear stresses at the layers closed to the clamped end of the vessel. It is 

obviously observed in Fig. 10 that the von Mises stress at the middle layer of vessel is positive. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Distribution of radial displacement at middle of the vessel 

for 2 . 
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Fig.5 

Distribution of axial displacement at middle of the vessel 

for 2 . 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Distribution of radial stress at middle of the vessel for 2 . 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Distribution of circumferential stress at middle of the vessel 

for 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Distribution of axial stress at middle of the vessel for 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Distribution of shear stress at middle of the vessel for 2 .  
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Fig.10 

Distribution of von Mises stress at middle of the vessel 

for 2 .  

 

In order to investigate the inhomogeneity constant effect on displacements and stresses of FGM cylindrical 

pressure vessels with exponential variation of elastic modulus along the longitudinal direction, the value of 

inhomogeneity constant is supposed to vary in the range of 2 and -2. In order to normalize the parameters, the values 

of displacements and stresses have been divided on thickness and internal pressure of the vessel, respectively.  

 
* * * * * * */ , / , / , / , / , / , /

r r z z rz rz VMS VMS
U u t W w t p p p p p

 
                 (31) 

 

The normalized radial and axial displacement distribution along the longitudinal direction at internal and middle 

surfaces of the pressure vessel for different inhomogeneity constants have been shown in Figs. 11-14.  

As depicted in Figs. 11 and 12, the radial displacement of vessels for negative inhomogeneity constants have 

increased along the longitudinal direction. For positive inhomogeneity constants, increasing the height from 0.2 to 

end of the vessel causes a decrease in the radial displacement. By increasing the inhomogeneity constants, the slope 

of radial displacement variations would increase.  

It is observed from Fig. 13 that the normalized absolute value of axial displacement for negative values of   is 

higher than homogenous materials. The axial displacement of layers close to the clamped end is positive while along 

the longitudinal direction from clamped end to free one, the value of axial displacement is negative. FGM pressure 

vessels with positive values of   shows the same behavior from the viewpoint of the absolute value of axial 

displacement as the vessels with negative values of  . Fig. 14 shows that decreasing inhomogeneity constants from 

positive values to the negative one in range of 22    causes higher values of the axial displacement. As a result, 

the greatest displacements occur at the free end of vessel. Furthermore, pressure vessels with positive values of   

have less displacement than negative ones. 

 

 

 

 

 

 

 

 

 

Fig.11 

Radial displacement distribution at internal surface of the 

vessel. 

 

 

 

 

 

 

 

 

 

 

 

Fig.12 

Radial displacement distribution at middle surface of the 

vessel. 
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Fig.13 

Axial displacement distribution at internal surface of the 

vessel. 

 

 

 

 

 

 

 

 

 

 

Fig.14 

Axial displacement distribution at middle surface of the 

vessel. 

 

Figs. 15-23 show the normalized stresses consist of radial, circumferential, axial, shear and von Mises stress 

along the axial at the internal and middle layers of the vessel for different inhomogeneity constants, respectively. 

Investigating the stress graphs at the inner and middle layers of pressure vessels improve that the radial and 

circumferential stresses at the points away from the clamped end are constant means that they are independent from 

the longitudinal direction. Furthermore, the radial stress at the external layer is zero (traction free surface) while its 

absolute value increase toward the internal layer.  The shear and axial stresses at the points far from clamped 

boundary of the cylinder are equal to zero which satisfy plane elasticity theory. The layers near the clamped end 

have nonzero values of shear and axial stresses under the effect of clamped boundary conditions. The maximum 

stress at the thickness of vessel occurs for 2  , whereas the minimum one has been observed in case of 2 . 

As a result, decreasing inhomogeneity constant of the vessel from the positive values to the negative ones in range 

of 22    causes an increase in maximum stress of the vessel. 

 

 

 

 

 

 

 

 

 

 

Fig.15 

Radial stress distribution at middle surface of the vessel. 

 

 

 

 

 

 

 

 

 

 

Fig.16 

Circumferential stress distribution at internal surface of the 

vessel. 
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Fig.17 

Circumferential stress distribution at middle surface of the 

vessel. 

 

Furthermore, investigating Figs. 11-23 show that the longitudinal variation of elastic modulus has been mainly 

affected only by the radial and axial displacements of pressure vessels while its effect on the values of stresses is too 

small. 

 

 

 

 

 

 

 

 

 

 

Fig.18 

Axial stress distribution at internal surface of the vessel. 

 

 

 

 

 

 

 

 

 

 

 

Fig.19 

Axial stress distribution at middle surface of the vessel. 

 

 

 

 

 

 

 

 

 

 

 

Fig.20 

Shear stress distribution at internal surface of the vessel. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.21 

Shear stress distribution at middle surface of the vessel. 
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Fig.22 

Von Mises stress distribution at internal surface of the 

vessel. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.23 

Von Mises stress distribution at middle surface of the vessel. 

5    CONCLUSIONS 

The results obtained from the analysis of FGM thick-walled cylindrical pressure vessel with exponential variation of 

elastic modulus along the longitudinal direction under internal pressure in clamped-free ends condition indicate that: 

The longitudinal variations of elastic modulus affect mainly on the radial and axial displacements distribution of 

cylindrical pressure vessel while its effect on the stress values is too small. For negative inhomogeneity constants in 

range of 22   , the radial displacement values of pressure vessel increase along the longitudinal direction 

from the clamped end to the free one while for positive ones in the same range, they will decrease from 0.2 of 

height. Increasing inhomogeneity constant in range of 22    accelerate the variations of radial displacement. 

Thus, the maximum radial displacement of vessel occurs for 2  . Decreasing the inhomogeneity constant from 

positive values to negative ones in range of 22   will cause an increase in the axial displacement of vessel 

along the longitudinal direction. Therefore, the maximum axial displacement of vessel occurs for 2  . As a 

result, the greatest displacements occur at the free end of vessel. Furthermore, pressure vessels with positive values 

of   have less displacement than the negative ones. The radial and circumferential stresses at points away from 

boundary of the vessel are constant means that they are independent from the longitudinal direction. There are shear 

and axial stresses near clamped end of the cylinder. Shear and axial stresses at points away from the clamped end at 

different layers of the cylinder are equal to zero which satisfy plane elasticity theory. However, at points near z=0, 

the mentioned stresses are significant under the effect of clamped boundary conditions. By decreasing the 

inhomogeneity constant of vessel from positive values to negative ones in range of 22   , the maximum 

stress of vessel will increase. It can be concluded that existence of shear stresses causes variation of stresses through 

the longitudinal direction near the clamped end of vessel, while zero values of shear stresses at the points far away 

from the clamped ends causes the corresponding stresses to be constant through the longitudinal direction. 
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