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 ABSTRACT 

 The examination of variation of elastic modules in single wall carbon nanotubes (SWCNTs) is 
the aim of this paper. Full nonlinear spring-like elements are employed to simulate specific 
atomic structures in the commercial code ABAQUS. Carbon atoms are attached to each node as 
a mass point using atomic mass of carbon atoms. The influence of dimensions such as variation 
of length, diameter, aspect ratio and chirality is explored separately on the variations of young's 
and shear modules. It is observed that the effect of dimensions after a critical aspect ratio in 
nanotubes is negligible. Also, the influence of chirality on the elastic modules for same 
dimensions is observable. The results are compared with experimental results and theoretical 
data.                                                                        © 2012 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 XTRAORDINARY mechanical, thermal and electrical properties of graphene sheets have been motivating 
researchers to employ them as a reinforcement agent in nanocomposites in recent years. These nanostructures 

are made of carbon atoms which are arranged in hexagon forms. Another common form of these nanostructures is 
carbon nanotubes (CNTs) which are obtained from rolling up graphene sheets. Consequently, Prediction of 
mechanical properties and recognition of elastic behavior of these categories of nanostructures is a considerable 
task. 

Because of the complexity of the experimental measurement of the elastic modules in nano scales, modeling of 
these nanostructures are reasonable. Two widely used modeling techniques to simulate and analysis of behavior of 
nanostructures are atomistic and continuum modeling methods. Molecular dynamics (MD) and ab initio are two 
applicable methods that are remarkable in the atomistic modeling techniques. Due to the some limitations on these 
methods such as being applicable for small length and time scales, usually continuum methods are preferred. 
Continuum modeling methods try to link common elasticity theories to specific molecular structures. In these 
methods, standard mechanical elements such as beams, rods or springs are used as substituted element for inter-
atomic bonds in lattice structure. The linkage between continuum and molecular structure is obtained from 
equivalence between strain energy of used elements and potential energy of inter-atomic bonds which depends on 
the relative positions of carbon atoms in atomic structure. 

Whereas, the finite element methods (FEM) provide the probability of using of numerical methods which result 
in faster and simpler computations, these methods have been stimulating researchers to employ them in investigating 
of behavior of nanostructures. From the beginning of using FEM methods researchers have been using different 
elements such as linear or non-linear beams, rods and also springs. Obtained results by some researchers simplify 
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complication of choosing a more effective element. Chang and Gao [1] reported that C-C bonds always remain 
straight under each type of loading, hence spring elements are more appropriate for modeling of these bonds. 
Nasdala and Ernst [2] stated that standard elements such as beams, rods or shells are not proper for modeling of 
bending angle in CNTs. Therefore spring elements are the best choice in order to simulate nanostructures. 

Li and Chou [3] simulated SWCNTs using linear elastic beam elements as a frame-like structure. Kalamkarov et 
al. [4] employed two analytical and numerical techniques in order to predict CNTs properties. In the prior, they 
modeled CNTs as an inhomogeneous cylindrical network shell and in the later, the inter-atomic covalent and non-
covalent bonds were substituted by beam and spring elements, respectively. Meo and Rossi [5] structured graphene 
sheets and CNT models based on non-linear springs for C-C bonds and linear torsional springs for C-C-C bond 
angles bending. Giannopoulos et al. [6] modeled CNTs using different linear elastic spring elements for both C-C 
bond stretching and C-C-C bond angle variations. Papanikos et al. [7] used combination of atomic analysis based on 
FEM and mechanic of materials to evaluate elastic properties of an equivalent beam for CNTs. Hemmasizadeh et al. 
[8] defined an equivalent continuum model for graphene sheets integrating MD method as an exact numerical 
solution and theory of shells as an analytical method. Shokrieh and Rafiee [9] presented an analytical formulation to 
predict young's modules of graphene sheets and CNTs through establishment of linkage between molecular structure 
and equivalent discrete frame structure. Georgantzinos et al. [10] investigated mechanical properties of graphene 
layers using linear elastic springs for inter-atomic interactions and non-linear spring elements for non-bonded van 
der Waals interactions. Anifantis et al. [11] formulated spring-based finite element model defining stiffness matrix 
for non-linear springs to predict elastic properties of a single-layer graphene sheet with the assumption that layer 
would be orthotropic. Rafiee and Heidarhaei [12] predicted young's module of SWCNT under uniaxial tensile 
loading using non-linear spring elements for both C-C stretching bonds and C-C-C bond angles bending. 

As it can be seen from the literatures, few studies have been carried out to report the elastic modules of 
SWCNTS and investigate the influence of different parameters on their elastic modules using nonlinear spring based 
models. Anifantis et al. [11] used a nonlinear model and just simulate two specific armchair and zigzag nanotubes 
and reported young module about 0.7 TPa which few studies have reported young modules in this range. Also, they 
did not investigate the effect of other parameters on the variation of elastic modules while introducing the values of 
young or shear modules for specific dimensions would not help to understand the elastic behavior of these 
nanostructures. Whereas, different dimensions with different aspect ratios from these nanostructures are employing, 
the necessity of investigation of effect of different parameters such as dimensions, aspect ratios and chiralities on the 
elastic properties increases. Rafiee and Heidarhaei [12] based on their nonlinear model just examined the variation 
of young module with respect to the nanotube diameter and chirality. They did not mention to the dimensions of 
their used models and claimed that even for small radius young module is independent from the chirality which is in 
contrast with the results reported in [6] and need to be discussed. Also, they did not compute the shear module while 
evaluation of young and shear modules together in the range of common proper results reported in the literatures can 
validate the simulation method. In this paper different nonlinear model of SWCNTs is constructed using two kinds 
of full nonlinear spring-like elements and nanotubes are subjected to the tensile and torsional loadings and the 
variation of both young's and shear modules with respect to the various parameters are investigated. The related 
force-displacement curves of nonlinear springs, follows first derivation of the modified Morse potential energy for 
both C-C stretching bonds and C-C-C bond angles bending. Then about 28 different fully nonlinear models are 
tested for considering the influences of length, diameter, aspect ratio and chirality of nanotubes separately on the 
elastic properties. 

2    MODELING METHOD 
2.1 Geometry 

The formation of graphene sheets is due to regular, frequent and hexagonal arrangement of carbon atoms. In these 
layers each carbon atom with three neighborhood carbon atoms constitute strong inter-atomic covalent bonds with a 
length of =0.1421 nmc ca   and the angle between each two bond is 120c c


   that lead to layers with a thickness 

about 0.34 nmt  . Atomic structure and identifying the graphene sheets regard to the chirality of these layers and 

chirality is defined in term of chiral vector 


hC  and chiral angle   Fig. 1. Chiral vector is defined by means of two 

lattice indices (n, m) and the basis vectors of the hexagonal lattice 1a


 and 2a


 [5]: 

 
 



108                   The Attitude of Variation of Elastic Modules in Single Wall Carbon Nanotubes: Nonlinear Mass-Spring Model 

 

© 2012 IAU, Arak Branch 

1 2na ma 
  

hC  (1)

 
This   is the angle between chiral vector hC


 and basis vectors of the lattice 1a


 and 2a


. With   variations, 

chirality changes and in two particular angles  0 and  03 two special arrangements of graphene sheets appear 
that are zigzag and armchair directions, respectively. Nanotubes are rolled graphene sheets and the indices (n, n) and 
(n, 0) are used in order to present armchair and zigzag CNTs, respectively. Cartesian coordinate of graphene sheets 
are convertible to the cylindrical coordinate of nanotubes using equation reported by Koloczek et al. [13]: 
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Here R is nanotube radius and X, Y and Z are nanotube coordinates and x and y are graphene coordinates. 

 

 

 
 
 
 
 
 
 
 
 
 
 
Fig.1 
Single layer graphene sheet with lattice parameters. 

2.2 Inter-atomic potential energies 

Based on molecular mechanic theory, the movements of atoms are controlled with force fields due to inter-atomic 
interactions that could be described in form of potential energies. Sum of these potential energies can be expressed 
by the following equation [14]: 
 

vdWr VVVVVV    (3)
 
where rV  represents the bond stretching energy, V the bond angle bending energy, V the dihedral angle torsion 

energy, V the out-of-plane torsion energy and vdWV  the non-bonded energies of van der Waals interactions. The 

values of remaining energies are negligible against bond stretching and bond angle bending energies [15]. 
Various energy functions have been being used to describe the behavior of these potential energies. In this paper 

like some other researches in this field [5, 6, 11, 12], the Morse potential energy is used to describe these inter-
atomic interactions. In order to simulate bond stretching, the following equation is used [16]: 

 

}1]1{[ 2( )0   rr

er eDV  (4)

 

where -10=6.03105e   NmeD , -1=26.26 Nm , 0 0.1421 Nmr   and r refers to the current distance between two atoms 

[17]. Also, for describing bond angle bending energy, another form of the Morse potential energy is used [16]: 
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with 2-18 Nm/rad  0.9e=k , 0D , rad 2.094=0  and -4rad 0.754=sextick . 

2.3 Finite element model 

In the model used in this paper, two kinds of non-linear translational springs are employed to simulate inter-atomic 
bonds. The force-displacement behavior of these springs is derived from the first derivation of the Morse potential 
energy. For describing C-C bonds stretch, the first derivation of Eq. (4) is used: 
 

rr
e eeDrF  )1(2)(  (6)

 
where r is the deviation of bond length from the equilibrium distance ( 0r ). These springs are categorized under the 

group "A" Fig. 2 . To simulate the bond angle bending, the first derivation of Eq. (5) is used: 
 

])(31[)( 4  sextickkM  (7)
 
where  is the bond angle variations. Eq. (7) is defined for torsional springs and it has been used in some 
researches. In this paper for sake of simplicity, non-linear translational springs to describe C-C-C bond angles are 
employed [5, 6, 12]. For this purpose, the opposite atoms of C-C-C bonds are connected using non-linear 
translational springs that their force-displacement relationship is reported below: 
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where R is the deviation of bond's length from equilibrium distance ( 00 3rR  ). These springs are categorized 

under the group "B" Fig. 2 . The finite element model used in this research is depicted in Fig. 3. Atomic mass of 
carbon atom as point mass is attached to each node. The geometry of models is created in MATLAB software and 
analysis is done in the ABAQUS software. To define non-linear springs, CONN3D2 spring-like elements are used. 
 

 
 
 
 
 
 
 
 
 
 
Fig.2 
Finite element model of inter-atomic bonds. 

  
 
 
 
 
 
 
 
 
 
 
Fig.3 
Finite element model of a carbon nanotube. 
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3    EVALUATION OF ELASTIC MODULES 

To compute the elastic modules, all nodes of one end of the nanotube were fully restricted and tensile and shear 
displacements were applied to another end and subsequently reaction forces were calculated. The Young's module 
was evaluated using following equation [6]: 

ll

DtF
E








  (9)

 
where F is the sum of reaction forces along the nanotube length, D is the nanotube diameter, t is the nanotube 
thickness, l is the initial nanotube length and Δl is the tensile displacement applied to the free end of the nanotube. 

For estimation of nanotube shear modulus, following equation was used [6]: 
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where Δc is the shear displacement applied to the free end of the nanotube and tangent to the tube circumference and 
R is the nanotube radius. At this point, analysis was performed on 28 different models. 

WenXing [18] reported that in nanotubes with length to radius ratio greater than 10, the edge effects are avoided. 
Consequently, the models with aspect ratio greater than 10 are used in this paper. Early, the influence of diameter 
regarding to aspect ratio equals 10, upon the nanotube properties was investigated Figs. 4 and 5. Then for the 
constant diameter, the effects of aspect ratio variations for two zigzag (7, 0) and armchair (4, 4) nanotubes were 
tested Figs. 6 and 7.  

 

 
 
 
 
 
 
 
 
 
 
Fig.4 
Variation of nanotubes Young's modules with diameter. 

  
 
 
 
 
 
 
 
 
 
 
Fig.5 
Variation of nanotubes shear modules with diameter. 
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Fig.6 
Variation of nanotubes Young's modules with aspect ratio. 

  
 
 
 
 
 
 
 
 
 
 
Fig.7 
Variation of nanotubes shear modules with aspect ratio. 

4    NUMERICAL RESULTS AND DISCUSSIONS 

In the results reported by some researchers, the effects of dimensions on the mechanical properties were not 
investigated separately. Just in the finite element model created by Georgantzinos et al. [10] some of these effects on 
a FE model based on the linear springs about graphene sheets were examined. 

In investigation of mechanical properties of carbon nanotubes, at first in a constant aspect ratio (L/R=10), the 
variation of mechanical properties in term of nanotube length was tested. The variations of young's modules from 1 
TPa to 1.33 TPa and shear modules from 0.1 TPa to 0.41 TPa were observed Figs. 4 and 5 that are in a good 
agreement with the obtained results by other researchers [3, 5, 6, 12, 19–21]. It is shown that for the aspect ratios 
about 10 by increasing the diameter, young's and shear modulus have increased. Also, armchair nanotubes show 
larger young's module and fewer shear module than zigzag ones in the correspond diameter [3, 6, 20]. 

Rafiee and Heidarhaei [12], based on their non-linear model, reported that the difference between armchair and 
zigzag nanotubes modules are negligible in the same diameters and it was in contrast with what Giannopoulos et al. 
[6] stated. Rafiee and Heidarhaei [12] mentioned the linearity of models in [6] as the reason of these differences but, 
it should be mentioned that in [12], the dimensions of employed models were not reported and just the employed 
aspect ratios greater than 10 were mentioned. While in the current fully non-linear model, these differences in the 
aspect ratios about 10 were observed. Meo and Rossi [5] reported this independency of properties from dimensions 
and chirality while, it should be mentioned that all the employed models were in the aspect ratios greater than 18. In 
[6], all models were in the aspect ratio about 10 and consequently, these dependencies to diameter and chirality for 
small radius were reported and the results are in a good agreement with the present results. Shokrieh and Rafiee [9] 
also stated dependency of young's modules of CNT on diameter for smaller radius. By average computing from the 
obtained properties for armchair  (9, 9) and zigzag (15, 0) nanotubes, the young's module that equals 1.264 TPa and 
shear module that equals 0.372 TPa for SWCNTs were estimated that are in the range of reported modules by other 
researchers Table 1. 

To confirm the dependency of nanotube properties on diameter and chirality for small radius, the variations of 
properties of two armchair (4, 4) and zigzag (7, 0) nanotubes with same diameter in different length were 
investigated Figs. 6 and 7. It can be seen that in the length to radius ratio greater than 20, the effect of dimensions 
are negligible. But, the influence of chirality are  still considerable because, in a same length and diameter the 
young's module of armchair (4, 4) nanotube converges to 1.32 TPa and shear module converges to 0.21 TPa while 



112                   The Attitude of Variation of Elastic Modules in Single Wall Carbon Nanotubes: Nonlinear Mass-Spring Model 

 

© 2012 IAU, Arak Branch 

these values for zigzag ones are 1.22 TPa and 0.31 TPa, respectively. Again the greater Young's modules and fewer 
shear modules of armchair nanotubes are noticeable. 
 
Table 1 
Comparison of computed mechanical properties of SWCNTs. 

Study Young's module (TPa) Shear module (TPa) 
Li and Chou [3] 0.995 0.392 

Meo and Rossi [5] 0.92 - 
Giannopoulos et al. [6] 1.248 0.324 

Rafiee and Heidarhaei [12] 1.325 - 
Jin and Yuan [19] 1.236 0.492 
Gupta et al. [20] 1.224 0.328 

Tserpes and Papanikos[21] 1.029 0.433 
Present study 1.264 0.373 

5    CONCLUSIONS 

In the present study a finite element model is used, in order to evaluate mechanical properties of single layer carbon 
nanotubes. This model is based on fully nonlinear spring-like elements and consists of two kinds of translational 
spring elements with different force-displacement behavior. Tensile and shear displacements were applied to models 
and Young's and shear modules were computed. In each case, the full impact of dimensions and chirality were 
investigated separately. The armchair nanotubes seemed to produce greater Young's modules and fewer shear 
modules than zigzag ones in same dimensions. At very high dimensions in nanotubes, independency from 
dimensions and chirality are predicted but, for models with same diameters and aspect ratio, chirality can affect the 
properties. Eventually it was found that in the length to radius ratios greater than 20, the effects of dimensions are 
negligible. 

By achieving the proposed model, the investigation of mechanical properties in multi-walled carbon nanotubes 
would be the future highly potential researches. Also, the evaluation of mechanical properties of nanocomposites is 
expected using present non-linear model as a reinforcement agent. 
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