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 ABSTRACT 

 Nonlocal vibration of double-smart nanobeam-systems (DSNBSs) under a moving 

nanoparticle is investigated in the present study based on Timoshenko beam model. The  

two  smart  nanobeams (SNB) are  coupled  by  an  enclosing  elastic  medium  which  is  

simulated  by  Pasternak foundation. The energy method and Hamilton’s principle are used 

to establish the equations of motion. The detailed parametric study is conducted, focusing 

on the combined effects of the nonlocal parameter, elastic medium coefficients, external 

voltage, length of SNB and the mass of attached nanoparticle on the frequency of 

piezoelectric nanobeam. The results depict that the imposed external voltage is an effective 

controlling parameter for vibration of the piezoelectric nanobeam. Also increase in the 

mass of attached nanoparticle gives rise to a decrease in the natural frequency. This study 

might be useful for the design and smart control of nano-devices. 

                                               © 2015 IAU, Arak Branch.All rights reserved. 

 Keywords : DSNBSs; Nonlocal vibration; Pasternak foundation; Timoshenko beam 
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1    INTRODUCTION 

 PPLICATION of piezoelectric materials in smart structures has been the subject of intense research in the 

last two decades. The specific characteristic of piezoelectric materials is its ability to produce an electric field 

when subjected to deformation and vice versa. The direct piezoelectric effect describes the electrostatic reaction to a 

mechanical load such as sensors, while the converse piezoelectric effect describes the mechanical reaction to an 

electrostatic load such as actuators. Devices based on piezoelectric elements are commonly used in industry and 

laboratories. These materials are finding a wide range of applications in electro-mechanical and electric devices, 

such as actuators, sensors and transducers. 

The local theory assumes that the stress at a defined point depends uniquely on the strain at the same point which 

it is scale independent theory, because it cannot explain size-dependent manner. But there are theories that are 

capable of account and statement of the size-dependent behavior such as nonlocal elasticity theory, the strain 

gradient theory, couple stress theory and micropolar theory. Many studies have been carried out on the basis of the 

nonlocal elasticity theory which is used in the papers of Eringen [1,2]. He considered the stress state at a given point 

as a function of the strain states of all points in the body, while the local continuum mechanics assumes that the 

stress state at a given point depends uniquely on the strain state at the same point. There are many works that have 

used this theory. For example, Ghorbanpour Arani et al. [3] employed nonlocal elasticity theory for nonlinear 
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vibration of embedded single walled boron nitride nanotubes (SWBNNTs). Also several researchers have suggested 

that the nonlocal parameter should be less than 2 nm based on the molecular mechanics and molecular dynamic 

simulations [4–6]. It should be pointed out that most nanodevices with piezoelectric nanowires or nano-belts as 

fundamental elements are beam-based [7] structures. 

There are a number of beam theories that are used to represent the kinematics of deformation, that include: The 

Euler–Bernoulli beam theory, Timoshenko beam theory , Reddy beam theory and Levinson beam theory [8] use of 

all the above mentioned theories to analyze bending, buckling and vibration of nonlocal beams. Basis of our work in 

this paper is the Timoshenko beam theory.So far, only a few works were reported for the piezoelectric 

nanostructures based on the surface elasticity theory. Huang and Yu [9] studied effect of the surface piezoelectricity 

on the electromechanical behavior of a piezoelectric ring. This study shows that the surface piezoelectricity may 

play an important role in the electromechanical behavior of piezoelectric nanostructures. Yan and Jiang [10] studied 

the vibration and buckling behaviors of piezoelectric nanobeams with the surface effect. This study shows that the 

resonant frequencies can be tuned by adjusting the applied electrical load. 

However, to the best of the authors’ knowledge, very few studies have been reported on nanobeam based mass 

sensor via nonlocal elasticity theory. Simsek [11] studied nonlocal effects in the forced vibration of an elastically 

connected double-carbon nanotube system under a moving nanoparticle. He showed that the velocity of the 

nanoparticle and the stiffness of the elastic layer have significant effects on the dynamic behavior of double carbon 

nanotube systems. 

This paper aims to study the vibration of the piezoelectric nanobeam embedded in Pasternak foundation based on 

the theory of Eringen’s piezoelasticity and Timoshenko beam theory. Also piezoelectric nanobeam is subjected to an 

applied voltage. The governing linear equations are derived using the Hamilton’s principle. 

2    REVIEW OF NONLOCAL PIEZOELASTICITY THEORY 

Based on the theory of nonlocal piezoelasticity, the stress tensor and the electric displacement at a reference point 

depend not only on the strain components and electric-field components at the same position but also on all other 

points of the body. The nonlocal constitutive behaviour for the piezoelectric material can be given as follows [12]: 

 

     nl l
ij ij

v
x x x , dV x , x V                       (1) 

 

     nl l
k k

v
D x x x , D dV x , x V               (2) 

 

where  nl
ij x  and l

ij  are, respectively, the nonlocal stress tensor and local stress tensor, and nl
kD  and l

kD are the 

components of the nonlocal and local electric displacement, respectively.  x x ,    is the nonlocal modulus, x x  

is the Euclidean distance, and 
0e a / l   defines that 

0e  is a material constant determined experimentally or 

approximated by matching the dispersion curves of the plane waves with those of the atomic lattice dynamics, and a 

and l are the internal (e.g. lattice parameter, granular size) and external characteristic lengths (e.g. crack length, 

wavelength) of the nanostructures, respectively. Consequently, 
0e a  is a constant parameter which is obtained with 

molecular dynamics, experimental results, experimental studies and molecular structure mechanics. The constitutive 

equation of the nonlocal elasticity can be written as: [13] 

 

 
2

2 xx
xx 0 11 xx 31 z2

e a c h E
x

 
    


     

 

   (3) 

 

 
2

2 xz
xz 0 44 xz 15 x2

e a c h E
x

 
    


    

   (4) 

 

where the parameter  
2

0e a denotes the small scale effect on the response of structures in nanosize. Similarly, Eq. (2) 

can be written as: [12] 
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2

2 z
z 0 31 xx 33 z2

D
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
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

    

   (6) 

 

where 
ij ij i, ,D   and 

iE  are stress, strain, electric displacement and electric field, respectively. Also, ij ijc , h  and 

ij denote elastic, piezoelectric and dielectric coefficients, respectively. The electric field can be written as: [14] 

 

E         (7) 

 

where    is electric potential which in the thickness direction of the piezoelastic nanobeam can be assumed as 

follows [15] 

 

    i t02zV
x,z, t cos z x, t e

h h

 
     

 

    

   (8) 

 

According to Eq. (7), the electric field in x- and z- directions can be expressed as: 

 

 x

z
E cos x, t

h x

   
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   (9) 
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sin x, t

2Vh
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 

 
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   (10) 

3    BASIC FORMULATION 

A schematic diagram of a DSNBS coupled by Pasternak foundation is illustrated in Fig. 1 in which geometrical 

parameters of length, L and thickness, h are also indicated. The Pasternak foundation model is simulated by spring 

constants of Winkler type (
wk ) and transverse shear constants ( PG ).The  two SNB  is subjected to external electric 

voltage    in thickness direction which is used for  wave propagation  smart control of  the coupled system . Based 

on the Timoshenko beam theory, the displacement field can be expressed as: [8] 

 

     U x,z, t u x, t z. x, t       (11) 

 

   W x,z, t w x, t     (12) 

 

where  u x, t  and  w x, t  are the displacements of the mid-axis about x-and z-directions, respectively.  

The von kármán strains associated with the above displacement field can be expressed as: 

 

xx

U u
z ,

x x x

  
   

  
  

   (13) 

 

 xz

U W w
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z x x

  
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   (14) 

 

The strain energy of the SNB can be expressed as: 

 

 
L h /2

S xx xx xz xz x x z z
0 h /2

1
U D E D E dzdx

2 
          

   (15) 
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The kinetic energy of the SNB is given by 

 
2 2 2

L

K 0 0 2
0

1 u w
U m m m .dx

2 t t t
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         


  

   (16) 

 

where 
0m h   ,  3

2m h /12   are the mass moments of inertia. 

The external work due to surrounding elastic medium and distributed transverse load can be written as: 

 

 
 

 
2

l

v
0

w x, t1
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2 x
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   (17) 

 

where  b
E 0 31N N 2V h   is the normal force induced by the external electric voltage 

0V and  q x, t  is the transverse 

distributed load : 

 

     1 2

1
q x, t q x, t .q x, t

b

 
  

 
  

   (18) 

 

where  1q x, t  is the distributed transverse load due to Pasternak foundation  

 

   
 2

1 w p 2

w x, t
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   (19) 

 

And  2q x, t  can be represented for a moving load as follows: 

 

   
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   (20) 

 

where 
cm is mass nanoparticle, Px is location nanoparticle and  x is the impulse function. also using the following  

general property of  Dirac-delta  function  for the  moving load  term 

 

     
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1 2
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   (21) 

 

where    n
x  represents nth derivative of  Dirac-delta  function. 

Using Hamilton's principle (   
t

K S v
0

U U W dt 0    ), the following motion equations can be derived:  

 

 
2 4 2
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u u u
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   (22) 
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x
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where the normal resultant force 
xxN  and the bending moment 

xxM  and the transverse shear force 
xxQ  can be 

calculated  from the following relations: 

 
h /2 h /2 h /2

xx xx xx xx xx xz
h /2 h /2 h /2

N dz M zdz Q dz
  

          

 

 

The motion equations can be written as: 

Equations of motion for SNB-1: 

 

 
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21 1 1
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Equations of motion for SNB-2: 
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Fig.1 

Schematic figure of the double-smart nanobeam-systems 

under a moving nanoparticle. 
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4    SOLUTION PROCEDURE 

A proper solution for the vibration of the coupled system can be expressed in the following form of [11] 

 

  i t
j 0 j

m 1
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d x, t d sin x .e , d u,w, ,

L
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where    is frequency.  
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where  ijM i, j 1,2,...,8 for nonlocal piezoelasticity theory are given by: 
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In order to obtain a non-trivial solution, it is necessary to set the determinant of the coefficient matrix in Eq. (35) 

equal to zero which yields the frequency of the system. 

5    RESULTS AND DISCUSSION 

The results presented here are based on the following data used for geometry and material properties of SNB [16-

19]: the thickness h 2 nm , mass density 37500 Kg / m  , elastic constant 
11C 132 GPa , piezoelectric constant 

2
31h 4.1 C / m  , dielectric constants 9

11 5.841 10 C / Vm    and 9
33 7.124 10 C / Vm   .The elastic medium 

coefficients are 17 3
WK 8.9995035 10 N / m   and 

PG 2.071273 N / m . Also, the mass of the nanoparticle is 

21
Cm 1 10 gr   and the location of the additional nanoparticle is Px 0.25nm [20]. In the following subsections, the 

effects of nonlocal parameter, surrounding elastic medium, external voltage, SNB length and mass of attached 

nanoparticle on vibration of the DSNBS are studied and discussed in details. 

The effect of the external electric voltage (
0V ) on the frequency ratio with respect to nonlocal parameter (

0e a ) is 

demonstrated in Fig. 2. In this case, we take m 4 . It is shown that applying positive electric potential can increase 

the frequency ratio of the (DSNBSs)  and vice versa. This is because the imposed positive and negative voltages 

generate the compressive and tensile forces in the thickness SNB, respectively. Meanwhile, the effect of external 

voltage becomes more prominent at higher (
0e a ). Hence, the imposed external voltage is an effective controlling 

parameter for vibration of DSNBSs. It is also concluded that increasing the (
0e a ) decreases the frequency ratio. This 

is due to the fact that the increase of nonlocal parameter decreases the interaction force between SNB atoms, and 

that leads to a softer structure. 

Fig. 3 illustrates the effect of mode number of DSNBS on the variation of the frequency ratio versus (
0e a ). As 

can be seen, frequency ratio decreases with increasing mode numbers. Also, the small scale effects on the frequency 

ratio become more distinguished at higher modes. Obviously, the difference between the frequency ratio of the 

DSNBS is larger at higher nonlocal parameters. Furthermore, the frequency ratio for all mode numbers decreases by 

increasing the (
0e a ). 

The effect of elastic medium constants on the frequency ratio versus nonlocal parameter (
0e a ) is illustrated in 

Figs. 4 and 5. Noted that the elastic medium in this study is simulated as spring constants of Winkler-type (
wK ) and 

shear constants of Pasternak-type (
PG ). In general, frequency ratio increases with increasing elastic medium 

constants. This is because increasing Winkler and Pasternak coefficients increases the system stiffness. Furthermore, 
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the effect of Pasternak constant on the frequency ration is higher than Winkler constant. It is because Pasternak 

foundation considers not only the normal stresses but also the transverse shear deformation and continuity among 

the spring elements. 

The effect of the length of the nanobeam on the frequency ratio with respect to nonlocal parameter (
0e a ) is 

demonstrated in Fig. 6. As can be seen, frequency ratio increases with increasing length. This is due to the fact that 

increasing the length leads to softer structures.  

Fig. 7 depicts effect of the attached nanoparticle mass (such as a buckyball and molecular or bacterium) on the 

frequency ratio versus nonlocal parameter. As can be seen with increasing the attached nanoparticle mass on upper 

piezoelectric nanobeam, frequency ratio increases. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Effect of the external voltage on frequency ratio versus 

nonlocal parameter. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.3 

Effect of mode number on the frequency ratio versus 

nonlocal parameter. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Spring constants of Winkler foundation effect on the 

frequency ratio versus nonlocal parameter. 
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Fig.5 

Shear constants of Pasternak foundation effect on the 

frequency ratio versus nonlocal parameter. 

  

 

 

 

 

 

 

 

 

 

 

Fig.6 

Effect of lenght on the frequency ratio versus nonlocal 

parameter. 

  

 

 

 

 

 

 

 

 

 

 

Fig.7 

Effect of the attached nanoparticle on the frequency ratio 

versus nonlocal parameter. 

6    CONCLUSIONS 

In the present work, vibration of (DSNBSs) under a moving nanoparticle was investigated based on Timoshenko 

beam model and nonlocal piezoelasticity theory. The  two  SNB were  coupled  by  an  enclosing  elastic  medium  

which  was  simulated  by  Pasternak foundation. The natural frequency of the piezoelectric nanobeam was obtained 

using  an  exact  solution  so  that  the  effects  of  the nonlocal  parameter, external  voltage,  elastic  medium  

coefficients and nanoparticle  were considered.  It can be observed that, applying positive electric potential 

decreases the frequency ratio of DSNBS and vice versa.  Furthermore, with increasing the attached nanoparticle 

mass on upper piezoelectric nanobeam, frequency ratio increases. Finally,  it  is  hoped  that the  results  presented  

in  this paper  be helpful for study and design of bonded systems based on smart control and electromechanical 

sensors. 
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