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ABSTRACT
In this paper, a comparison of weak-form Galerkin and least-squares finite element models of
Timoshenko beam theory with the von Karmaén strains is presented. Computational characteristics
of the two models and the influence of the polynomial orders used on the relative accuracies of the
two models are discussed. The degree of approximation functions used varied from linear to the
Sth order. In the linear analysis, numerical results of beam bending under different types of
boundary conditions are presented along with exact solutions to investigate the degree of shear
locking in the newly developed mixed finite element models. In the nonlinear analysis,
convergences of nonlinear finite element solutions of newly developed mixed finite element
models are presented along with those of existing traditional model to compare the performance.
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1 INTRODUCTION

OR several decades, finite element models based on the weak-form Galerkin or Ritz formulation [1] have

dominated both commercial finite element software and academic research. An advantage of the weak-form
Galerkin model as applied to structural mechanics problems is that it is the most natural approach resulting from the
application of the principle of virtual displacements. For problems outside of solid and structural mechanics, such
principles are not available. It is possible, however, to develop the so-called weak forms or weighted-residual
integral statements from the governing differential equations of any physical problem. The weak forms, in most
cases, are not equivalent to any principle or minimization of error introduced in the approximation of the variables.
Thus, the weak forms of problems for which there is no underlying physical or mathematical principle, are merely a
means to computing solutions of the integral statements represented by the weak forms [2]. Consequently, it is
possible that such solutions may degenerate for certain combinations of physical characteristics of the problem and
finite element approximations used. It is well known that the weak formulations lower the differentiability
requirements on the variables of the formulation. The traditional displacement based (i.e., principle of virtual
displacements) finite element models can provide high level of accuracy only for the generalized displacements,
increasing errors in the post-computed variables involving the derivatives of the generalized displacements. To
remedy this, the so-called mixed formulations [3] are adopted. The mixed models include secondary variables as
independent degrees of freedom and they yield increased accuracy of the secondary variables, sometimes at the
expense of the primary variables and increased computational effort. Thus weak-form, mixed, Galerkin finite
element models can provide higher level of accuracy for secondary variables included in the model. But to establish
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mixed Galerkin finite element models, each of the governing equation should be multiplied by proper weight
functions, and then should be integrated over the computational domain. The Lagrange multiplier method can be
used to find proper weight functions, which is still burdensome.

In recent times, the least-squares method is considered as a good alternative method because of its simplicity in
applications to a variety of problems. It can also overcome many drawbacks of the weak-form Galerkin
formulations. A brief idea of the least-squares method is to minimize sums of squares of the residuals over the finite
element space. In the least-squares method, procedures of finding proper weight function for each residual is
unnecessary. Because variations of residuals can be used as weight function from the weighted integral viewpoint.
Despite of the computational advantage and simplicity that the least squares method can provide, applying this
method to the analysis of practical structural problems with mixed formulation is not easy, especially in the case of
the structural problems which include geometric nonlinearity. For example, in structural mechanics problems, the
displacements are numerically very small compared to forces or stresses. Thus, squares of the residuals of equations
involving force like variables are very large compared to those containing displacements in the least-squares
functional. To handle these magnitude differences, variables can be properly nondimensionalized or residuals
themselves should be multiplied by proper scale factors. The latter approach was adopted in the present paper.

Both the least-squares and weak-form Galerkin methods may have their own merits and demerits. The purpose
of this paper is to provide some insights and proper strategies on the development of nonlinear finite element models
in the structural problems using the two different formulations and to compare the computational aspects of various
finite element models of Timoshenko beam theory with the von Karman nonlinearity.

2 GOVERNING EQUATIONS

To develop new mixed finite models and verify their performance, the Timoshenko beam theory (TBT) with the von
Kdrmdn nonlinearity was considered for. First, the governing equations are reviewed briefly (see Reddy [1-4] for
details). In the TBT, the displacement field is adopted as to include the transverse shear deformation (strain) in the
simplest way, as shown in Fig. 1. The components u,, u, and u; of the displacement field are

u, = u,(x)+ 20, (x), u, =0, u; = w,(x) 1)

where the u is axial displacement of centroid line of cross section along the x-axis, the wy is vertical displacement of
the center line along the z-axis, and z is a vertical distance between the centroid line and arbitrary point of the beam.
The von Karman nonlinear strains of the TBT are

e

AT TR

: .
—_— — — b —_— — Le — | —
ey

x

T

it Q. oA

Y o

\—
>
ot

Deformed edge

Fig. 1
Description of undeformed and deformed edges of the TBT beam, source from.
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£.=05w,+¢), &, =u,+05 W) +z¢ )
The constitutive relations are

o =F¢

xx xx?

o, =2Ge, (3)
where E is Young’s modulus and G is shear modulus. The stress resultants are

N, = fA o dy dz = EA [u] +0.5 (w!)]
Qx = j;axz dy dZ = KsGA (¢t +W(;) (4)

M, = f zo dy dz = El¢!
A

where the K (5/6) is shear correction factor, the N,, is axial force, the V. is the transverse shear force, and M,, is
bending moment at any cross section of the beam. The equilibrium equations of the TBT are

N +f(x)=0, (Q,+w/N,) +q(x)=0, M -0 =0 )

where f(x) and g(x) are distributed axial force and transverse loads, respectively. The resultant forces and bending
moment can be included in the finite element models to develop mixed finite element models, which will be
discussed in the next section.

3 FINITE ELEMENT MODELS

Traditionally, the three equilibrium equations in (5) are written in terms of the generalized displacements (ug, wy, @,)
to develop the displacement finite element model of the TBT. Here, we discuss weighted-residual finite element
models of these equations. Since we approximate the variables of the formulation, the differential equations in (4)
and (5) are not satisfied exactly everywhere in the domain. Thus, there is error introduced into the differential
equations, called residuals. All approximation methods try to minimize the residuals in some suitable sense. For
example, consider the three equations in Eq. (5), expressed in terms of the displacements. The residuals in the three
equations are

R =—{EA [u +0.5 W))*1}— f(x)=0
R, =—{K,GA (¢, —|—W(/)) + W(/)EA [ué +0.5 (W(/))z]}/ —q(x)=0 6)
R, = —EI¢X//—|— K GA (¢, —I—W(/)) =0

The resulting weighted-residual or weak-form model will contain only the displacement variables. On the other
hand, one may also consider Eqgs. (4) and (5) to be six independent equations and treat three displacements (i, wy,
@,) and there stress resultants (N, Vi, M,,) as independent variables. The resulting finite element model is termed a
mixed model of the TBT because it contains displacements as well as stress resultants:

R = N;x + f(x)=0,

R, =(0, +w/N_) +q(x) =0,

R, :M; -0, =0,

R, =(K,GA) Q, —(§,+w;) =0,

R, =(EA) 'N_ — ) +0.5wjw}) =0,

R, =(ED)'M_—¢ =0. %)
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An advantage of mixed formulations is that they yield increased accuracy of the resultants and they can be
computed at the nodes as opposed to the Gauss points in displacement finite element models. As a special case of
the weighted -residual method, one may construct least-squares finite element models. In Eq. (7), one can find that
the differentiability requirements on uy, wy and ¢, are lowered by inclusion of the stress resultants N,,, V, and M,,.

3.1 Traditional displacement based Galerkin weak -form model

In this section, a traditional displacement based Galerkin model is reviewed to provide better comparison of the
characteristics and behavior of the newly developed mixed models herein. The traditional displacement based model
includes only ug, wy and ¢, as nodal variables, yields the smallest stiffness matrix. The weak formulation of the
traditional displacement model is based on the statements [1, 3]

fo “ LEASu, [, +0.50w))"1— F(x)ou, ] dx —[ou,0, Iy
j; " {K,GASw, (¢, +w,) + wyEAdw[uy +0.5(wy)*1— q(x)ow, } dx —[ow,0, ]|§ (8)
[ 1E13819! + K,GAdg, (9. + wip) dx (09,0,

Le
0

where Q;=N,, 0, =0, +w/N_=V., and Q:=M,, at the boundaries. In the traditional displacement models,

boundary conditions can be imposed exactly only on the displacements and in integral sense on the stress resultants.
However, mixed models allow exact imposition of boundary conditions even on the stress resultants that appear in
the model. The displacements appearing in Eq. (8) can be approximated by

1
~
=D
~ m
=D DA )

¢, = Z::ll//j¢.f

and substitution into Eq. (8) yields the following finite element equations:

[K"] (K] (K"]|{{u}]| |(F}
(K, ({U,DHU,} = {F;} or K] [K®] [K¥]j{w}r=1(F")

31 32 33 3 (10)
(K] [K”] [K"Ij[{#}] |(F)

where

L L
K!'= f( (EAyly]) dv, K} = f( (0.5EAWply)) dx
23 L JA 22 L L1 1\2 Lo
K* = f( (K GAyly)) dv, K} = f( (K. GAyly | +0.SEAw) yly] ) dx
21 L [ 33 L Lol 32 23
K'= [ (EAwiyly]) ax, K = [ (Elyly]+K GApw,) dx, K =K

L,

= [+l . 1= [ Ty, de+y, 0,1 and £ = [y,0,1"
0
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3.2 Mixed Galerkin model
For a mixed finite element model, the principle of minimum potential energy and the Lagrange multiplier method
can be employed simultaneously to minimize the total potential energy and include the stress resultant-displacement

relations as constrains through the Lagrange multiplier method. For the problem at hand, the total potential energy
functional of the TBT beam can be expressed as

L,
L = j; [0.5(c ¢, +0.7,.)— fu, —qw,] dx (11

where the L. is the potential energy functional. Then minimizing L. subject to the constraints can be expressed as

LI("O’WO’@’N»-’Q»-’MX):LC+2[];L"/1ka dx]
k=1
= ["L0S(EAY N2 +05(ED M2, +0.5(K,GAY ' 0F — fit,— qw, ] dx
+ j:)L”%[(EA)"NLV — (uy +0.5wywy)] dx + fn L“@[(KSGA)*IQX — (4, +wp)] dx

+ [ AKED M, — 1 dx (12)

where L; is the mixed functional and /; are the Lagrange multipliers. The condition for the minimum of L; is éL;=0,
where the J'is variational operator. Then we can obtain the following relations, which can be used to develop the
mixed Galerkin finite element model. Since L, contains 6 variables and their first derivatives only, coefficients of
variations of the variables can be computed from the Euler-Lagrange equations [2] as follows:

OL, 0 |0L L,
5 :_I - L= — _i/ deO
K Ou, Ox|0Ou, fO /=4
oL 0 | 0L L,
ow o O O (A (! dx=0
"o ow, Ox|ow, fO (4 =4 = (o) ]
oL, 0 (0L L,
op o L2 — Al dx =0
S o 0 [ =2

oL, [t I B B
ON._. e j; [(EA)'N_ —(EA)'A41dx=0
00 -%—IL”[(K GA)'Q. —(K.GA) ' 1,1dx =0
x aQt - 0 s x s -

oL L,
oM ——=| WE)'M_—(ED)"'A4]1dx=0
M., fO (13)

The Lagrange multipliers can be chosen to be 4,=N,, ,=0, and 4,=M, satisfying all conditions given in Eq. (7).
By using the Lagrange multiplier method, all governing equations of the TBT beam can be fully recovered. Thus,
we can develop mixed Galerkin finite element model with properly chosen weight functions for the residuals. We
have

OL,(uy, Wy, ¢ sN .0, . M )= f{5uo(—f—Nx/)+5W0[—q—(Qx +Nw)1+04,.(Q, — M)
0

+ON, [(EAY ' N, — (u) +0.5wywp)| + 00, [(K,GAY' Q, — (¢, +w,)]
+6M _(El] —M )} dx=0 (14)
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Note that following relation [3] can be used to lower differentiability requirement for the w, simplifying force
vector terms in the matrix form of finite element equations.

Vr = Qx + W(/)N.Dc ’ Qx = V\' - W/Nxx (15)

In the least squares method, which will be discussed in the next section, use of the relation Eq. (15) will allow us
to have only first-order differential equation, and to construct simple element-wise force vectors that contain linear
terms only. In Eq. (15), V, is the shear resultant on the undeformed edge, and Q, is the shear force on the deformed
edge. We write

JLI (u() b4 W() ’¢x ’Nx ’ ‘/x b4 Mx )
Lt/
= [{0uINL, + F)1+ 0w, [V, + (0l + 86, (M, =V, +wN,.)
0

+6N_[(EA)'N_ —(u) +0.5w w1+ (8V, —w 0N HI(K,GA) (V. —wiN_)— (4, +w,)]
+OM [(ED'M,, —¢/1} dx=0 (16)

Then the variables and their variations in Eq. (16) can be approximated as linear combinations of nodal values
and known interpolation functions, as

1 m n )4 q
U, gZ'/’j”j’ Wo = Z'/’jw.f’ 9, 22‘//,-9?5,-7 N, = Z‘//jN.f’ = Z'/’J'Vj’
=1 j=1 j=1 j=1 j=1

q r
Vx g Zl//i‘/i’ M.vc ; ZWjM]
> > (17)

where u, w, ¢, N, Q and M are nodal unknowns of the finite element model, the y; and the y; are i" and jth are

Lagrange type interpolation functions. By substituting all the approximations given in Eq. (17) into the function 8L,
of Eq. (16) and collecting coefficients of the variation of the nodal unknowns (i.e. ou, ow, 6@, ON, 6Q and M ),

the following finite element equations can be obtained:

[K"] [K"] (K°] K" (K*] (K| | ()
[K*] [K”] [K”] [K*] [K”] (K| W [{F)
(K] [K*] [K”] [K*] [K°] [K*]| 8} ]| |[(F)
K, ({UsD){Ug} = {F, ) or ~ 18
Ko =D 0% ey ey oy s %) ) NI FY )
[K™] [K®] [K™] K] (K] (K[| [(F)
(K] [K®] [K®] K] K] [K*Y|(M)] |(F)

where K is element stiffness matrix of the mixed Galerkin model, Ug is the column vector of unknowns, and Fg is
the force vector. Definitions of all nonzero stiffness and force coefficients are given below.

L L L

K= [wwpae k7= [Twwhan K= [ @)
L L L

K= [cvwpdn K= [Conwwpdn K= [T1ED vy dx,
L L

K= j; (—wyhdy, K= fo (05w dx, K=K,

L L
K= f LK GAY wlpy 1dx, K = f [(K,GA) "oy ] dx,
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L
L
K7 = [ oww]—pwh . K= [Cyw)de K=K
0

L L L
K7 =[G yw ldx, KPS = [IED ' wyldv K= [ (wy) dx

fl= j; oy lde and  f = LL[—q(X>Wi]dx (19)

One advantage of this mixed model is the use of equal interpolation functions for all variables. In the
displacement model, which was reviewed in Subsection 3.1, each variable should be approximated with consistent
interpolation or reduced integrations must be used to prevent shear and membrane locking. However, increase of the
number of unknowns is inevitable in mixed models.

3.3 Mixed least-squares model

In the least-squares method, the sum of the squares of the residuals in the governing equations is minimized. Using
relations given in Eq. (15), the residuals in Eq. (7) can be expressed as

R =N _+fx)=0

R, =V/4+4q(x)=0

R, =M -V +w|N_=0

R, = (K,GA)"'(V, —wiN, ) — (¢, +wp) =0

R, =(EA) 'N_ —(u, +0.5wiw)) =0

R, =(E)'M_—¢ =0 (20)

Unlike weak-form Galerkin model, the least-squares finite element model can be developed directly from Eq.
(20) without consideration of the weight functions because they are naturally defined [5-8]. But before considering
the development of the mixed least-squares finite element model, we need to scale the residuals so that all of them
have the same magnitudes [5]. For example, the units of R, and R, are forced per length while unit of the Rj; is force.
Residual Rg has unit of force times length while residuals R, and the Rs have no dimension. When the residuals are
of different magnitude, the convergence of each residual to zero is dictated by their relative magnitudes (residuals
with large magnitudes converge faster than those with less magnitude). To make all terms in the least-squares
functional to be dimensionally the same, the following weights are chosen [9]:

@, =L,/ EA,, w@,=L/El,, w@,=L/El, o, =o,=1, @=L, 1)

where L, Ay and I, are characteristic length, characteristic cross-sectional area, and characteristic second moment of
inertia about the y-axis, respectively. In the present study, Ly, Ay and [, are chosen to be 50.0 in, 1.0 in? and 1/12 in4,
respectively. Then, the least-squares functional becomes

L,
11, 9,8, .NV, M) = [ (@R +@,R + @R + 0K, + ;R +,R}) dx (22)

To obtain symmetric coefficient matrix of in the nonlinear mixed least-squares finite element model,
linearization of nonlinear terms in [ is important. The linearization can be explained by separating the residuals
including nonlinear terms (i.e. R3;, Ry and Rs) and linear terms (i.e. R}, R, and R;). Then, the least-squares functional
I can be rewritten as

I(uo’wo’¢x’Nx"/x’Mx):%fxz [‘C+N] dX (23)

where
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L= (wlRlz +szzz ereRez)’ N = (w3R32 +w4Rf +ZUSRSZ)

We can minimize the above least-squares equation, which includes nonlinear terms, by taking first variation of it
and setting it to zero:

0=06I(u

0’

W, o N VM) = [C(EL+8N) dx
= f (6L+@,SR,R, + @,5R,R, + @.5R,R,) dx
— f (6L+@2EM,, —S8V. +8WN_ +w.EN YM' .~V +w/N (EA)'N, —
) +0.5wiw) 1+ @2 [(EA)Y '8N, —(ul +widwDIK,GA) ' (V, —wiN ) — (8, +w))]

+ ZHSZ [(Ks GA)_I (5V>c - 5W(I)Nxx - W(gaN)oc) - (6¢r + 5W(§ )] dx} (24)

But if we linearize I (i.e., treat w, as known from the previous iteration) before taking its variation, then we have

1, w8, N, Vo M,) = [ 7(6L+8N) dx

= [T16L+ @ (ML~ 6V, +wEN JM. ~V, +wN,)
+ @ [(EA) '8N, —(8ul +0.5w.6wDI(EA) ' N, — (u! +0.5wiw)]
+ @2 [(K.GA) (V. —w.6N_ ) — (8¢, + SWII(K,GA)Y (V. —w!N ) — (§, + w1} dx (25)

where quantities with bars indicate that they are linearized values. Then 51=0 is not the same condition as
81 =0 unless

@ OwN,, (M), =V, +wiN_ ) +0.55;widwi[(EA) ' N, — (uy +0.5wywy)]

—a! (K‘_GA)_1 ow

o

N (KA (V, =W N~ (g, +w))]=0 26)
Since the sufficient condition for the minimum of 7 is §*1 >0,

5 = f LA @M —8V +SWIN_ +w. SN _YSEM! —8V. +w SN )

+ @ [(EA) 'ON_ —(8u, +w/Sw)II(EA) '8N —(8u, +0.5w6w))]
+ @ [(K,GA) ' (8V, —8wW/N_ —w,6N_)— (8, +Sw)II(K,GA) " (8V,. —w)SN )
— (8¢, + w1} dx >0 27)

Thus, in order for 1° > 0, we must have

@ 6wN_(M! —V_+w/N_)+0.5a,w, 6w [(EA) ' N_ —(u) +0.5w,w)]
— @ (K,GA) " SwiN [(K,GA) ' (V, =wiN ) = (@, +w)] >0 28)
or Eq. (26) should hold. The linearization of the least-squares function before taking its first variation results in

51=0and &°1 >0, which does not alter the minimizing conditions of §1 =0 and &°I >0 as given in Eq. (26).

Now we can develop symmetric bilinear form of the mixed finite element model from the first variation of the
linearized I
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0= fOL" (@ SN [N] + f()]+ @6V [V! +q(x)| + @3 (SM!, — 8V, + wiN JM,, —V, +wN )
+@;[(EA) ' SN, —(8u) +0.5wiSw)I(EA) ' N, —(u +0.5wiw))]
+ @ [(K,GA) ' (8V, —w|ON ) — (84, + Sw)I(K .GA) (V. —w,N_)— (¢, +w))]
+a [(ED)'6M , — 84 1(ED'M,, — 41} dx. (29)

Note that all bars are omitted for consistency with the Galerkin mixed model. Then the variables involved in Eq.
(29) can be approximated and replaced by using Eq. (17) which are the same functions used in the Galerkin model.
By using matrix notation, above equations can be rewritten simply as

[K"] [K"] [K"] [K“] [K®] [K°]||{w} | [{F'}
[K*] [K*] [K”] [K*] [K*] [K*]||Dw}|  [{F)
31 32 33 34 35 36 3
K. (U, DI{U, ) = (F.} or [K4.] [K“] [K43] [KM] [K45] [K%] W _ {F4} 30)
[K"] [K"] [K"] [K"] [K®] [K*]{N}|  [{F%)

K] [K*] [K¥] [KM] (K] [K*) |V} [{F)
(K] [K®] [K®] [K™] [K®] [K®][{M;}] [{F°]

where K; is element stiffness matrix of the mixed least-squares model, U, is the vector of unknowns, and F; is the
force vector. The nonzero coefficients of Eq. (30) are defined as

L L L
K = [Caiwiv) ax K = [ 0saiwiwiv) dn K = [ el B (vly)) dx,
KM — g2 g2 _fL[OZSZUz(W/)Z( / /)+mz( / /)]dx Kzs_f"wz( / ) dx
ijo T i i 0 . 430 l//;% 5 Wil//j ’ i 0 5 l//il//j >
L L
K = [ 1=0502(EA) "wywly )+ @2 (K GAY 'wiwly ) dv, K = [ —a2(K,GA) (wly ) dx,
K2 — g2 sz_fL[wz( )+w2( / /)]dx K”—fLwZ(KGA)’lw’( ) dx
g i i 0 5 (//il//j 6 l//i‘//j [t/ 0 3 s 0 l//i‘//j ’
L L
K= [ ol K,GA wydx. K = [ —ai (D wly)) dx,
L
K'=K" K= fo [—0.502w, (W) +a(K,GA) ' wiwy Dl dx, K& =K%,
L
K = f a ) o) )+ @l (BA) () + @5 (K.GA) (wg)* (W )] d,

L L
Ky = [ l=aiwivy) - ol (K,GA wiww )l dx, K= [ alwiwy)) dx,

L
L
K = [1owy )+ @y )+ @l (KA ) dx, K = [—alwy)) dr
0
52 25 53 35 54 45
Ky =Kj, Ky =K}, K; =K,

L
K' =K', K'=K? K=K, K= fo (@3 (wly )+ @ (ED (ww )] dx,

ij Jji? ij Ji? Ji?

P P s [E o '
f _[[ @ f(x)w!]dx and f —L/;[ @,q(xX)y;] dx G

Comparing Egs. (30) and (31) with Egs. (18) and (19), it can be seen that the K; is symmetric while the Kg is
not. In Egs. (30) and (31), force vector contains only linear terms, by replacing Q, with V, + w/N_.
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4 NUMERICAL RESULTS
4.1 Description of problem

A steel beam with the geometry shown in Fig. 2 was chosen for the study. The properties given in Eq. (32) were
used, with uniform applied distributed load g(x), which was set to vary from 1.0 to 10.0 Ib/in with ten steps to
archive proper nonlinear convergence.

E=30x10°psi, v=025, K, =5/6, f(x)=0, g(x)=1.0 ~10.0 Ib/in (32)

Three different types of boundary conditions shown in Fig. 3, i.e. H-H (hinged-hinged), P-P (Pined-Pined) and
C-C (clamped-clamped), were considered to evaluate the performance of the elements. All boundary conditions
allow modeling half of the beam.

The C-C and P-P boundary conditions can be used to test the nonlinear behavior of newly developed beam finite
elements, and the H-H boundary condition can be used to determine membrane locking is experienced [10]. Since

the beam has no horizontal support under the H-H boundary condition, u, +0.5(w;)* =0 should be satisfied to

have N,=0. In the traditional displacement model, this condition is barely satisfied because of the inconsistency in
polynomial orders between the u, and the (w.)* terms. Also, the inconsistency in polynomial orders between the

¢, and the w, in K ,GA(4, +w,) may cause shear locking [3, 10] which results in inaccurate linear solution. In
displacement based models, performance of beam element is mostly depends on the relations of the displacements

L=100in a=1in

Fig.2
Geometry of beam and chosen coordinate system for the numerical analysis [source from 3].

.
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N,(0)=0 i___‘__ ___________ T ® a0
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| 2=501in I
w0 =0 | : s w(LID=0
1,(0)=0 i I ______________ :r Lidytidll Ll #(LI12)=0
$.(0)=0 N : V(L/2)=0
b. A clamped- clamped(C-C) beam
I L2=50in |
W, 0)=0 | : s wL/D=0
1,(0)=0 E AR RN _‘:._.__._. 14471 L $.(L12)=0
M, (0)=0 :___A__ ___________ : _A_ V.(L/2)=0
c. A pined- pined(P-P) beam

Fig. 3
Description of symmetry boundary conditions.
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and their derivatives, thus they experience sever locking compared with mixed models. Some techniques like
reduced integration and use of consistency approximations of the displacement field may be employed, but it is not
easy (but possible) to implement them into computers. On the other hand, the locking can be weakened or even
eliminated by the inclusion of resultants which can be done by mixed formulations, because certain conditions
which cause locking are not solely depend on the relations of displacement but also on the resultant in mixed
models. The numerical results that show the effects of mixed formulation are presented in the next sections.

4.2 Linear analysis

In this section linear solutions of the newly developed mixed models are compared with known exact solutions and
solutions of traditional displacement based model. By taking all nonlinear terms to be zero, we can eliminate
geometric nonlinearity in the beam element to study linear behavior of beam element. Linear study is important
because finding nonlinear solutions can be started from linear solutions in most of structural problems. Linear study
of the TBT beam bending includes interesting phenomena like shear locking. For shear locking, accuracy level of
the solutions can be possibly calculated by using known exact solutions. As mentioned in previous section,
displacement based models experience severe shear locking even with the use of higher interpolations. But present
models developed with mixed formulations showed less locking, especially for the mixed Galerkin model, if higher
order of interpolation functions were used. The solutions of the newly developed models are presented in the Table.
1, to investigate shear locking. With the results presented in the Table 1, we can find that accuracy level of the
solution does depend on methods and formulations adopted. The mixed Galerkin model showed the best accuracy in
finite element solutions obtained under both C-C and P-P boundary conditions, while traditional displacement
models showed the most inaccurate results. With the results presented in the Table 1, errors which mean degree of
shear locking are compared in the Fig. 3.
The degree of shear locking is measured using the definition

W(’xa('t B W.Yl
E— (33)

w

Degree of shear locking =

exact

Table.1
Linear results of beam obtained with 4-element mesh under C-C boundary condition, g(x) =1.0 1b/in, with full integration

Interpolation Center deflection of the beam (wy), in
order C-C boundary condition(exact: .104291667) P-P boundary condition(exact: .520958333)
Mixed Mixed Traditional Mixed Mixed Traditional
Galerkin Least-squares displacement Galerkin Least-squares displacement
1™ 0.112972222 0.096004271 0.001964678 0.526745370 0.497652359 0.009691326
2nd 0.105593750 0.104283529 0.098352041 0.522000000 0.520938133 0.515034294
3™ 0.104291667 0.104291651 0.104296375 0.520958335 0.520958540 0.521078238
40 0.104291667 0.104291612 0.104273233 0.520958333 0.520958178 0.520491516
50 0.104291667 0.104291670 0.104270593 0.520958335 0.520959431 0.520417581
6" 0.104291668 0.104291730 0.104363783 0.520958337 0.520958056 0.522800451
Table 2

Linear results of beam obtained with 1-element mesh under C-C boundary condition, g(x) =1.0 1b/in, with full integration

Interpolation Center deflection of the beam (wy), in
order C-C boundary condition(exact: .104291667) P-P boundary condition(exact: .520958333)
Mixed Mixed Traditional Mixed Mixed Traditional
Galerkin Least-squares displacement Galerkin Least-squares Displacement
I 0.139013889 0.072895696 0.000498209 0.544106482 0.433308428 0.002364252
ond 0.109500000 0.104161909 0.078860218 0.525125000 0.520637115 0.495521997
31 0.104291667 0.104291651 0.104291468 0.520958334 0.520958051 0.520951347
4h 0.104291667 0.104291668 0.104290570 0.520958333 0.520958341 0.520926382
5t 0.104291665 0.104291663 0.104283217 0.520958326 0.520958009 0.520744177
6" 0.104291671 0.104291639 0.104299478 0.520958357 0.520957624 0.521167093
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interpolation order 1 2 3 4 5 6 7

interpolation order

a. C-C boundary condition b. H-H boundary condition
Fig. 4
Decay of error verses the interpolation order with 4-element uniform mesh, full integration.

Table 3
Converged center deflection wy (iterations taken) of beam obtained with 4-element mesh, forth order interpolation, under C-C
boundary condition

Load Mixed Galerkin Mixed Least-squares Traditional Displacement Traditional Displacement
(full integration) (reduced integration)

1.0 0.1035(3) 0.1035(3) 0.1026(2) 0.1034(3)

2.0 0.2025(4) 0.2025(4) 0.2008(4) 0.2023(4)

3.0 0.2942(5) 0.2941(5) 0.2919(4) 0.2939(4)

4.0 0.3777(5) 0.3775(6) 0.3749(5) 0.3774(5)

5.0 0.4532(6) 0.4530(6) 0.4499(6) 0.4530(6)

6.0 0.5217(7) 0.5215(7) 0.5177(6) 0.5216(6)

7.0 0.5842(7) 0.5838(7) 0.5799(7) 0.5841(7)

8.0 0.6411(8) 0.6407(8) 0.6368(8) 0.6414(8)

9.0 0.6941(9) 0.6933(8) 0.6890(8) 0.6943(9)

10.0 0.7427(10) 0.7426(9) 0.7376(10) 0.7433(10)

where wy is center vertical deflection of beam which is obtained by linear finite element analysis with full
integration, and w,,,., is mathematically exact solution. Since wy is obtained with full integration, it will contain
certain degree of shear locking caused by inconsistent approximation of the variables. Thus, degree of shear locking
can be determined from Eq. (33).

4.3 Nonlinear analysis

Under C-C boundary condition, each model showed similar convergence, as shown in the Fig. 4a, while the
converged solutions of the current mixed Galerkin and the least-squares models are more accurate than those of the
displacement model (see Fig. 4b). The converged solutions of the displacement model close to the solutions
predicted by the current mixed models when proper reduced integration techniques or consistent approximations of
variables are used.

Converged solutions are presented in Table 3. The direct iterative method was used to get the solutions. Two
mixed models showed good result with full integrations, while the traditional displacement model showed some
degree of locking. Normally, locking of element is sever in finite element solution of lower interpolations, while it is
likely to disappear in higher interpolations. Two mixed models showed closest converged solutions, while the

© 2010 TAU, Arak Branch



A Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for ... 113

displacement based model did not as presented in the Fig. 5b. As mentioned before, membrane locking [3] is caused
by the use of inconsistent order of interpolation of the terms like u, +0.5(w,)* = (EA)"'N_ . In particular, when the

beam undergoes no extensional deformation, it should produce u, +0.5(w,)> = (EA)"'N_ =~ 0.
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This is satisfied only when the axial displacement and transverse displacements are interpolated such a way that
the membrane strain has the possibility of becoming zero. Thus, the beam element may behave in a manner
physically unrealistic. Traditionally, this phenomenon is overcome using reduced integration of the nonlinear
stiffness coefficients. In the case of the mixed model presented herein, membrane locking completely disappears. As
in Eq. (33), the degree of membrane locking can be measured as

W,y —W
Degree of membrane locking = 24— (34)

exact

where w,; is converged center vertical deflection of the beam obtained with full integration, and w,. is
mathematically exact solution of the same. Judging from the nonlinear results obtained, both models showed good
nonlinear convergence while the mixed Galerkin model showed least degree of membrane locking.

5 CONCLUSIONS

Developing procedures of nonlinear beam bending finite element models were presented with two different
methods. All element wise coefficient matrices and force vectors are also presented. Mixed formulation provided
superior accuracy in linear solutions and better performance in nonlinear analysis with the use of same order
interpolations and full integrations. Two types of locking phenomena were discussed and current mixed models
showed less locking compared with traditional displacement based model.
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