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 ABSTRACT 

 In this paper, the effect of the temperature change on the vibration frequency of mono-layer 
graphene sheet embedded in an elastic medium is studied. Using the nonlocal elasticity 
theory, the governing equations are derived for single-layered graphene sheets. Using Levy 
and Navier solutions, analytical frequency equations for single-layered graphene sheets are 
obtained. Using Levy solution, the frequency equation and mode shapes orthotropic 
rectangular nanoplate are considered for three cases of boundary conditions. The obtained 
results are subsequently compared with valid result reported in the literature. The effects of 
the small scale, temperature change, different boundary conditions, Winkler and Pasternak 
foundations, material properties and aspect ratios on natural frequencies are investigated. It 
has been shown that the non-dimensional frequency decreases with increasing temperature 
change. It is seen from the figure that the influence of nonlocal effect increases with 
decreasing of the length of nanoplate and also all results at higher length converge to the local 
frequency. The present analysis results can be used for the design of the next generation of 
nanodevices that make use of the thermal vibration proper ties of the nanoplates.  

                                                        © 2013 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ANO-MATERIALS have been attracted attention of many researchers in this field due to their novel 
properties. Many scientific communities study the characteristics of nanomaterials such as carbon nanotubes 

(CNTs), nanoplates, nanorods and nanorings. To design plate efficiently, we need to understand their vibration 
behavior. Vibration of ‘scale-free’ plates has been studied widely in the literatures which this theory cannot predict 
the size effects. Thus, in with small size, long-range inter-atomic and inter-molecular, cohesive forces cannot be 
ignored because they strongly affect the static and dynamic properties [1, 2]. To use graphene sheets properly as 
design nano electro-mechanical system and micro electro-mechanical systems (NEMS and MEMS) component, 
their frequency response with small-scale effects should be investigated.  

Graphene is a truly two-dimensional atomic crystal with exceptional electronic and mechanical properties. Many 
nanostructures based on the carbon such as carbon nanotube [3], nanorings [4], etc. are considered as deformed 
graphene sheet so analysis of graphene sheets is a basic matter in the study of the nanomaterials.  
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Continuum modeling of CNTs has also increasing deal of attention of many researchers due to experiments in 
nanoscale are difficult and molecular dynamic simulations are highly computationally expensive. There are various 
size-dependent continuum theories such as couple stress theory [5], strain gradient elasticity theory [6], modified 
couple stress theory [7] and nonlocal elasticity theory [8]. Among these theories, nonlocal elasticity theory has been 
widely applied [9-22] that this theory was introduced by Eringen in 1983 [8].  He modified the classical continuum 
mechanics for taking into account small scale effects. In this theory, the stress state at a given point depends on the 
strain states at all points, while in the local theory, the stress state at any given point depends only on the strain state 
at that point. As we have mentioned above, the mechanical behaviours of CNTs are investigated by many 
researchers. Reddy and Pang [23] studied bending, vibration and buckling of CNTs using nonlocal Euler–Bernoulli 
and Timoshenko beam theories. They reported that Numerical results are presented using the nonlocal theories to 
bring out the effect of the nonlocal behavior on deflections, buckling loads, and natural frequencies of carbon 
nanotubes. Murmu and Pradhan [24] studied a popular growing technique for the mechanical analyses of MEMS 
and NEMS structures using the nonlocal elasticity theory. They considered the nonlocal elasticity and Timoshenko 
beam theory to investigate the stability response of single walled carbon nanotube (SWCNT) embedded in an elastic 
medium. For the first time, both Winkler-type and Pasternak-type foundation models are employed to simulate the 
interaction of the SWCNT with the surrounding elastic medium and also a differential quadrature approach is 
utilized and numerical solutions for the critical buckling loads are obtained. Dynamical behaviors of double-walled 
carbon nanotubes conveying fluid was studied using the theory of nonlocal elasticity [25]. Xiaohu and Qiang [26] 
investigated the buckling of a multi-walled carbon nanotube under temperature field. They had shown that at low 
and room temperature the critical load for infinitesimal buckling of a multi-walled carbon nanotube increase as the 
value of temperature change increases. Sudak [27] analyzed the column buckling of multi-walled carbon nanotubes 
using nonlocal continuum mechanics. Murmu and Pradhan [28] employed the nonlocal elasticity theory for the 
vibration analysis of rectangular single-layered graphene sheets embedded in an elastic medium. They have used 
Both Winkler-type and Pasternak-type models for simulate the interaction of the graphene sheets with a surrounding 
elastic medium. They reported that the natural frequencies of single-layered graphene sheets are strongly dependent 
on the small scale coefficients. Pradhan and Phadikar [29] investigated the vibration of embedded multilayered 
graphene sheets (MLGS) based on nonlocal continuum models. In their paper, they have shown that nonlocal effect 
is quite significant and needs to be included in the continuum model of graphene sheet. Yi-Ze Wang et al. [30] 
studied the vibration of double-layered nanoplate. In their research, thermal effect and nanoplate with isotropic 
mechanical properties is included. It has been reported that graphene sheets have orthotropic properties [31]. 
Malekzadeh et al. [32] used the differential quadrature method (DQM) to study the thermal buckling of a 
quadrilateral nanoplates embedded in an elastic medium. Aksencer and Aydogdu [33] proposed levy type solution 
for vibration and buckling of nanoplate. In that paper, they considered rectangular nanoplate with isotropic property 
and without effect of elastic medium. Thermal vibration analysis of orthotropic nanoplates based on nonlocal 
continuum mechanics were studied by Satish et al. [34] who considerate two variable reinfined plate theory for 
thermal vibration of orthotropic nanoplate. In general, single layered graphene sheets are embedded in an elastic 
medium but they didn’t consider effect of elastic medium in that paper. On the other hand, they represented 
vibration frequency of rectangular nanoplate only for simply supported boundary conditions and they didn’t 
represent vibration frequency for other boundary conditions. Prasanna Kumar et al. [35] represent thermal vibration 
analysis of monolayer graphene sheet embedded in an elastic medium via nonlocal continuum theory. In their paper, 
they consider simply support boundary condition and they don’t study other boundary condition. They investigated 
graphene sheet with isotropic property. Some researches of the nanoplates have been reported on the mechanical 
properties. However, compared to the nanotubes, studies for the nanoplates are very limited, particularly for the 
mechanical properties with thermal effects. 

In the present study, the effect of the temperature change on the vibration frequency of orthotropic monolayer 
graphene sheets embedded in an elastic medium is investigated. The governing equations of motion are derived 
using the nonlocal elasticity theory. Levy type solution for the vibration of orthotropic rectangular nanoplate under 
thermal effect and elastic medium is obtained. Unlike the case of an isotropic plate that the roots are easily seen 
repeated roots but for this case there are three sets because the roots depend on the relative stiffness of the nanoplate 
in various directions, effect of elastic medium and temperature change. In this study, hence, for the thermal vibration 
of orthotropic rectangular nanoplate in an elastic medium using the Levy-type solution requires three different forms 
for the homogeneous solution. The small scale effects and thermal effect on the vibrations frequency of graphene 
sheets with three set boundary conditions are investigated. The thermal effects, effect of boundary condition and 
some other impressions on the vibration properties are investigated. From the results, some new and absorbing 
phenomena can be observed. To suitably design nano electro-mechanical system and micro electro-mechanical 
systems (NEMS/MEMS) devices using graphene sheets, the present results would be useful. 
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2    NONLOCAL PLATE MODEL 

The nonlocal elasticity theory was introduced by Eringen in 1983 [8]. In this theory, the stress state at a given point 
depends on the strain states at all points, while in the local theory, the stress state at any given point depends only on 
the strain state at that point. Stress components for a linear homogenous nonlocal elastic body without the body 
forces using nonlocal elasticity theory, we have [8]: 

 ( ) , ( ) ( ), ,     ij ijkl klx x x C x dV x x V     (1) 

 
where ,ij ij and ijklC

 
are the stress, strain and fourth order elasticity tensors, respectively. The term  ,x x 

 
is the nonlocal modulus (attenuation function) incorporating into constitutive equations the nonlocal effects. 

0( / ) e a l  is a material constant 
 
that depends on the internal a (lattice parameter, granular size, distance 

between C C bonds), and external characteristics lengths l (crack length, wave length), l. Choice of the value of 

parameter
 0e

 
is vital for the validity of nonlocal models. Hence, the effects of small scale and atomic forces are 

considered as material parameters in the constitutive equation. This parameter was determined by matching the 

dispersion curves based on the atomic models. The term
 

x x  represents the distance between the two points 

( x and x ).The differential form of Eq. (1) can be written as [32]: 
 

  2 2
01 :  nl

ie l C   (2) 

 
where nl , , and   denote the nonlocal stress, strain, and stress–temperature coefficients vectors, respectively. The 
symbol ‘‘:’’ represents the double dot product, C denotes the elastic stiffness tensor. 2  is the Laplacian operator 
that is defined by 2 2 2 2 2( / / ).      x y  The nonlocal constitutive equation Eq. (2) has been lately employed for 
the study of micro- and nano-structural elements. We consider nano monolayer orthotropic graphene sheets in our 
present study. In two-dimensional forms Eq. (2) are written as [32]: 
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(3) 

 
where 1E  and 2E  are the Young’s modulus, and 12G  is shear modulus, 12 and 21  indicate Poisson’s ratio , T  

and xx and yy  are the temperature change and the coefficient of thermal expansion along the principle material 

directions  x and y , respectively. The strains in terms of displacement components in the middle surface can be 
written as follows [32]: 
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(4) 

 
 

In the first terms on the right-hand sides of the above equations represent the strain components in the middle 
surface due to its stretching, and terms with w represent the strain components due to bending. Stress resultants are 
defined as below for development of rectangular nanoplate [28]. 
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Here, h  is defined as the thickness of the plate. By inserting Eq. (3), and Eq. (4) into Eq. (5) we can express 
stress resultants in terms of lateral deflection on the classical plate theory as follows [28]: 
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where ijD  indicate the different bending rigidity is defined as [28]: 
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(7) 

 
Note that stress resultants relations given in Eq. (6) reduce to that of the classical equation when the small scale 

coefficient 0( )ie l  is set to zero. A mono-layered rectangular graphene sheet embedded in an elastic medium 
(polymer matrix) is shown in Fig.1. A Pasternak-type foundation model is considered for simulating the elastic 
medium (polymer matrix) which accounts for both normal pressure and the transverse shear deformation of the 
surrounding elastic medium. The vibration equation for the orthotropic rectangular nanoplates is expressed as: 
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(8) 

 

where WK  denote the Winkler modulus, GxK  and GyK are the shear modulus of the surrounding elastic medium. If 

polymer matrix is homogeneous and isotropic, we will get  Gx Gy GK K K . Pasternak model   provides a better 
approximation to foundation reaction as it takes into account not only its transverse reaction but also shear 
interaction between spring elements, which is achieved by connecting the ends of the springs to the plate with 
incompressible vertical elements. If the shear layer foundation stiffness is neglected, Pasternak foundation tends to 
Winkler foundation. The term f indicate transverse loading, 0I  and 2I

 
are mass moments of inertia that are defined 

as follows: 
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where   indicates the density of the graphene sheets. Also resultant thermal stresses  (i, j=x, y)
T
ijN  are defined as 

[32]: 
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Fig. 1  
Rectangular nanoplate embedded in an elastic medium. 

 
 

So we have Using Eq. (6) and (8) we have the following governing equation in terms of the lateral deflection 
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(11) 

 
At small scale, size effects can be noticeable in the mechanical properties of nanostructures. Both molecular 

dynamics simulation and experimental studies have shown that the size effect plays a prominent role in the static 
and dynamic characteristics of nanostructures. Chen et al. [36] investigated micro-continuum field theories such as 
couple stress theory, micromorphic theory, nonlocal theory, Cosserat theory, etc, from the atomistic viewpoint of 
lattice dynamics and molecular dynamics (MD) simulations. It is reported in their work that the nonlocal elasticity 
theory is physically reasonable. 

3    SOLUTION PROCEDURES  

It is assumed that the nanoplate is free from transverse loadings  0f . Exact solution of Eq. (11) can be 

developed for some particular boundary conditions. In this article, initially, by using the Navier’s approach 
orthotropic nanoplate problem is solved with simply supported boundary conditions. Then Levy type solution is 
used for orthotropic nanoplates, that at least for opposite edges, is simply supported. 

3.1 Solution using Navier’s approach 

For simply supported boundary conditions, the shape function can be given by double Fourier series [33] 
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(12) 

 
where m and n are the half wave numbers. Substituting from Eq. (12) into Eq. (11) yields the non-dimensional 
natural frequency at small scale with various nanoplate properties, Winkler and shear elastic factors and resultant 
thermal stresses. 
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where non-dimensional frequency parameter and other terms are defined in the following form  
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(14) 

3.2 Solution using Levy type 

To solve Eq. (11) for a rectangular nanoplate with arbitrary boundary conditions, Levy’s type of solution can be 
applied to nanoplates that are simply supported at two opposite edges. Assuming that the simple supports are at x = 
0 and x = a, the shape function takes the form as [33]: 
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Substituting of Eq. (15) into Eq. (11) leads to 
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where B and C constants are the following form
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Substituting ( )  syY y e  into Eq. (16) 
 

4 22 0  S BS C  (19) 

 
Hence, for the orthotropic rectangular nanoplate , using the Levy-type solution requires four different forms 

solution of ( )Y y  to be put in Eq. (15) depending on the relative rigidity of the nanoplate in various directions, 
Winkler elastic and shear elastic factor, nonlocal parameter, thermal change and etc. the roots in the form as follows 

For the case 20  C B  
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The general solution for ( )Y y  is found to be 
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where the roots are 
 

 1 2

3  B  (23) 

 
For the case 2C B  
 

** ** ** **
1 5 2 5 4 3 5 4 5 4( ) ( cos( ) sin( )) cosh( ) ( cos( ) sin( ))sinh( )   Y y C y C y y C y C y y       (24) 

 
where the roots are 

 
1 2 1 2

4 5

1 1
,    

2 2
                  

C B C B   
 

(25) 

 
For the case 0C  
 

*** *** *** ***
1 6 2 6 3 7 4 7( ) sin( ) cos( ) sinh( ) cosh( )   Y y C y C y C y C y     (26) 

 
where the roots are 
 

2 2
6 7,         B C B B C B   

(27) 

 
Obviously, for a given nanoplate whose nonlaocal parameter, shear and Winkler elastic factors and other 

parameters have been specified only one of the four case needs to be solved to obtain frequency equations. The 
constants ( * ** ***,  ,  ,   (i,j,k,l=1,2,3,4)i j k lC C C C ) are determined from the boundary conditions at 0y  and y b . 

The boundary conditions yield the frequency equation from which ω is determined. The procedure is shown below 
for three states boundary conditions and for case 0C  the procedure for other cases is similar. The boundary 
conditions for simply supported edges, for instance, are 

 
2 2

2 2

0

Y(0)=Y(b)= 0
 

 
y y b

d Y d Y

dy dy
 

 
(28) 

 
Using Eq. (26), the boundary conditions of Eq. (28) can be expressed as: 
 

*** ***
2 4 0 C C  (29a) 

2 *** 2 ***
6 2 7 4 0 C C   (29b) 
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*** *** *** ***
1 6 2 6 3 7 4 7sin( ) cos( ) sinh( ) cosh( ) 0   C b C b C b C b     (29c) 

*** 2 *** 2 *** 2 *** 2
1 6 6 2 6 6 3 7 7 4 7 7sin( ) cos( ) sinh( ) cosh( ) 0   C b C b C b C b         (29d) 

 
Eq. (29a, b) yield  

 
*** ***
2 4 0 C C  (30) 

 
Eq. (29c, d) can be written in matrix form as: 

 
***

6 7 1
2 2 ***
6 6 7 7 3

sin( ) sinh( )
0

sin( ) sinh( )

            

b b C

b b C

 
   

 
 

(31) 

 
For a nontrivial solution, we should have 6sin( ) 0b  or 6 . n b 

 
 when edge 0y  and y b  are clamped. The boundary conditions can be stated as: 

 

0

Y(0)=Y(b)= 0
 

 
y y b

dY dY

dy dy
 

 
(32) 

 
By inserting Eq. (26) into Eq. (32), the boundary conditions can be written in matrix form as: 

 
***
1
***

6 6 7 7 2
***

6 7 3
***

6 6 6 6 7 7 7 7 4

0 1 0 1

sin( ) cos( ) sinh( ) cosh( )
0

0 0

cos( ) sin( ) cosh( ) sinh( )

  
  
               

C

b b b b C

C

b b b b C

   
 

       

 

 
 

(33) 

 
By setting the determinant of the matrix in Eq. (33) equal to zero, we obtain the frequency characteristic 

equation.  
 

   2 2
6 7 6 7 7 6 6 72 cos( ) cosh( ) 1 sin( )sinh( ) 0   b b b b         (34) 

 
when the one edge of the rectangular nanoplate is clamped and other edge is simple supported, the additional four 
boundary conditions are 
 

2

2

0

Y(0)=Y(b)= 0


 
y by

d Y dY

dydy
 

 
(35) 

 
Based on these boundary conditions, the coefficient determinant becomes 

 
***
1
***

6 6 7 7 2
2 2 ***
6 7 3

***
6 6 6 6 7 7 7 7 4

0 1 0 1

sin( ) cos( ) sinh( ) cosh( )
0

0 0

cos( ) sin( ) cosh( ) sinh( )

  
  
               

C

b b b b C

C

b b b b C

   
 

       

 

 
 

(36) 

A nontrivial solution can be obtained by equating the determinant of these equations to zero. Consequently, we 
have 

 

7 7 6 6 7 6cosh( )sin( ) sinh( )cos( ) 0 b b b b       (37) 
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Table 1 
Frequency equation and mode shape orthotropic rectangular nanoplates with different boundary conditions 

Boundary 
conditions  

Type Equation 

SSSS Mode shape ( )Y y  sin( y)                      n n n b    

SCSC Mode shape ( )Y y    
  

7 6 6 7 7 6

6 7 7 6 7 6

cosh( ) cos( ) sinh( ) sin( )

sinh( ) sin( ) cosh( ) cos( )

   
 
    

b b y y

b b y y

     

     
 

SSSC Mode shape ( )Y y  
6 7 7 6sin( )sinh( ) sinh( )sin( )b y b y     

 
 

For any specific value of m, there will be successive value of  . The natural frequencies can be denote as 

11 12 13 21 22,  ,  ,  ...,  ,  ,  ...,       whose value depend on the material properties 1 2 12 12E ,  E ,  ,  ,  ,  ,  xx yy      and 

geometry ,  h a b  and nonlocal parameter of the rectangular nanoplate. The frequency characteristic equations and 
the mode shapes for other case can be derived in a similar manner. The results for the three combinations of 
boundary conditions are summarized in Table 1. According to Table 1. , by inserting ( )Y y  into Eq. (15) we have 
mode shape for orthotropic rectangular nanoplates based on elastic medium for different boundary conditions. 
Following three boundary conditions have been investigated in the vibration analysis of the orthotropic rectangular 
nanoplate. 

SSSS: Along all the four edges are assumed to be simply supported. 
SCSC: Simply Supported along X=0 and X=a and Clamped along Y=0 and Y=b. 
SSSC: Simply Supported along X=0, X=a and Y=0 and Clamped along Y=b. 

 
The mode shape of orthotropic rectangular nanoplate plays a significant role in the design of the nanomechanical 

resonators. It is observed that the single-layered graphene sheet with three cases of boundary conditions has a 
sinusoidal and/or hyperbolic sine and cosine configuration [37]. 

4    RESULTS AND DISCUSSION 

To validate the results, comparison of the present results for orthotropic rectangular nanoplate embedded in an 
elastic medium with the obtained results by DQM [38] is studied. In the present study non-dimensional frequency 
are calculated for all edges Simply Supported boundary conditions, these results are listed in Table 2. From this 
table one could find that the present results for the nanoplate exactly match with those reported by Pradhan and 
Kumar [38]. The scale coefficients are assumed as 0 0.0,  0.5,  1.0,  1.5,  ie l and 2.0 nm , respectively. These values 

are assumed because 0 ie l
 
should be smaller than 2.0 nm for a CNT were taken by Wang and Wang [20] and Duan 

and Wang [15]. Properties of the orthotropic graphene sheet in this paper are considered same as mentioned in the 
reference [39].  
 

3
1 2 12 211765 Gpa, 1588 Gpa, 0.3,  0.27,   = 2300 ,   E E kg m     

 
The material properties for isotropic graphene sheet are taken from Ref. [39] 
 

3
1 2 12 21, 1060 Gpa, =2250  ,  0.25.  E E kg m     

 
The coefficients of thermal expansion are considered for orthotropic graphene sheet 3yy xx   from Ref. [32] 

and for isotropic graphene sheet are taken xx yy  . For the room or low temperature case thermal coefficient is 

taken ( 6) 11.6 10  K   xx  and for high temperature case that is considered ( 6) 11.1 10  K  xx . These values 
were used for carbon nanotube [40-42]. The graphene sheets are based on polymer matrix and these polymer matrix 
materials are silicon. The Winkler modulus parameter WK , for the surrounding polymer matrix is gotten in the 
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range of 0-400. We assumed that polymer matrix is homogeneous  Gx Gy GK K K . Then shear modulus factor GK   

is gotten in the range 0-10. Similar values of modulus parameter were taken by Liew et al. [40]. 
The present results are compared to that obtained by Pradhan and Kumar [43]. Table 3 presents the non-

dimensional frequency of orthotropic square nanoplate for two set boundary condition. In this table, the Winkler 
factor and shear factor are ignored. These results are exactly in agreement with that presented by Pradhan and 
Kumar [43]. For further validations, we compared the results of rectangular nanoplates with published data. As 
shown in Table 4 results of Aksencer and Aydogdu [33], compared to results obtained by present work for isotropic 
rectangular nanoplates without consider effect of elastic medium and thermal effect. These results are exactly in 
agreement with that presented by Aksencer and Aydogdu [33]. In Fig. 2 the effect of aspect ratio and length of 
rectangular nanoplate is demonstrated. This figure is plotted for SSSS case of boundary conditions, first mode and 
the nonlocal parameter 1 nm. This figure shows non-dimensional frequency versus length of rectangular nanoplate 
for different aspect ratio and isotropic and orthotropic properties of graphene. As the length of the nanoplates 
decreases the non-dimensional frequency decreases. This is obvious because with decrease of length, the influence 
of nonlocal effect increase, at higher length all results converge to the local frequency. This indicates that the 
nonlocal effect disappears after a certain length and grows with decrease of the plate length. This may be explained 
as that the wavelength gets smaller with decrease of side length which increases the effect of the small length scale. 
 
 
Table 2 
Comparison of results for vibration of the graphene sheet for all edges simply supported 

KW  KG  Method 0 (nm)ie l  

0 0.5 1 1.5 2 

0 
0 DQM [37] 19.3488 18.8885 17.6823 16.1011 14.4640 

Present 19.3489 18.8884 17.6822 16.1010 14.4638 

10 DQM [37] 23.9036 23.5328 22.5762 21.3604 20.1552 
Present 23.9039 23.4885 22.4139 21.0391 19.6644 

400 
0 

DQM [37] 27.8145 27.4967 26.6837 25.6621 24.6678 
Present 27.8140 27.4957 26.6815 25.6609 24.6666 

10 
DQM [37] 31.1554 30.8535 30.1995 29.3428 28.5086 
Present 31.1550 30.8375 30.0270 29.0153 28.0344 

 
 
Table 3 
Comparison of results for vibration of the orthotropic graphene sheet for two set boundary conditions 
Method 

0 (nm)ie l  

0 0.5 1 1.5 2 
SCSS   boundary conditions 

DQM [42] 22.9849 22.4022 20.8867 18.9234 16.9171 
Present 22.9849 22.4021 20.8865 18.9230 16.9166 

SCSC  boundary conditions 
DQM [42] 27.9208 27.1853 25.2818 22.8350 20.3555 
Present 27.9207 27.1851 25.2813 22.8341 20.3543 
 
 
Table 4 
Comparison of results for vibration of the isotropic graphene sheet for three set boundary conditions 
 

0 (nm)ie l  

0 0.5 1 1.5 2 
SSSS   boundary conditions 

Aksencer and Aydodu [33] 19.7205 19.2512 18.0218 16.4102 14.7415 
Present 19.7205 19.2512 18.0218 16.4102 14.7415 

SCSS   boundary conditions 
Aksencer and Aydodu [33] 23.6223 23.0229 21.4641 19.4451 17.3823 
Present 23.6223 23.0229 21.4641 19.4451 17.3823 

SCSC  boundary conditions 
Aksencer and Aydodu [33] 28.9203 28.1577 26.1844 23.6484 21.0791 
Present 28.9203 28.1577 26.1844 23.6484 21.0791 
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Fig. 2  
Change non-dimensional frequency with length of 
orthotropic and isotropic rectangular nanoplate for 
various aspect ratios. 
 

 
 

 

 
 
 
 
 
 
 
Fig. 3  
Change non-dimensional frequency with temperature 
change for various boundary conditions and isotropic 
and orthotropic graphene sheet in the case of room or 
low temperature. 

   

 
 
 
 
 
 
 
Fig. 4  
Change non-dimensional frequency with temperature 
change for various boundary conditions and isotropic 
and orthotropic graphene sheet in the case of high 
temperature. 

 
 

Moreover, from this figure it is seen, that the non-dimensional frequency increases with the increase in aspect 
ratio, at higher aspect ratio all results converge to the local solution (e0a=0) at higher lengths. This is evinced that 
effect of small length scale is higher for higher aspect ratio. Furthermore, the difference between the natural 
frequencies calculated by isotropic and orthotropic properties increases with increasing aspect ratio and length of 
nanoplate. This is shown that the difference between the natural frequencies calculated by isotropic and orthotropic 
for nonlocal solution is smaller as compression local solution. 

To study the influence of room or low temperature case on the vibration characteristics of rectangular 
nanoplates, the variation in non-dimensional natural frequency with the temperature change is shown in Fig. 3. The 
curves are plotted for isotropic and orthotropic properties, first mode numbers and three cases boundary condition. 
The length of the square nanoplate and the nonlocal parameter is 10 nm, 2 nm respectively. It is shown non-
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dimensional frequency of the isotropic small-sized graphene sheet is always larger than that of orthotropic one for 
case of low temperature. Furthermore, the gap between the two curves (isotropic and orthotropic) increases with an 
increase in temperature changes. In other words, the difference between the natural frequencies calculated by 
isotropic and orthotropic properties decreases with decreasing temperature change. Moreover, for this case the non-
dimensional frequency increases with increase the temperature change. The temperature change is important for 
graphene sheet with isotropic properties because the slope of curve isotropic is more than orthotropic curves. Also, it 
is seen from this results that the non-dimensional natural frequency for SCSC boundary condition is higher than that 
for SSSC and SSSS at low temperature case. 

To illustrate the effect of high temperature case on the non-dimensional frequency, in this section, the non-
dimensional frequency versus temperature change for isotropic and orthotropic properties of nanoplate is plotted in 
Fig. 4. In this investigation, we consider the non-dimensional frequency of first mode number, the length of the 
square nanoplate 10 nm and the nonlocal parameter is 2 nm. It is seen for high temperature case the non-dimensional 
frequency increases with decrease temperature change. It means that the effects of the temperature change on the 
non-dimensional frequency are different for the case of low and high temperature. In the high temperature case, after 
a certain temperature change the non-dimensional frequency of orthotropic graphene sheet is more than the non-
dimensional frequency of graphene sheet with isotropic properties. The phenomenon could be attributed to the fact 
that the coefficient of thermal expansion in direct Y for orthotropic graphene sheet is much less than that for 
graphene sheet with isotropic properties. Also, it is seen from this results that the non-dimensional natural frequency 
for SCSC boundary condition is higher than that for SSSC and SSSS at high temperature case.   

 
 

 

 
 

 
 
 
 
 
 

Fig. 5  
Variation of difference percent with shear modulus 
factor for various temperature changes of graphene sheet 
and low and high temperature case. 
 

 
 
The effect of temperature change on the frequency of orthotropic graphene sheet embedded in an elastic medium 

is studied. The relationships between frequency difference percent versus Winkler constant WK  and shear modulus 

GK  for different temperature changes and low and high temperature case are demonstrated in Fig. 5, 6. A scale 
coefficient e0li = 2.0 nm is used in the analysis. The thermal difference percent is defined as: 

 

  0 

0

Difference percent= 100 
  

 




TT T K

T

frequency frequency

frequency
 

 
 

 
As can be seen, the Winkler constant or shear modulus decreases then the effect of thermal on the difference 

percent increases. It can be seen for the results that the difference percent increases with increasing the temperature 
change.  For larger temperature change, the decline of difference percent is quite important. Also, the difference 
percent for low temperature case is larger than that for case of high temperature. Furthermore the decline for the 
high temperature case is much less than that for case of low temperature. From these plots obvious the important 
influence of temperature change, in the cases low and high temperature case on the non-dimensional frequency of 
embedded orthotropic graphene sheet.  
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Fig. 6  
Variation of difference percent with Winkler constant 
for various temperature changes of graphene sheet. 
 

 

 

 
 

 
 
 
 
 

Fig. 7 
Variation of difference percent with nonlocal parameter 
for the cases low and high temperature and various 
changes temperature of orthotropic graphene sheet. 

 
 
Fig. 7 shows the frequency difference percent with respect to nonlocal parameter. It is seen that the frequency 

difference percent increases with the increase of the temperature change. Also, the results show that the difference 
percent increases monotonically by increasing the nonlocal parameter. In other words, that nonlocal solution for 
difference percent is larger than the local solutions. In Figs. 5, 6, and 7, the gap between low and high temperature 
cases increases with increasing the temperature change. The gap for ∆T=60 is much more than that for ∆T=30. 

Fig. 8 shows the non-dimensional natural frequency versus nonlocal parameter of isotropic and orthotropic 
graphene sheets without considering temperature change, first mode and SSSS boundary condition. It is seen that the 
influence of nonlocal effect increases with decreasing of the nanoplate length; all results at higher length converge to 
the local frequency (e0li=0). This figure indicates that the nonlocal effect disappears after a certain length and grows 
with decreasing of the nanoplate length. . This is clear in view of the fact that with increase of length, the influence 
of nonlocal effect 0( ) ie l a diminishes. This is shown that the difference between the natural frequencies 
calculated by isotropic and orthotropic for nonlocal solution is smaller as compression local solution. Also, it is 
observed that the non-dimensional natural frequency increases with increasing length of nanoplates. 

To show the effect of small scale on higher frequency modes of nanoplates, non-dimensional frequency 
2

11( )  h D a   versus the variation of nonlocal parameter 0( )ie l  are plotted for the first four mode numbers in 

Fig. 9. Simply supported of orthotropic nanoplate are considered. From the figure, the fast rate of decrease of non-
dimensional frequency with increase in nonlocal parameter for higher frequency modes is quite evident. This 
implies that the effect of small length scale is higher for higher modes. This phenomenon is because of small 
wavelength effect for higher modes. At smaller wavelengths (higher mode numbers), the interaction between atoms 
increases and it causes an increase in the small scale effects. 
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Fig. 8 
The non-dimensional natural frequency versus length of 
nanoplate for various nonlocal parameter of isotropic 
and orthotropic graphene sheets without considering 
temperature change, first mode, SSSS boundary 
condition. 
 

 

 
 
 
 
 
 
 
 
 
 
Fig. 9 
Non-dimensional frequency versus nonlocal parameter 
for the first four mode numbers. 
 

 

 

 
 

 
 
 
 
 
 

Fig. 10 
Non-dimensional frequency length of nanoplate for the 
various nonhomogen shears factor elastic medium. 
 

 
Variation of non-dimensional frequencies with shear modulus of the surrounding elastic medium is shown for 

first mode of vibration Fig. 10. Non-homogeneous effect of elastic medium is considered in this figure. The effects 
of length of nanoplate and isotropic and orthotropic property are also illustrated in the figure. The shear modulus 
parameter KGX and KGY for the surrounding polymer matrix is gotten in the range of 0–10. The frequency curves 
show that the non-dimensional frequencies are sensitive to the shear modulus of the surrounding elastic medium. As 
the shear modulus parameter increases the non-dimensional frequency also increase. This increasing trend of non-
dimensional frequency parameter with surrounding matrix is noticed to be influenced significantly by length of 
nanoplates. This interprets that if the rectangular graphene sheets are embedded in a soft elastic medium, 
fundamental frequency will be quite low for very small size rectangular graphene sheet as depicted in this figure. 
For higher values of length of nanoplate the non-dimensional natural frequency are higher while this is lower for 
low length of nanoplate.  
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5    CONCLUSION 

In this study, using the nonlocal elasticity continuum plate model, the effects of the temperature change on the 
vibration frequency of orthotropic and isotropic rectangular nanoplate embedded in an elastic medium was 
investigated for two cases low and high temperature. The elastic medium based on the Pasternak foundation was 
taken general case (the polymer matrix was considered non-homogeneous). Nonlocal elasticity theory has been 
applied to capture the structural discreteness of small-size plates (nanoplates). Equation of motion based on nonlocal 
theory has been derived. Exact closed form solutions for the free vibration nanoscale rectangular nanoplates are 
obtained using Navier's and Levy type solutions. Results for three set boundary condition are presented by levy type 
solution. From the results following conclusions are noticeable 

 Small-scale effect has an increasing effect on the non-dimensional natural frequency of orthotropic and 
isotropic rectangular nanoplate. Scale effect is less prominent in lager length of nanoplate.     

 The difference between the natural frequencies calculated by isotropic and orthotropic properties increases 
with increasing aspect ratio and length of nanoplate.  

 The non-dimensional frequency is larger for higher aspect ratio and length of rectangular nanoplate. 
 The non-dimensional natural frequency decreases at high temperature case with increasing the temperature 

change for all boundary conditions of isotropic and orthotropic rectangular graphene sheet. 
 The effect of temperature change on the non-dimensional frequency vibration becomes the opposite at low 

temperature case in compression with the high temperature case. 
 When Winkler or elastic factors increases, the frequency difference percent decreases at low and high 

temperature cases. 
 The difference percent increases monotonically by increasing the nonlocal parameter. 
 The difference between low and high temperature cases increases with increasing the temperature change. 
 The effect of small length scale is higher for higher modes. 
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