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 ABSTRACT 

 In this paper, an analytical method for vibrations analysis of offshore wind turbine 

towers with fixed monopile platform is presented. For this purpose, various and the 

most general models including CS, DS and AF models are used for modeling of wind 

turbine foundation and axial force is modeled as a variable force as well. The required 

equations for determination of wind turbine tower response excited by the Morrison 

force are derived based on Airy wave theory. The transfer matrix is derived for each 

element of the tower using Euler-Bernoulli’s beam differential equation and the global 

transfer matrix is obtained considering boundary conditions of the tower and 

constructing the point matrix. The effective wave force is intended in several case 

studies and Persian Gulf Environmental conditions are examined for the installation of 

wind farms. Finally, the obtained results by the transfer matrix method are compared 

with the results of the finite elements method and experimental data which show good 

agreement in spite of low computational cost.        

                                          © 2016 IAU, Arak Branch.All rights reserved. 

 Keywords : Offshore wind turbine tower;  Transfer matrix method;  Natural 
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1    INTRODUCTION 

 HE offshore wind turbine technology have advanced in recent years [1,2] and some of countries such as 

Netherlands, Denmark and Sweden have long-term programs to installation of wind farm [3]. Some researchers 

have been also done about the feasibility study of utilizing offshore wind turbine in Iran and the studies are 

suggestive of Iran shores especially Persian Gulf have potential of installation offshore wind turbine with fixed 

monopile platform [4-7]. 

Determination of the dynamic response of a wind turbine tower under external forces is an important step in 

stress and fatigue analysis of the wind turbine structural design that should be quite accurate [8]. Low-accurate 

modeling of the tower leads to predict incorrect response of the tower and improper estimation of stress [9]. On the 

other hand, increasing wind velocity, waves induced forces, water stream force etc. give rise to offshore turbine 

towers are exposed to more difficult conditions than offshore turbines [10,11]. So far, many researches have been 

done in these fields which usually have used the finite element method (FEM). The FEM has traditionally been used 

in the development of wind turbine structures mainly to investigate the global behaviors in terms of frequencies, 

mode shapes, top deflection, and global stress/strain levels [11,12]. 

Bazeos et al. used the FEM to static and stability analysis of the wind turbine tower [13]. Salehi and his co-

workers used the FE based Ansys software to static analysis of offshore wind turbine tower under the thrust force 
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[14]. In [15] another study was conducted under Lavassas’s supervision in which researchers obtained the dynamic 

response of the tower subjected to wind force. Later, Jianyuan et al. analyzed the dynamic response of the tower 

induced by turbulence wind force in the Ansys software [16]. Bush and Manuel studied the effects of three 

foundation models in the Fast software and showed that distributed springs foundation model is higher accuracy 

than other of foundation models [17]. In [18], the authors by using the Morison equation and the Airy wave theory 

obtained the response of the offshore wind turbine tower to the wave force in the Fast software. The results of these 

papers indicated that the FEM usually predicts response of the offshore wind turbine tower and related stresses with 

a good accuracy nevertheless the method is a time consuming process and this issue is clearly visible in the detailed 

analysis [19]. 

On the other hand, analytical method used for calculating natural frequencies and response of wind turbine 

towers have been previously presented. In [20] Murtagh and his co-workers provided simple analytical method to 

determine natural frequencies and mode shapes by using a constant cross-sectional area. Maalawi proposed some 

explicit functions for cross-section and moment of inertia of the wind turbine tower and solved the differential 

equation of motion in the tower torsional vibrations [21]. Wang et al. used the theory of thin-walled beams and 

studied the free vibration of wind turbines towers [22]. However, studies in this area have been used for specific 

models, the results indicate that the differential equation of the offshore wind turbine tower does not possess 

analytical solution in general and numerical methods would be employed to solve. 

Among the analytical procedures transfer matrix method (TMM) is simple and accurate method that used to 

analyze the vibration of beams and other structures [23-25]. In fact, the TMM is a form completed of Hoelzer’s 

procedure which was presented to study torsional vibrations of shafts in 1921 [26]. Later, Myklestad applied the 

Hoelzer method with a little change for transverse vibrations of beams [28]. Pestel et al. focused their research on 

the review and expansion of the TMM and the results of research finally published in [28]. Dai and colleagues used 

this method to study the three-dimensional vibrations of the pipes [29]. Orasanu and Craifaleanu obtained natural 

frequencies of a beam with a constant cross section and a central point mass and results from the TMM compared 

with FEM and experimental data. Orasanu and Craifaleanu showed that in vibration analysis of a beam with a 

concentrated mass, the TMM has higher accuracy with respect to the FEM [30]. 

The transfer matrix method has some advantages in computer implementation [31-33] including ease of software 

design, small memory supplies and obtainability of ready-made transfer matrix catalogues for different elements. On 

the other hand, in TMM, accuracy of results raised by increasing the number of elements and also, the determinant 

of the characteristic equation does not depend on the number of elements unlike the FEM [34, 35]. In addition, the 

TMM can be used as an analytical method; therefore, this method contains merely sources of discretization errors 

[36]. It should be noted that the TMM includes some limitations which have prevented extension of TMM unlike the 

FEM. In the high modes, transfer matrix method contains numerical difficulties which lead to inaccurate 

determination of the natural frequencies [33].Therefore transfer matrix method is suitable for systems in which low 

vibration modes are dominant in the design. Also, in many cases when a very stiff spring exists between two 

elements or in the presence of joint with high flexibility, natural frequencies determination using the transfer matrix 

method would be difficult [28]. 

In wind turbine tower design, the natural frequencies of the first and second vibration modes are often required 

and the third frequency is rarely used [2]. On the other hand, equivalent foundation springs with high stiffness exist 

in wind turbine towers modeling. Nevertheless, the springs are taken into account at the base of the tower, thus the 

analysis excludes difficulty in applying the transfer matrix method despite possessing springs at the tower base. 

These items direct some researchers use the TMM in static and dynamic analysis of wind turbine towers in the 

recent years. Meng et al. studied the buckling of the wind turbine tower by using the TMM [37]. They wrote another 

paper and applied the TMM to calculate natural frequency of wind turbine towers with a fixed fulcrum regardless of 

the axial force [38]. Support of wind turbine towers in reality has a finite stiffness. Therefore, considering the fully 

clamped model for wind turbine tower foundation is not suitable [39]. On the other hand, offshore turbines are 

installed in more soft ground; hence, modeling of offshore turbines support is very significant. Furthermore, 

sometimes, the weight of offshore towers is more than the weight of the Nacelle weight [17]. Thus, neglecting of the 

axial force variations leads to erroneous results. Consequently, results of the modeling would be close to the actual 

value when axial force is modeled as a variable force and support of the tower is speculated as an elastic fulcrum.  

All of the researches that have been carried out so far can be divided into two broad categories: The first 

category includes articles that presented an analytical method for the vibrations of wind turbine towers however, 

they were associated with simplifications and regardless of the axial force variations and modeling foundation [20, 

37, 38] or presented for specific models [20-22]. The second category contains papers in which accurate  modeling 

of wind turbine towers have been discussed and numerical methods especially the finite element method has been 

used [11-18]. In this paper, by using the TMM, the analytical solutions for forced vibration of offshore wind turbine 
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tower with variably distributed axial loads and elastic foundation are found. For this purpose, the wind turbine tower 

foundation is modeled using the DS, AF and CS standard models. The wind turbine tower is discretized through 

applying the TMM and by expending the Euler - Bernoulli equation. Transfer matrix is derived for each of the tower 

elements. Finally, the effective wave force is envisioned in several cases study and the obtained results by the 

transfer matrix method are validated with the results of the finite elements method.  

2    WIND TURBINE DESIGN METHODS 

Although wind turbine blades are made with high accuracy but there are always imbalances between the wind 

turbine blades [11] which leads to excitation load on the wind turbine tower by rotor frequency (1P).  Furthermore, 

each time a blade passes the tower, the shadowing effect raised by wind causes a harmonic load on the structure 

[12]. For a three-bladed wind turbine, the effect result an excitation on the blade passing frequency 3P as well as 

multiples thereof for example 3P, 6P, 9P and so on. Another external applied load on the tower is wave load 

originates from sea states whose frequency is normally about 0.20 to 0.30 Hz [40]. So, the tower frequency must not 

coincide with the excitation frequencies of the imbalances load, i.e. shadow load and wave load. Hence, three 

classical design approaches have been defined in the categories of wind turbine design methods as follow [40]: 

1. Soft–soft design: the tower frequency is less than 1P. 

2. Soft–stiff design: the tower frequency is between the frequencies 1P and 3P. 

3. Stiff–stiff design:  the tower frequency is higher than the blade passing frequency 3P. 

Fig. 1 shows the frequency ranges corresponding to each of the design approaches, schematically. Designing the 

wind turbine in stiff– stiff approach requires a very stiff foundation leading to an expensive design. Also designing 

in the soft–soft through high wave loading, might be critical. Designing in the soft– stiff approach is suitable and 

economic [40]. Hence, most wind turbines towers are designed within the soft– stiff [41] and so in this paper, Soft–

stiff design method is examined to study in order to set up a wind farm in the Persian Gulf. 

 

  

 
 

 

 

 

 

 

 

 

 

Fig.1 

Design frequency range of the offshore wind turbine 

towers [40]. 

3    WAVE FORCE   

Wave load is one of the main forces on offshore wind turbine structures. This load results from the water flow 

around the support structure of the wind turbine. Many theories for calculating wave loads are presented according 

to sea conditions and structural dimensions [42]. Wave loads of slender structures can be described by the Morison’s 

equation. Slender structure can be defined as structure with a small ratio between diameter and wavelength [42]. 

Consequently, Morison’s equation can be used with reasonable accuracy when the dimension of the structure, D is 

small enough relative to the wavelength, λ namely when the ratio D/λ< 0.2 [39, 42]. For non-slender structures the 

diffraction theory must be used for the calculation of wave loads [42]. Commonly, diameter of the monopile in 

offshore wind turbines is between 3.5 to 6 meters [42, 39]. The wavelength adopts different values proportional to 

the weather. Although, the mean value of wavelength is about 40 to 80 meters [39]. For example, Table 1. shows the 

mean wavelength for the two sites Middelgrunden and Rodsand in different situations. If the wavelength is assumed 

to be 40 m and pile diameter is assumed to be 6 m by dividing greatest value to the least value, the ratio of D/λ is 

obtained 0.15 that it shows Morison’s equation can be used to determine the wind turbine wave load in the public 

case. 
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Table 1 

The mean wavelength for the two sites Middelgrunden and Rodsand. [39] 

Site Wavelength (m) Wave height (m) Depth (m) 

Middelgrunden 40 3.8   5.5 

 45 3.5 8  

 47 3.5   9.5 

Rodsand 50 3.5  11 

 64 6.2 8 

 76 6.7   9.5 

 88 6.7 11 
 

By Morison’s equation, the horizontal force on the monopile is expressed as [42] 

 

( , ) I DQ t F F                 (1) 

 

where Q(ζ,t) is the wave force per unit length, ζ is a coordinate along the pile length whose datum is located on the 

water surface as shown in Fig. 2, FI is the inertia term of the wave force, FD is the drag term of the wave force which 

can be expressed as [42] 
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Called the mass coefficient CM, the water density ρw, outer diameter of the pile D, velocity of the water flow U 

and drag coefficient CD. In the general case, CM and CD depend on the smoothly and roughly of the pile which 

increased by increasing surface roughness [43]. Several methods to calculate these coefficients are presented in [43-

45]. 

To determine the drag and inertia force, the water flow velocity profile must be specified. For this purpose Airy’s 

wave theory is employed in this paper. Fig. 2 shows characteristics of the Airy’s wave. According to Airy’s wave 

theory, the horizontal wave velocity is as follows [42] 
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where T stands for the wave period, t is the time, dw is water depth, H is wave height and λ is wavelength. 

Substituting Eq. (3) into Eq. (2), the wave force can be expressed as: 

 

 

 

 

 

 

 

Fig.2 

Characteristics of the Airy’s wave theory. [42] 
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and FI (ζ) and FD (ζ) are defined as: 
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4    MODELING OF WINDTURBINE TOWER 

4.1 Foundation modeling  

To determine the equivalent model for the foundation, structure response to excitation force should be examined 

then the foundation model is selected based on it. Foundation resists against the pile motion raised by external forces 

such as wind or wave force. However the foundation does not move or its movement is very little [13]. In this case, 

the wind turbine tower foundation can be modeled by a series of springs that springs stiffness coefficient is not 

constant in general and is determined as proportional to the amplitude of the external loads [46]. The accuracy of 

equivalent spring usage is not suitable in which the ground shake like an earthquake is dominant. In this case, the 

seismic added mass should be considered together with equivalent springs [13]. Regarding this concern, response of 

the wind turbine tower is considered merely under the wave load in the present paper. So the equivalent spring is 

employed for foundation modeling.   

Stuttgart institute of wind Energy (SWE) derived three models to signify the monopile foundation as described in 

Fig. 3, schematically. The figure includes the distributed springs (DS) model, the apparent fixity length (AF) model 

and the coupled springs (CS) model. The DS model idealizes the monopile with elastic foundation as a free-free 

beam with horizontal springs distributed along the subsoil share of the monopile. The beam uses the actual 

properties of the monopile both top and bottom of the mudline including the real diffusion depth. The subsoil spring 

stiffness constants are depth-dependent and can be extracted using of the horizontal soil resistance versus horizontal 

monopile displacement (P-y) data. For this purpose, soil ultimate resistance (Pu) must be determined and employed 

in the analysis. In general, ultimate resistance is depending on the depth of the foundation, pile diameter and 

physical conditions of soil. In this paper, wind turbine tower case study is placed on the sand bed and therefore, 

expressions of the relationships are only required for sand. Soil ultimate resistance for sand is expressed as [47] 

 

 

  

 

(d) (c) (b) (a) 
Fig. 3 

Modeling of offshore wind turbine tower, a) Offshore wind turbine tower, b) DS foundation model, c) AF foundation model, 

d) CS foundation model. 
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where γ is effective soil weight, h is foundation depth, D is pile diameter and the coefficients C1, C2 and C3 

dependent on the angle of internal friction of sand (φ) and can be determined from Figs. 4(a) and 4(b). Soil 

resistance can be obtained using Eq. (6), as follows [47] 

( ) tanh ( ) , 0u f

u

k h
P Z f P v Z L

A p
Z

 
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 
          

 

(7) 

 
where Z is coordinate axis along the length of tower that measured from the beginning of the foundation and Lf is 

length of the monopile which is embedded inside the seabed as shown in Fig. 3. Also k is bulk modulus of subgrade 

reaction and it is dependent on the angle of internal friction of sand and can be determined from the Fig. 4 (c), P(Z) 

stands for the soil resistance; v(Z) is lateral displacement of foundation and f is load factor for cyclic or static 

condition which is obtained as follows [47] 

 
0.9f      for cyclic loading 

3.0 0.8
h

f
D

 
  
 

 for static loading     

 

(8) 

 

Finally, the stiffness of the DS foundation model is calculated using the following equation [40] 
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P(Z) depends on the external load. So, the stiffness is also dependent on external load and must be determined in 

accordance with external excitation. For this purpose, shear force and bending moment due to external load must be 

transmitted to the mudline by determining P(Z), the equivalent stiffness can be calculated. 

 

   
(a) (b) (c) 

Fig. 4  

Determination of the constant coefficients in the DS model, a) coefficients C1 and C2, b) coefficient C3, c) modulus of 

subgrade reaction. [47] 
 

The AF model idealizes the monopile with elastic foundation as a cantilever beam whose properties vary from 

top to bottom of the mudline. The beam above the mud line has the actual properties of the monopile and the beam 

below the mud line has operative properties and a fictive length. To determine the equivalent diameter and 

equivalent length Lf’, results of the P-y analysis are used and an equivalent beam model of DS model is obtained. 

For this purpose, analysis program such as LPILE [17] can be used. In according with this program, equivalent 

diameter and fictive length can be obtained by introducing the soil resistance and the dimensions of the pile. In [48] 

AF model algorithm specifications have been presented. 
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The CS model idealizes the foundation compliance as a set of translational and rotational by coupled springs 

located at the mud line. Above the mud line, the monopile is modeled as a beam with the real properties of the 

monopile. In this case, the foundation stiffness matrix is calculated using the following equation [48] 
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(10) 

 

where EIf is foundation bending stiffness.  

Among the three presented models, the DS model is more accurate than the other models and if complete 

information about soil conditions is available, the DS model can be used with high accuracy [46]. AF model is less 

accurate than the DS model however the computational capacity of the AF model is less than the DS model. It is 

clear from Eq. (10) that CS model stiffness is independent from the location of installed platform and solely depends 

on the size of monopile. Therefore, CS model is less accurate than the DS and AF models. CS model can be applied 

when detailed information is not available for soil installation. In this case, foundation model can be achieved via 

only the dimensions of the pile. In the following, the equations for each of the three models are discussed.  

4.2 Equations of motion 

Rotation coefficient (δ) is a measure which indicates the significance of shear deformation on transverse vibration. If 

the δ value is less than 0.25, both of the Euler-Bernoulli theory and Timoshenko beam theory give the identical 

results [49]. In offshore wind turbine with monopile platform, this index is calculated as follows [45] 
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where, r is tower radius and L is total length of tower, monopile and foundation. Tower diameter is usually in the 

range of 3.5 to 6 meters and total length of tower and monopile takes between 120 to 200 meters as well. So, 

considering the largest numerical value for r taking 3 m and the smallest value for L which is 120 m [42], the 

rotation rate would be equal to 0.017. Thus, both the beam theories of Euler-Bernoulli and Timoshenko provide the 

similar results and therefore, in this paper, Euler-Bernoulli beam theory is used for vibration analysis of the tower. 
Differential equations of motion of the tower and the monopile, can be obtained as follows [46, 50] 
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Called coordinate axis along the length of tower Z, transverse deflection along the Z direction v, axial load P(Z), 

monopile bending stiffness EIp, density of the monopile ρp, cross-sectional area of the monopile Ap, tower bending 

stiffness EIt(Z), density of the tower ρt, cross-sectional area of the tower At and Lf is length of the monopile, which is 

located in the seabed. Also, Ma is hydraulic added mass which is calculated by a M w aM C A   where ρw is density of 

the water and Aa is external area of the monopile. In the aforementioned equations, the first equation is governing 

differential equation of the platform and the second addresses governing differential equation of the tower. In 

addition differential equation of the foundations based on the AF model can be presented as follows [46, 50] 
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where, μ is distributed added mass, EIf’ is equivalent bending stiffness, ρf’ is equivalent density and Af’ is equivalent 

cross-sectional area in AF model. Also, differential equation of the foundations according to the DS model is 

presented as follows [46, 50] 

4 2
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where, K(Z) is distributed equivalent stiffness of foundation, ρf  is foundation density and Af is cross-sectional area 

in DS model. 

5    APPLYING THE TRANSFER MATRIX METHOD 

5.1 Solving the equations of motion 

For modeling by the transfer matrix method, the wind turbine structure is discretized into n cylindrical continuous 

beam elements with constant cross-section as shown in Fig. 5 and the equation of motion is derived for each 

element. In this case, the axial force, bending stiffness and the cross section for each element take into account 

constant and differential equation of motion for each element of tower is transformed from the first equation of Eq. 

(12) as:  
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where l is length of the element and z is element local coordinate along the length of the element as shown in Fig.6. 

Applying the separation of variables method gives dimensional solution of Eq. (15) for each element of tower as: 
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where the constant parameters s1 and s2 are addressed in Appendix A.  

In the same way, differential equation of motion for each of the elements of platform is transformed from the 

second equation of Eq. (12) as follows 
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In order to apply the TMM, the part cos( ) cost t  in Eq. (17) should be expanded into the Fourier’s series as: 

 

8 8 8 8 8
cos cos cos cos3 cos5 cos7 cos9 ...

3 15 105 315 693
t t t t t t t           

    
          

 

(18) 

 

Substituting of Eq. (18) into Eq. (17), solution of Eq. (17) can be given as: 

 

1

( , ) ( ) sin cos
N

i D i i

i

v z t v z q t q A a t


 
  

 
ω ω           

 

(19) 

 

where, N is number of terms in Fourier’s series and Ai is Fourier’s coefficient. Furthermore, dimensional solution of 

Eq. (19) for each element can be expressed as: 

 
2

1 1 2 1 3 2 4 2( ) cosh sinh cos sin (1 )p pv z C s z C s z C s z C s z Aρ ω               (20) 
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Solution of foundation elements in AF model is similar to Eq. (16) (see Appendix A). Using the TMM, 

differential equation of motion for each element of foundation in DS model is transformed from Eq. (14) as: 

 
4 2 2

4 2 2
0, 0f f f

v v v
EI P K v A z l

z z t
ρ

  
      

  
          

 

(21) 

  

Eigen values of Eq. (21) can be represented as follows 
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(22) 

 

Eq. (21) adopts three different solution forms depending on the value of parameters which can be concluded as: 

while
 

/ f fK A   is greater than the cut-on frequency and solution of Eq. (21) is similar to Eq. (15). / f fK A   is 

the cut-off frequency and / f fK A   is the below the cut off frequency and Eq. (21) has a different solution form 

[51,52]. In offshore wind turbine tower foundation, value of the K is very large and the excitation frequency of the 

wave is between 0.20 to 0.25 Hz [46]. Consequently, the excitation frequency is the below the cut off frequency and 

dimensional solution of Eq. (22) can be expressed as: 

 

1 2 3 4( ) cosh cos cosh sin sinh cos sinh sinv z C az bz C az bz C az bz C az bz              (23) 

 

where, a and b are given in Appendix A. 
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Fig.5 

a) Wind turbine towers subjected to the wave force, b) 

Discretization during applying the TMM. 

5.2 Obtaining the transfer matrix 

Concluding from the derivation of dimensional solution, the slope θ, shear force V and moment M for each segment 

are following 
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where the tij coefficients are given in the Appendix B. The relations in Eq. (24) can be represented in matrix form as: 
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(25) 

 

The above equation can be addressed as follows 

 

( ) ( ).Z z T z C          (26) 

 

where Z(z) is state vector, C represents vector of constants and T(z) is called transfer matrix function. By using the 

TMM, state vector between two nodes i and i-1 shown in Fig. 6 is obtained as follows [53]  

 

 1

1 1( ). (0) . .i i ii
Z T l T Z H Z

            (27) 

 

Herein, [H]i is transfer matrix between two nodes i and i-1. 

 
   

 

 

 

 

 

Fig.6 

ith Element and connected nodes. 

 

 

In order to apply the TMM on the bottom of tower and elastic base, point matrix can be introduced. In Fig. 7(b), 

element attached to the nacelle mass is shown. It can be written from the dynamic equilibrium equations 
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(28) 

 

where, t superscript denotes the top of the element, b superscript denotes the bottom of the element, m is the mass of 

the nacelle and J is nacelle moment of inertia. Rewriting Eq. (28) in matrix form, the point matrix for concentrated 

mass at the bottom of the tower is obtained as follows  
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(29) 

 

In Fig. 7(a), element attached to the CS elastic foundation is shown. Similarly, using the equilibrium equations, 

the point matrix is obtained can be written as: 
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(30) 

 

The state vector is identical for the common elements [53]. Therefore, the state vector between the bottom of the 

tower and top of the tower in DS and AF foundation models is obtained as follows 
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Z U H H H H H H H H H Z H Z
  

          (31) 

 

where, [H]t is total transfer matrix and is obtained by multiplying all the matrices  
,t n

H which each one is the 

transfer matrix of the nth tower segment,  
,p n

H  is the transfer matrix of the nth monopile segment and  
,f n

H  is the 

transfer matrix of the nth foundation segment. 

 

                                                                                                           
(a)                                                   (b) 

 

 

 

 

 

 

Fig.7 

a) Elements connected to the support in the CS model, b) 

Elements connected to the nacelle. 

 

Moreover, for the CS foundation model, the State vector between the bottom of the tower and top of the tower is 

taken as follows 

 

             , ,1 1 1, , 1 ,1 , , 1 ,1
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 

          (32) 

5.3 Applying boundary conditions 

For all three foundation models including the DS, AF and CS, the value of Vn
t
 and Mn

t 
are equal to zero at the end of 

the tower besides in the AF model fulcrum is clamped. Therefore, the slope and displacement at the base of the 

tower keep being zero for the AF model and the state vector between the 1th segment and the nth segment is 

obtained as follows, correspondingly 
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(33) 

 

Using the above equation, bending moment and shear force on the first segment, and displacement and slope at 

the end segment are obtained as follows 
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In DS and CS models, fulcrum is free. Therefore, the bending moment and shear force at the base of the tower 

are taken to be zero and the state vector between the 1th segment and the nth segment can be obtained as follows, 

correspondingly 
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(35) 

 

In a same manner to the previous case, the displacement and slope at the beginning and end of the tower for the 

DS and CS models can be obtained as follows 
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(36) 

6    RESULTS AND DISCUSSION 

In order to examine the accuracy of the proposed method, response of the 5-MW wind turbine tower subjected to the 

wave excitation force is evaluated using the TMM and the results are compared with the FEM analyzed based data 

[54]. In [36], dimensions and materials used in wind turbine towers are presented. Table 2. shows the characteristics 

of the foundation in the CS and AF models [55]. Table 3. describes the parameters required to identify the wave 

force [54]. Schematic of soil installation, corresponding physical properties and stiffness of tower foundation for the 

DS model are shown in Fig. 8 [46]. 
 

Table 2 

Profile foundation in AF and CS models. [55] 

Value Characteristics 

2.58×109 
Equivalent stiffness_ ku,F (N.m-1) 

-2.26×1010   Equivalent stiffness_ ku,M (N.rad-1) 
-2.26×1010    Equivalent stiffness_ kθ,F (N.m.m-1) 

  2.64×1011       Equivalent stiffness_ kθ,M (N.m.rad-1) 

  17.5            Equivalent high in AF model (m)  
    6.2132              Equivalent diameter in AF model (m) 

  0.05986        Equivalent thickness in AF model (m) 

 

Table 3 

Required parameters to identify the wave force. [54] 

Value Characteristics 

2   Mass coefficient 
      1000 Density (Kg.m-3) 

 6 Wave height (m) 
  20 Water depth (m) 
  58 Wave length (m) 
  10 Wave period (sec) 

1 Drag coefficient 
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      (a)                                             
 

 

 
(b) 

Fig.8 
a) Soil physical properties, b) Stiffness of the foundation for the DS model.[46] 

 

To determine the transfer matrix for each element and obtain the response of the wind turbine tower under the 

wave load, the wind turbine tower is discretized in MATLAB software. For this purpose, two concerns should be 

investigated, first, the number of terms in the Fourier’s series could be sufficiently accurate and the second, the 

number of elements in modeling of wind turbine towers could be provided with adequate accuracy. It is well-known 

that when the number of elements and also the number of included Fourier’s coefficients are increased, the model 

would be closer to the realistic model and so the accuracy of the results increases however the volume of 

calculations is proportional to theses increasing. Thus the number of elements and the number of Fourier’s terms 

should be chosen in such a way that they benefit from high accuracy and low volume of calculations time as 

possible. In order to estimate the suitable number of terms in the Fourier’s series, 100 elements for wind turbine 

towers are considered as default and displacement time history of the tower tip depicts for models DS, AF and CS 

extracted by the TMM in Figs. 9 to 11. Curves in the figures are corresponding to the one to five first Fourier’s 

expansion terms. As it is clear from the figures, after the three first terms, time history diagrams are overlapped. So 

it can be concluded that taking into account the three first terms in Fourier’s series for each of the three foundation 

models is reasonably accurate. For a closer look at this issue and determining the amount of error for use of the 

included terms in Fourier’s series, the difference results in using the terms number are presented in Figs. 12(a) to 

12(d). To this end, difference between the two considered terms and the one considered term in Fig. 12(a), 

difference between the three included terms and the two included terms in Fig. 12(b), difference between the four 

and three terms in Fig. 12(c) and difference between the considered five and four terms in Fig. 12(d) are shown. As 

can be seen from the above figures, taking just one term of the Fourier’s series leads to the maximum error 1.5×10
-2

 

m, considering two terms, maximum error is equal to 1.9×10
-3

 m, by including three terms, maximum error 7×10
-4

 m 

is given and finally by taking four terms, maximum error is evaluated as 2.9×10
-5

 m. So containing the three terms of 

the Fourier’s series, error order will be in order of ten thousandths. Thus in what follows; the three first terms of the 

Fourier’s series expansion are considered to address the results of analysis, accordingly. It should be noted that the 

use of the first three terms cannot be generalized to all relevant systems. So accuracy requirement about the number 

of included terms must be examined for each problem individually. It is possible that more number of included 

terms would be necessary for an accurate convergence in other case studies. 

 

 

 

 

 

Fig.9 
Deflection time history of the tower tip for the one to five 

first Fourier’s series terms in the DS model. 

  

 

 

 

 

Fig.10 
Deflection time history of the tower tip for the one to five 

first Fourier’s series terms in the AF model. 
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Fig.11 
Deflection time history of the tower tip for the one to five 

first Fourier’s series terms in the CS model. 

  

 

 
 

(a) 

 

 

(b) 

  

 

 
(c) 

 

 
(d) 

Fig. 12 

Variation of results in employing of the number of Fourier’s series terms, a) Difference between employing 2 terms and 1 term, 

b) Difference between 3 included terms and 2 terms, c) Difference between 4 and 3 considered terms d) Difference between 5 

and 4 included terms. 
 

The next issue that must be addressed is the number of tower elements. For this purpose, the number of elements 

in accordance with the desired accuracy and volume of calculations is examined. Table 4. shows the hardware and 

software specifications of personal computer employed for the analysis and the results are shown in Table 5. In the 

abovementioned table, the maximum numerical error for different number of elements and the corresponding 

MATLAB simulation time is displayed. It can be addressed from the table the error decreases monotonically with 

increasing number of elements and in front, the time consumed computations can be increased for the three 

foundation types. Therefore, by selecting 9 elements for AF and DS models, including 5 elements for tower, 2 

elements for monopile and 2 elements for foundation and also 5 elements for CS model including 5 elements for 

tower and 2 elements for monopole, maximum error approaches to 8.53×10
-2

 m. With increasing number of 

elements to 25 elements for the AF and DS models and to 20 elements for CS model maximum error equals to 

1.4×10
-2

 m and as a last mesh sensitivity, by selection of 80 elements for AF and DS models and selecting the 60 

elements for CS model, the maximum error is less than 5×10
-2

 m Therefore, selection of 80 elements for AF and DS 

models and selection 60 elements for CS model can be accurate and so the this number of elements is considered for 

the later analyzes. Also by examining the simulation time in MATLAB, it gives that among the three foundation 

models, the DS model takes the longest simulation time and the shortest simulation time belongs to CS model. Due 

to this finding, the transfer matrix model of the DS model is more complex than the CS and AF models. On the other 
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hand, the CS model includes no foundation at the base that this fact provides fewer elements than CS and AF model. 

Thus, the corresponding simulation time in the CS model is less than the AF model, naturally. 
 

Table 4 

Hardware and software specifications of the used personal computer. 

Value Item 

Microsoft Windows 7 Ultimate OS Name 
HP ProBook 4520s System Model 

Intel(R) Core(TM) i5 CPU       M 480  @ 2.67GHz Processor 

4.00 GB Installed Physical Memory (RAM) 

6.1.7601 Service Pack 1 Build 76016 Version 
X86-based PC System Type 

Version = "6.1.7601.17514" Hardware Abstraction Layer 

4.29 GB Available Virtual Memory 

 

Table 5 

Maximum error for a number of different elements and corresponding MATLAB simulation time. 

Simulation time in 

MATLAB (second) 
The maximum error between the 

number of elements 

Number of Elements 
Model 

foundation monopile tower 

1.1200075 

1.1691306 

1.2687001 

1.3572087 

1.4352092 

1.5288098 

1.6536106 

……………. 

0.085300150 

0.014739865 

0.002696329 

0.000499832 
0.000175063 

0.000081081 
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DS 

0.7800050 

0.9372062 
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1.2460085 

1.3168103 
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……………. 
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0.014592466 
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AF 

0.7644049 

0.8736055 

0.9012504 

0.9516060 

1.0296066 

1.1388072 

1.2948083 

……………. 

0.085215634 

0.014582340 
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… 
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… 

2 

10 

15 

20 

30 

40 

50 

5 

10 

15 

20 

30 

40 

50 

CS 

 

In the following, corresponding results of the three abovementioned foundation models are discussed to compare 

the support effects. For this purpose, Response of the drag force and response of the inertia force on the tower is 

presented in Figs. 13, 14, respectively. Each of the figures contains diagrams showing the effects of all three 

foundation models DS, AF and CS on the results. At the right hand side of the figures, the maximum amplitude of 

each diagram is magnified to compare the results of each foundation models. The magnification reveals that for both 

drag and inertia force, CS model takes the highest tower tip deflection and DS model has the smallest tower tip 

deflection. As shown in the right side schemes, the difference between AF and DS models results are minimal and 

the corresponding responses are roughly consistent. Consequently, it can be concluded, applying the CS model leads 

to additional approximation with respect to the DS model in the results.  

 

 

 

 
 

 

 

 

 

 

Fig.13 
Response of the drag force for all three foundation models 

DS, AF and CS by taking into account the three first 

Fourier’s series terms. 
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Fig.14 

Response of the inertia force for all three foundation models 

DS, AF and CS in which three first Fourier’s series terms 

taken into account. 

 
Fig. 15 shows response of the wind turbine tower by virtue of the drag force, inertia force and total wave force 

for DS foundation model. As it is clear from the figure, the maximum displacement of the tower tip is due to the 

inertia force and small amount of displacement is caused by the drag force whereas, maximum displacement of the 

inertial force is 0.6 m and maximum displacement of the drag force is 0.07 m. This fact is raised from the squared 

wavelength (λ2
) in the denominator of the inertial force relation while the amount of wavelength is much larger. 

Thus, the drag force contributes as a small part of the wave force. To clarify this interesting finding, the distribution 

of inertia and drag forces amplitude upon the platform height is reported in Figs. 16(a) and 16(b), respectively. As 

can be concluded from the figure, Maximum drag and inertia forces occur on the water surface and the 

corresponding numerical values are 69099 N and 16520 N, respectively. The data imply maximum inertia force is 

more than twice of maximum drag force. On the other hand, inertia force induced maximum displacement is eight 

times the drag maximum displacement due to drag force roughly. This outcome is because of the variations of 

Inertia and drag force along the platform. Comparing figures 16a and 16b, presents drag force variations is much 

greater than the inertial force variations by increasing the depth whereas at the depth of 19 m, the inertial and drag 

forces are equal to 39078 and 3855 N respectively. This result suggests that drag force is reduced up to 94% whereas 

inertia force is declined to 75%. Consequently, the maximum displacement of the tower is contributed by the inertia 

force. 

 

 

 

 

 

 

 

Fig.15 
Response of the inertia force, drag force and total force for 

DS foundation model. 

  

  

 
(a) 

 

 
(b) 

Fig.16 

Amplitude of the drag and inertia force upon the monopile height, a) Inertia force, b) Drag force. 
 

In the following, numerical comparison between the results of transfer matrix method and finite element method 

[54] is examined. In [54] dynamic response of the wind turbine tower under Morrison wave force by Airy’s theory 

has been predicted using the finite element method. The DS foundation model has been included in the analysis 

[54]. For this purpose, the wind turbine tower divided into 1001 cylindrical elements including 609 elements for 

tower, 140 elements for monopile and 252 elements for foundation in Fast software. For easier modeling in Fast, the 
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authors of [54] have used 252 linear springs on the desired discrete point of the foundation instead of distributed 

spring. In addition, a concentrated force has been applied on each element to model the axial force which led to 

increasing the number of elements in [54]. However in the presented paper, differential equation of motion for each 

element is solved analytically. Therefore, fewer numbers of elements is used. For this purpose, the wind turbine 

tower is divided into 106 elements including 50 elements for tower, 20 elements for monopile and 36 elements for 

foundation. Distributed spring is used for foundation elements and axial force per unit length is considered for all 

elements.  
Figs. 17 and 18 address time history of bending moment and shear force at the support platform for both of the 

presented TMM and FEM analysis provided in [8]. By observing the figures, it can be seen that for the bending 

moment in Fig. 17, little difference can be reported between the results of the TMM and the FEM. For the shear 

force comparison in Fig. 18 the difference is reasonably a little more. This fact comes from that the shear force 

includes the higher order of derivation than the bending moment. As it is well-known, the shear force is obtained 

from the third derivative of deflection whereas the bending moment is gained from the second derivative of 

deflection function. So, the relative difference in shear force is obviously greater than bending moment. It can be 

concluded from the figures that the TMM result is in good agreement with the results of finite element method in 

spite of low computational cost.  

 

 

 

 

 

 

Fig.17 
Comparison of the TMM results with the FEM result [54] 

about the bending moment time history at the support 

platform. 

  

 

 

 

 

 

 

 

Fig.18 

Comparison of the TMM results with the FEM result [54] 

about the shear force time history at the support platform. 

 
Of a particular interest, one can observe the influence of the wave force parameters on the dynamic response of 

the tower. For this purpose, the effect of water depth change on the dynamic displacement of the tower tip in several 

mass coefficients is examined in Fig. 19 using the presented analysis. As can be seen from the figure, at all 

coefficients, increasing water depth leads to decrease the maximum tower deflection. On the other hand, the slope of 

the v-dw diagram declines by increasing water depth whereas the slope approaches close to zero at the depth of 20 m. 

The effect of changes in water depth on the maximum dynamic deflection of wind turbine towers can be observed 

from the term ψ=cosh[2π(ζ+dw)/λ]/cosh(2πdw/λ) exists in the wave force relation Eq. (5). Considering that the 

coordinate parameter ζ adopts a negative value in aforementioned definition for ψ, thus the fraction ψ would take an 

amount smaller than the unit by increasing dw. Consequently, the wave force amplitude would also be decreased by 

increasing in dw. This result can be elucidated by diagram depicted in Fig. 21 which shows the variations of the 

function ψ in terms of water depth dw and parameter ζ. It can be clearly seen from the figure that at all values of ζ, 
function ψ will be decreased by increasing in dw and therefore reducing the function ψ leads to declining wave force 

amplitude and the maximum dynamic deflection of tower decreased subsequently. For clarifying the application of 

this finding, assume two wind turbines with the same dimensions installed in a wind farm. One of the turbines is 

installed at a depth of 10 meters and another is installed at the 18 m depth and the added mass coefficient is 1.5 for 

both of them. When the water level rises 2 meters, using Fig. 19, one can obtain the maximum dynamic 

displacement of the turbine installed at a depth of 10 m reaches from 0.81 m to 0.67 m and the maximum dynamic 

displacement of the turbine installed at a depth of 18 m reaches from 0.51 m to 0.48 m, too. Thus, since the tide 

occurs twice a day, so the wind turbine is subjected to stress changes twice a day correspondingly. Consequently it 

can be concluded that in a wind farm, tidally water depth changes have little effect on the dynamic response of 



                                                                                                                        M. Feyzollahzadeh and M.J. Mahmoodi                  147 

© 2016 IAU, Arak Branch 

turbines installed in more depth and merely change of mass coefficient is effective on their dynamic response. On 

the other hand, the dynamic response of turbines installed in less depth changes significantly during the tide and 

water depth changes and this matter should be taken into consideration in their fatigue analysis and design. 
As another parametric study to achieve meaningful result, in Fig. 20, the effect of wave height variations on the 

tower tip deflection in a number of mass coefficients is investigated. As the figure reports, the tower displacement 

possesses a linear proportional relationship with wave height. Moreover, increasing mass coefficient goes to enlarge 

the maximum displacement. Consequently, whereas surface roughness of offshore wind turbine platforms intensify 

during long time operation of the platforms subsequently the maximum tower deflection would increase and also 

stress on the wind turbine platforms would be critical accordingly. 

 

 

 

 

 

 

 

Fig.19 
Effect of water depth on the dynamic tower deflection in 

various mass coefficient (H=10m, T=6s). 

  

 

 

 

 

 

 

 

Fig.20 

Effect of wave height variations on the tower deflection in 

various mass coefficient (T=6s). 

  

 
 
 

  
  

 
 

  

 

 

 

 

 

 

Fig.21 

Variation of function ψ versus water depth dw and 

coordinate parameter ζ . 
 

 

As a case study to present applicable and significant outcome, the frequency response of the wind turbine tower 

for climate of the Persian Gulf is examined. Wave height varies in different parts of the Persian Gulf and it can be 

evaluated from 0.5 to 4 m. However, at the most areas, wave height is approximately 1.6 m [43]. According to 

previous studies, time interval between waves in the northern part of the Persian Gulf is approximately 3 to 5 

seconds and in the southern parts is reported a little more [43].  

5-MW wind turbine geometry mentioned in the previous sections 15 m water depth is adopted for the analysis as 

well the rotor angular velocity is considered in the range of 7 to 12 rpm (0.12 to 0.2 Hz). Fig. 22 shows the 

maximum dynamic response of the tower to wave height between 0.5 to 3 m. Moreover, 1P and 3P frequency 

regions are depicted in the figure, according to the range of rotor angular velocity. As can be seen from the diagram, 

wave frequency range is not laid between the excitation frequency range (1P and 3P). Therefore, selecting the 

rotation range among the 7 to 12 rpm is practical and efficient. Nevertheless, the first natural frequency is located 

within the wave frequency range which leads to resonance and catastrophic failure of the whole structure finally. In 

consequence, the frequency region selected for the wind farm installation should be far from the natural frequencies 

and the range of excitation frequencies. By observing, the appropriate frequency range and corresponding response 

can be found in Fig. 22. As shown in the figure, frequency range from 1.7 to 2.1 radians per second is suitable for 

installation the wind farm. Therefore, by examining the different parts of the Persian Gulf, region must be chosen 

dw (m) 

ζ (m) 

ψ 
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where the wave frequency range from 1.7 to 2.1 radians per second does not exceed. Somewhere is the best area 

where the rotation frequency is closer of the 1.2 radians per second. 

 

 

 

 

 

 

 

 

Fig.22 
Frequency response of the tower to wave height between 0.5 

to 3 m. 

 

In order to confirm the transfer matrix method results, another case study is discussed in this section and TMM 

results is compared with experimental data for a 3 MW offshore wind turbine presented in [56]. In [56] natural 

frequencies of the wind turbine tower were calculated by installing four accelerometer sensors and using signal 

analysis software. Characteristics of dimensions of the 3 MW offshore wind turbine are listed in [57]. To evaluate 

the importance of foundation modeling, natural frequency of the tower in two modes, one with respect to a fixed 

fulcrum for the tower and the other using the elastic foundation model is calculated. Due to the lack of information 

on soil physical properties and the forces acting on the tower, the CS foundation model is applied. For this purpose, 

the wind turbine tower is divided into 80 elements and the frequency response under external force is predicted. 

Finally, natural frequencies of the wind turbine tower can be reported using the bounce points in frequency response. 

The results are shown in Table 6. As it is clear from the table, TMM relative error on the first natural frequency 

evaluates about 2% and relative error can be estimated approximately 10% on the second natural frequency for the 

CS foundation model. This is while relative error can be reported about 9% in the first mode and about 35% in the 

second mode for fixed fulcrum model. This examination indicates that the modeling of wind turbine foundation is 

very significant and the error in the results can be increased dramatically using a fixed fulcrum model. On the other 

hand, this study demonstrates the accuracy of the transfer matrix method assuming the CS model which presents the 

relative error will be less than 2% for the first natural frequency and less than 10% for the second natural frequency. 
 

Table 6 

Comparison between the transfer matrix method results and experimental data. [56] 

Number of Mode 

Transfer matrix method with CS model 
Transfer matrix method with fixed 

fulcrum model Experimental 

data (Hz) Natural frequency 

(Hz) 
Relative error (%) 

Natural frequency 

(Hz) 
Relative error (%) 

First mode 0.3546 1.77 0.3927   8.80 0.3610 

second mode 1.7052 9.30 2.1080  35.12 1.5600 

7    CONCLUSIONS 

In this paper, an analytical method for predicting the steady response of the offshore wind turbine tower with fixed 

monopile platform under Morrison wave force was presented. For this purpose, initially, three models were 

introduced for the tower foundation. Speculating the scope and scale of the tower, the Euler-Bernoulli’s beam 

differential equation was used to state the transfer matrix for each element of the tower, platform and foundation. 

Then, by applying the relevant boundary conditions along with constructing the point matrix, the required equation 

for determination of wind turbine tower response is obtained. Finally, the procedure achieved by the presented 

transfer matrix method are applied in several case studies that results can be categorized as follows 

1. If information about the physical installation is available, DS and AF models can be used accurately and 

the DS model is more accurate than the other models although the simulation time increases slightly 

compared to the CS and AF models. On the other hand, CS model is less accurate than the DS and AF 

models and can be used when detailed information is not available for soil installation.   

2. In all mass coefficients, increasing water depth gives rise to reduce the maximum displacement of wind 

turbine tower and this matter is more important for turbines installed in more depth. Thus in a wind farm, 
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stress amplitude of turbines installed in less depth includes greater changes. This concern should be 

considered in their fatigue analysis and design.  

3. Transfer matrix method result is in good agreement with the results of finite element method and 

experimental data that this shows the accuracy of the transfer matrix method. Consequently, transfer matrix 

method can be used as an analytical method with high accuracy in vibration analysis of wind turbine tower 

under the Morrison wave force by Airy’s theory. 

APPENDIX A  

s1 and s2 parameters 

By solving the governing differential equations of motion, s1 and s2 parameters can be calculated for each of the 

models.  
s1 and s2 for the tower elements can be expressed as: 
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Similarly, s1 and s2 for the monopile elements can be expressed as: 
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Also for the foundation elements in AF model can be expressed as: 
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APPENDIX B  

tij coefficients 

tij coefficients for elements of the tower, monopile and foundation in AF model is obtained as follows 
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In the above, bending stiffness is addressed by EIα in which for tower α=t, for monopile α=p and for foundation 

in AF model α=f’. Also, for monopile elements 2

15 1 p pt A    and for the other elements t15 is set to zero.Similarly, 

for DS foundation model is obtained as follows 
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