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 ABSTRACT 

 A simple formulation for studying the free vibration of shear-deformable functionally 
graded plates of different shapes with different cutouts using the finite element method is 
presented. The aim is to fill the void in the available literature with respect to the free 
vibration results of functionally graded plates of different shapes with different cutouts. 
The material properties of the plates are assumed to vary according to a power law 
distribution in terms of the volume fraction of the constituents. Validation of the 
formulation is done with the help of convergence studies with respect to the number of 
nodes and the results are compared with those from past investigations available only for 
simpler problems. In this paper rectangular, trapezoidal and circular plates with cutouts are 
studied and the effects of volume fraction index, thickness ratio and different external 
boundary conditions on the natural frequencies of plates are studied. 

                                                © 2015 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 UNCTIONALLY graded materials (FGMs) are a class of composites that have continuous variation of 
material properties from one surface to another and thus eliminate the stress concentration found in laminated 

composites. A typical FGM is made from a mixture of ceramic and metal. These materials are often isotropic but 
nonhomogeneous. The reason for interest in FGMs is that it may be possible to create certain types of FGM 
structures capable of adapting to operating conditions. The increase in FGM applications requires accurate models to 
predict their responses. A critical review of more recent works on the static, vibration and stability analysis of 
functionally graded (FG) plates can be found in the paper of Jha et al. [1]. Since the shear deformation has 
significant effects on the responses of FG plates, shear deformation theories such as first-order shear deformation 
theory (FSDT) and higher-order shear deformation theories (HSDTs) should be used to analyze FG plates.  

The FSDT accounts for the shear deformation effects by linear variation for in-plane displacements and requires 
a shear correction factor, whereas the HSDTs account for the shear deformation effects by higher-order variations 
for in-plane displacements or both in-plane and transverse displacements. For example, Reddy [2-3] developed a 
third-order shear deformation theory (TSDT) with cubic variations for in-plane displacements. Xiang et al. [4-5] 
proposed a n-order shear deformation theory in which Reddy’s theory can be considered as a specific case. 
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The methods employed in the paper included a higher order shear deformation theory and two novel solutions 
for FGM structures. According to this paper, the application of the normal deformation theory may be justified if the 
in-plane size to thickness is equal to or smaller than 5. 

Researchers have also turned their attention to the vibration and dynamic response of FGM’s structures [6-7]. 
Chen et al [8] presented exact solutions for free vibration analysis of rectangular plates using Bessel functions with 
three edges conditions.  Liew et al [9] studied the free vibration analysis of functionally graded plates using the 
element-free Kp-Ritz method. They studied the free vibration analysis of four types of functionally graded 
rectangular and skew plates. Hiroyuki Matsunaga [10] presented in his paper, the analysis of natural frequencies and 
buckling of FGM’s plates by taking into account the effects of transverse shear and normal deformations and rotary 
inertia. Atashipour et al [11] presented a new exact closed- form procedure to solve free vibration analysis of FGM’s 
rectangular thick plates based on the Reddy’s third-order shear deformation plate theory. 

For plates with cutouts, Chai [12] presented finite element and some experimental results on the free vibration of 
symmetric composite plates with central hole. Sakiyama and Huang [13] proposed an approximate method for 
analyzing the free vibration of square plate with different cutouts. Liu et al [14] studied static and free vibration 
analyses of composite plates with different cutouts via a linearly conforming radial point interpolation method. 
Maziar and Iman [16] studied the effect of relative distance of cutouts and size of cutouts on natural frequencies of 
FG plates with cutouts. The free vibration of functionally graded nonuniform straight-sided plates with circular and 
non-circular cutouts has been investigated by [18]. From the review of the above literature, it is observed that very 
little research and analysis work has been done yet on the natural frequencies of the FG plates with cutouts. The 
study presents here, the effect of volume fraction index, thickness ratio and different external boundary conditions 
on the natural frequencies of FG (Al/Al₂O₃) plates (such as rectangular, trapezoidal and circular) with cutouts. 

The aim of this paper is to develop a simple first order shear deformation theory for the free vibration analysis of 
FG plates. The first order shear deformation theory is used to incorporate the effects of transverse shear deformation 
and rotary inertia. Equations of motion are derived from Hamilton’s principle. Numerical examples are presented to 
verify the accuracy of the present theory. The accuracy and versatility of the algorithm are demonstrated via 
different examples for the functionally graded plates. This work, thus, aims to study the free vibration problem of 
Functionally Graded Plates with Multiple Circular and Square Cutouts which appears to have not been studied as 
yet. 

2    FUNCTIONALLY GRADED MATERIAL PROPERTIES   

A functionally graded material plate as shown in Fig. 1 is considered to be a plate of uniform thickness that is made 
of ceramic and metal. The material property is to be graded through the thickness according to a Power-Law 
distribution that is: 
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where P represents the effective material property, Pc and Pm denotes the ceramic and metal properties respectively, 
Vf is the volume fraction of the ceramic, h is the thickness of the plate, 0≤ z ≤ h and n is the volume fraction index. 
 
 

 

 
 
 
 
 
 
 
Fig. 1 
Functionally graded plate. 
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2.1 Functionally graded plate elements 

The finite element method is used for the vibration analysis of functionally graded plates. SOLID 185 is used for the 
modeling of general 3-D solid structures as shown in Fig. 2. It allows for prism and tetrahedral degenerations when 
used in irregular regions. The element is defined by eight nodes having three degree of freedom at each node. More 
than 2000 nodes might be used in calculation work. 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 2 
Solid 185. 

3    MATHEMATICAL FORMULATION    

Fig. 1 shows the geometry of a functionally graded plate. Considering the first order shear deformation theory, the 
displacement fields are expressed as follows [19]. 
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where ( 0 0 0, , , ,x yu v w   ) are unknown functions to be determined. As before, ( 0 0 0, ,u v w ) denote the displacements 

of a point on the plane z = 0; Note that 
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which indicate that x  and y  are the rotations of a transverse normal about the y- and x- axes, respectively as 

shown in Fig. 1.  
The strain displacement relations can be expressed as follows. 
In-plane strains at the mid-plane are: 
 

0 0
x

u

x


 


   

 
   (3) 

0 0
y

v

y


 


 

 
   (4) 

0 0 0
xy

u v

y x

 
  

 
 

 
   (5) 

            
The curvatures are: 
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The shear strains in xz and yz planes are: 
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The strain components at any point can thus be expressed as, 
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4    NUMERICAL RESULTS AND DISCUSSION     

The present study gives the free vibration results of moderately thick functionally graded plates with multiple 
circular and square cutouts. The boundary conditions considered here are various combinations of support 
conditions. The effects of boundary conditions, thickness ratio and aspect ratio are studied. 

The present study is validated by comparison with the results available in the literature. The default parameter 
values of the functionally graded plates are as follows. 

The default material properties used in the present study are as follows [18]: 
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In order to show the accuracy of methodology used for free vibration analysis of FG plates with cutouts, the 

fundamental natural frequencies of different plates (such as rectangular, trapezoidal and circular) with different 
cutouts (such as circular and non circular) are compared with the solutions presented by Maziar et al [16]. 

The material properties used in the convergence study are as follows [16]: 
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4.1 Isotropic plates 

Convergence study of free vibration analysis of a simply supported square plate with a square hole is analyzed in 
Table 1. The geometry and material properties of plate are a=10, size ratio d/a=0.5, thickness ratio h/a=0.01, Young 
modulus E=200 GPa and Density ρ=8000 Kg/m3. Convergence study of free vibration analysis of a simply 
supported square plate with a circular cut-out is analyzed in Table 2. The geometry and material properties of plate 
are a=10, radius to length ratio r/a=0.1, thickness ratio h/a=0.01, Young modulus E=200 GPa and density ρ=8000 
Kg/m3. 

Table 3 shows the first eight fundamental frequencies for the different values of volume fraction index and it is 
clearly observed that by increasing the volume fraction index fundamental frequencies get decreases and Table 4 
shows the effect of radius to length ratio on the fundamental frequencies of FG square plate with circular cut-outs. 
The result shows that the first fundamental frequency increases by increasing the radius to length ratio. 
 
 
 
Table 1 
Convergence of non-dimensional fundamental frequencies of isotropic square plate with square cut-out at the centre (simply 
supported for external boundaries) 
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         i=1                  2                    3                     4                    5                    6                     7                         8 
4 
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10 
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14 
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18 
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22 

[14] 
[17] 

 

5.6164 9.0338 9.6914 13.5788 16.8677 20.9517 21.4739 23.0141
5.0967 6.9922 7.0800 9.4111 9.8836 12.0658 12.1565 13.7822 
5.0290 6.7807 6.7852 8.9400 9.5327 11.5087 11.5130 12.7709 
5.0497 6.6769 6.7185 8.9439 9.1978 11.3475 11.4694 13.0727 
5.0141 6.6311 6.6390 8.8821 9.0313 11.2022 11.2095 12.8474 
4.9816 6.5422 6.5483 8.7488 8.8831 10.9980 11.0089 12.5498 
4.9724 6.5156 6.5207 8.6994 8.8295 10.9186 10.9278 12.4726 
4.9688 6.5073 6.5087 8.6869 8.8076 10.8938 10.9030 12.4544 
4.9627 6.4923 6.4944 8.6666 8.7724 10.8476 10.8538 12.3808 
4.9717 6.4810 6.4821 8.5509 8.8656    10.720    10.767      12.045 

    4.839       6.435    6.440    8.492    8.875    10.81    10.83      12.29 
 

 
 
 
Table 2 
Convergence of non-dimensional fundamental frequencies of isotropic square plate with circular cut-out at the centre (simply 
supported for external boundaries)

  
M=N 

1 / 42 4

2(1 )

h a

D

 


 
  

  
 

       i=1                   2                    3                    4                     5                   6                    7                      8 
4 
8 

10 
12 
14 
16 
18 
20 
22 

[14] 
[17] 

 

4.7060 8.1368 8.1867   9.9678 12.7068 12.9062 14.0269 14.3334
4.8037 7.9793 8.1344 10.6479 11.6635 12.2793 14.1800 14.6732 
4.5427 7.3067 7.3108   9.3510 10.3677 10.6530 12.0104 12.0195 
4.5506 7.3067 7.3254   9.3938 10.4106 10.8662 12.2459 12.2784 
4.5167 7.1959 7.2095   9.1565 10.1966 10.5088 11.7618 11.7849 
4.5090 7.1656 7.1668   9.0888 10.1199 10.4271 11.6410 11.6625 
4.5035 7.1501 7.1516   9.0494 10.0964 10.4056 11.5998 11.6115 
4.5003 7.1370 7.1382   9.0234 10.0669 10.3672 11.5485 11.5555 
4.4985 7.1312 7.1315    9.0123 10.0524 10.3517 11.5306 11.5319 

    6.149    8.577    8.634    10.42   11.41   11.84    12.83     12.84 
    6.240    8.457    8.462    10.23   11.72    12.30     13.04     13.04 
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Table 3 
Non-dimensionalized frequencies of FG square plate Al/Al2O3 with circular cut-outs (fully clamped for external boundaries 
a/b=1, h/a=0.1, r/a=0.1) 
  2( / ) /c ca h E    

n  i=1 2 3 4 5 6 7 8 
0  10.3922 18.6947 18.7431 27.0971 31.945 34.5005 38.6781 38.7893 
1      6.7675 12.1735 12.2056 17.6455 20.8027 22.4665 25.1871 25.2593 
          

5  5.3563 9.6351 9.6603 13.9661 16.4649   17.7818 19.9350 19.9922 
200  5.2847 9.5063 9.5315 13.7795 16.245 17.543 19.6686 19.7252 
 
 
Table 4 
Effect of radius to length ratio on the natural frequencies of FG square plate with circular cut-outs. (fully clamped for external 
boundaries, h/a =0.1, a/b = 1, n = 1) 

Mode 
 r /a 

0.1 0.2 0.25 0.3 
1  6.7675  8.3471 10.2182 13.3020 
2 12.1735 11.4107 12.3620 14.5994 
3 12.2056 11.4183 12.3827 14.6176 
4 17.6455 16.4718 16.2538 16.7916 
5 20.8027 19.1408 19.3117 21.2237 
6 22.4665 24.6926 24.5035 24.9747 
7 25.1871 24.7095          24.527 25.0130 
8 25.2593 27.3918          29.484 30.3411 
9 25.9366 30.0263 32.8261 32.2939 
10 25.9417 30.0276 32.9492 36.6964 

4.2 Rectangular plates 

Rectangular plates with multiple cutouts are shown in Fig. 3. 
 
 

 

 

 
 
 
 
 
 
 
 
Fig. 3 
Rectangular plates with multiple cutouts. 

 
 
Table 5 
Comparison of natural frequencies of FG rectangular plate with two circular cutouts (fully clamped for external boundaries) 
     Mode      
 1 2 3 4 5 6 7 8 9 10 

e/b           
0.5 512.55 648.11 805.35 1098.0 1251.9 1287.6 1466.3 1560.2 1801.6 1979.4 
[15] 516.59 642.85 826.80 1147.6 1287.4 1288.8 1526.9 1598.1 1817.7 - 
0.6 507.54 650.74 792.53 1107.1 1203.2 1213.2 1447.1 1584.9 1748.7 1904.3 
[15] 510.71 654.29 823.05 1153.4 1247.1 1278.8 1525.7 1671.5 1818.6 - 
0.7 503.58 642.15 785.82 1091.9 1110.9 1165.3 1440.4 1598.7 1735.0 1903.6 
[16] 503.90 663.07 832.46 1157.3 1183.6 1269.4 1519.3 1725.6 1817.4 - 
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Table 6 
Comparison of natural frequencies of FG rectangular plate with four circular cutouts (fully clamped for external boundaries) 
     Mode      

 1 2 3 4 5 6 7 8 9 10 
e/b           
0.7 487.08 620.94 756.67 1081.0 1250.0 1348.1 1387.3 1538.4 1765.9 1879.2 
[16] 486.40 633.55 801.23 1136.3 1251.1 1435.4 1489.5 1679.3 1890.0 2035.2 

 
 
Table 7 
Comparison of natural frequencies of FG rectangular plate with two square cutouts (clamped-free for external boundaries) 
     Mode      

 1 2 3 4 5 6 7 8 9 10 
e/b           
0.7 473.62 496.04 602.99 769.94 1017.0 1242.4 1275.0 1364.4 1402.5 1435.0 
[16] 470.74 476.14 541.35 837.44 922.06 1087.4 1095.6 1136.3 1245.3 1375.9 

 
 
Table 8 
Variation of natural frequencies with the volume fraction index n for Al/Al₂O₃ FG rectangular plates with two circular holes 
(fully clamped for external boundaries) 
      Mode      
  1 2 3 4 5 6 7 8 9 10 
h/b n           
0.04 0   947.42 1225.6 1627.8 2258.9 2270.6 2492.6 2906.7 3125.1 3475.6 3920.0 

 0.5   820.79 1017.3 1352.4 1872.3 1909.3 2023.5 2460.9 2597.4 2938.5 3252.9 
 1   656.11   838.38 1102.9 1529.8 1568.4 1694.0 2002.3 2126.4 2450.5 2677.3 
 2   667.44   819.91 1066.8 1449.8 1521.0 1614.8 2032.1 2103.1 2390.5 2423.1 

0.06 0 1323.9 1707.5 2231.2 3069.7 3103.8 3312.5 3940.6 4114.2 4231.2 4685.3 
 0.5 1077.4 1349.1 1764.8 2425.3 2516.1 2644.4 3211.7 3335.5 3736.2 3778.9 
 1   887.06 1082.7 1435.1 1971.8 2028.5 2156.3 2610.6 2739.5 3125.4 3383.6 
 2   729.59   918.40 1204.7 1666.3 1690.1 1787.9 2140.3 2343.7 2613.6 2827.6 

0.08 0 1675.9 2132.4 2796.0 3710.6 3855.2 4067.8 4133.9 4829.2 5179.5 5663.5 
 0.5 1292.7 1621.6 2120.1 2910.3 2934.5 3131.2 3743.8 3782.8 4035.7 4504.5 
 1 1005.6 1274.2 1683.8 2316.4 2333.1 2516.1 2974.8 3217.0 3412.0 3557.2 
 2   878.81 1081.5 1423.5 1947.1 1961.4 2101.3 2495.3 2693.0 2884.1 2966.0 
 
 

Table 5 shows the comparison of natural frequencies of FG rectangular plate of side ratio a/b=2 having two holes 
of radius ratio r/b=0.15 and centre to centre distance ratio e/b=0.5, 0.6 and 0.7. Thickness of the plate is h=0.05. 
Table 6 shows the comparison of natural frequencies of FG rectangular plate having same side ratio and thickness 
with four holes of radius ratio r/b=0.1 and centre to centre distance ratio e/b=0.7 and f/b=0.4. Table 7 shows the 
comparison of natural frequencies of FG rectangular plate of same side ratio, thickness with two square cutouts of 
side ratio d/b=0.1 and e/b=0.7. The variation of natural frequencies with the volume fraction exponent for Al/Al₂O₃ 
FG rectangular plates of side ratio a/b=2 and thickness ratio h/b=0.04, 0.06 and 0.08, having two holes of radius 
ratio r/b=0.1 and centre to centre distance ratio e/b=0.8 are shown in tables 8 and 9 respectively. The results for first 
ten modes are computed. For the FG plates with fully clamped external boundary condition, the frequencies in all 
ten modes decrease as the volume fraction index increases. This is expected, because a large volume fraction index 
means that a plate has a smaller ceramic component and thus its stiffness is reduced. Similar results are also 
observed for the clamped- clamped and clamped- free for external boundary conditions. From Tables 8 and 9, it is 
also observed that natural frequencies slowly improve as the thickness ratio h/b increases from 0.04 to 0.06. 

Table 10 shows that the variation of natural frequencies for first five modes of Al/Al₂O₃ FG rectangular plate 
(h/b=0.04) with two holes (r/b=0.1) for fully clamped, clamped-free and clamped-simply supported external 
boundary conditions are quite close to each other. 
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Table 9 
Variation of natural frequencies with the volume fraction index n for Al/Al₂O₃ FG rectangular plates with two circular holes 
(clamped-free for external boundaries) 
      Mode      
  1 2 3 4 5 6 7 8 9 10 
h/b n           
0.04 0   865.00   915.63 1063.9 1378.6 1783.1 2216.2 2310.9 2398.9 2484.0 2767.8 
 0.5   716.37   742.00   919.51 1155.7 1490.2 1826.6 1869.8 1986.8 2108.8 2297.8 
 1   582.40   607.83   720.84   637.92 1208.1 1504.5 1553.2 1616.4 1712.3 1899.8 
 2   567.73   582.81   743.11   943.25 1195.0 1421.6 1488.0 1549.3 1786.9 1878.5 
0.06 0 1210.5 1271.8 1458.7 1888.7 2427.5 2993.1 3067.9 3088.0 3290.8 3378.8 
 0.5   969.48 1006.3 1184.3 1514.0 1943.6 2406.5 2448.9 2587.6 2774.7 2788.4 
 1   767.75   786.47   967.83 1219.9 1575.1 1943.8 1988.0 2096.6 2238.3 2440.9 
 2   634.85   660.96   816.72 1046.9 1339.7 1577.5 1620.9 1770.4 1828.5 2052.6 
0.08 0 1530.6 1607.5 1869.0 2400.0 3082.3 3088.5 3645.6 3728.2 3825.4 4132.8 
 0.5 1154.4 1198.5 1421.8 1818.3 2328.3 2791.9 2836.6 2939.6 3132.6 3261.8 
 1   889.35   924.58 1101.6 1419.8 1834.8 2242.7 2304.4 2453.7 2518.4 2558.8 
 2   784.29   802.90   951.64 1211.8 1579.1 1915.3 1961.5 2091.5 2154.9 2176.5 
 
 
Table 10 
Variation of natural frequencies with the volume fraction index n for Al/Al₂O₃ FG rectangular plates with two circular holes 
(h/b=0.04) 
  n    

  0 0.5 1 2 
Boundary condition Mode     

CCCC 1    947.42    820.79            656.11    667.44 
 2 1225.6 1017.3   838.38    819.91 
 3 1627.8 1352.4 1102.9 1066.8 
 4 2258.9 1872.3 1529.8 1449.8 
 5 2270.6 1909.3 1568.4 1521.0 

CFCF 1    856.00    716.37    582.40    567.73 
 2    915.63    742.00    607.83    582.81 
 3 1063.9    919.51    720.84    743.11 
 4 1378.6 1155.7    637.92    943.25 
 5 1783.1 1490.2 1208.1 1195.0 

CSCS 1    947.24    820.68    656.15    657.42 
 2 1224.8 1016.9    838.38    814.09 
 3 1626.3 1351.7 1102.7 1065.0 
 4 2258.2 1871.3 1529.6 1446.6 
 5 2268.2 1908.9 1568.3 1544.4 

4.3 Trapezoidal plates 

Trapezoidal plates with multiple cutouts is shown in Fig. 4. 
 
 

 

 
 
 
Fig. 4 
Trapezoidal plates with multiple cutouts. 

 
Table 11 shows the comparison of natural frequencies of FG trapezoidal plate whose side ratio is b/a=0.7 and 

height is 1. Thickness of the plate is h=0.05. The plate has two holes of radius ratio r/a=0.05 at location A(x/a=0.25, 
y=0.45) and B(x/a=0.70, y=0.45) respectively. Table 12 shows the comparison of natural frequencies of FG 
trapezoidal plate of same side ratio, height and thickness with three holes of radius ratio r/a=0.05, 0.1 and 0.15 at 
location A(x/a=0.25, y/a=0.35), B(x/a=0.65, y/a=0.35) and C(x/a=0.45, y/a=0.75) respectively. 
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Table 11 
Comparison of natural frequencies of FG trapezoidal plate with two circular cutouts (fully clamped for external boundaries) 
     Mode      

 1 2 3 4 5 6 7 8 9 10 
r/a           

0.05 852.11 1449.5 1792.1 2368.8 2511.7 2971.5 3030.2 3089.8 3529.2 3686.3 
[16] 852.84 1489.5 1867.0 2405.1 2536.4 3156.6 3542.1 3775.3 3945.0 - 
0.1 842.86 1418.5 1835.8 2353.4 2413.6 2902.9 2985.2 3105.7 3615.6 3643.5 
[16] 840.27 1469.6 1869.8 2367.4 2501.3 3245.1 3549.3 3710.7 3951.8 - 
0.15 819.27 1390.5 1891.7 2276.5 2328.1 2826.8 3015.4 3191.8 3581.9 3614.7 
[16] 817.18 1444.3 1897.7 2332.4 2463.6 3277.3 3648.8 3736.3 3982.1 - 

 
 
Table 12 
Comparison of natural frequencies of FG trapezoidal plate with three circular cutouts (fully clamped for external boundaries) 
     Mode      

 1 2 3 4 5 6 7 8 9 10 
r/a           

0.05 427.44 539.52 1007.6 1109.5 1295.3 1330.8 1861.4 1963.1 2173.8 2335.5 
[16] 438.87 541.99   985.51 1166.8 1320.7 1829.2 1899.5 2237.9 2279.4 - 
0.1 444.41 545.51 1010.2 1131.8 1233.0 1322.2 1882.8 2065.0 2201.5 2252.5 
[16] 447.66 537.26   936.57 1167.4 1301.8 1769.7 1874.7 2132.0 2135.4 - 
0.15 461.74 564.00   994.79 1111.0 1184.5 1337.5 1828.4 2068.7 2137.3 2165.8 
[16] 462.49 534.93   881.02 1206.3 1301.6 1686.2 1805.1 1892.9 2122.0 - 

 
 
Table 13 
Variation of natural frequencies with the volume fraction index n for Al/Al₂O₃ FG trapezoidal plates with two circular holes 
(fully clamped for external boundaries) 
      Mode      

  1 2 3 4 5 6 7 8 9 10 
h/a n           
0.04 0 2149.8 3907.4 4528.9 5656.4 6388.7 6965.2 7508.9 7806.4 8508.8 8796.2 

 0.5 1591.6 2966.8 3412.9 4282.2 4854.7 5794.1 6281.3 6611.3 6843.6 7060.2 
 1 1218.9 2300.2 2636.0 3362.1 3853.5 4589.1 5190.6 5473.8 5730.2 6025.4 
 2 1040.9 1936.5 2196.0 2833.2 3163.7 3783.2 4390.5 4445.7 4826.3 5044.1 

0.06 0 2742.2 4890.8 5695.5 6933.5 7047.8 7777.9 7894.2 9030.7 9206.0 10311. 
 0.5 2110.7 3800.9 4471.6 5591.9 6239.1 6354.5 7114.3 7410.6 8113.1 8410.6 
 1 1663.4 3033.1 3532.2 4431.5 4938.1 5748.5 5873.2 6442.2 6765.3 6944.4 

 2 1358.7 2470.0 2824.9 3510.0 3968.3 4725.2 4819.2 5322.6 5457.9 5482.7 
0.08 0 3274.1 5776.2 6701.4 7140.6 7988.8 8050.8 8887.1 9207.9 10702. 11519. 
 0.5 2558.4 4480.1 5217.4 6386.9 6439.3 7144.4 7218.7 8191.9 8458.6 9740.6 
 1 2083.6 3752.3 4281.4 5328.5 5803.7 6009.7 6480.4 7045.8 7398.6 7998.7 
 2 1629.3 2911.3 3344.0 4074.5 4609.6 4848.6 5349.2 5438.3 6070.8 6163.4 
 
 
 

The variation of natural frequencies with the volume fraction exponent for Al/Al₂O₃ FG trapezoidal plates whose 
side ratio is b/a=0.6 and height is 1. Thickness ratio of the plate is h/a=0.04, 0.06 and 0.08. The plate has two holes 
of radius ratio r/b=0.1 at locations A(x/a=0.25, y/a=0.45) and B(x/a=0.70, y/a=0.45), respectively are shown in 
Tables 13 and 14. The results for first ten modes are computed. For the FG plates with fully clamped external 
boundary condition, the frequencies in all ten modes decreases as the volume fraction index increases. This is 
expected, because a large volume fraction index means that a plate has a smaller ceramic component and thus its 
stiffness is reduced. Similar results are also observed for the clamped-free and clamped-simply supported external 
boundary conditions. From Tables 13 and 14 it is also observed that natural frequencies slowly improve as the 
thickness ratio h/b increases from 0.04 to 0.06. Table 15 shows that the variation of natural frequencies for first five 
modes of Al/Al₂O₃ FG trapezoidal plate (h/a=0.04) with two holes (r/a=0.1) for fully clamped, clamped-free and 
clamped-simply supported external boundary conditions are quite close to each other. 
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Table 14 
Variation of natural frequencies with the volume fraction index n for Al/Al₂O₃ FG trapezoidal plates with two circular holes 
(clamped-free for external boundaries) 
      Mode      
  1 2 3 4 5 6 7 8 9 10 
h/a n           
0.04 0 1349.8 1585.4 2392.9 3266.1 3522.2 3692.9 4537.1 4581.4 6048.0 6297.7 
 0.5   998.16 1197.8 1803.8 2483.6 2639.1 3331.2 3405.0 3492.1 4572.4 4592.4 
 1   764.14   912.76 1392.8 1923.2 2071.3 2626.5 2674.7 3035.7 3610.7 3808.0 
 2   646.20   773.78 1175.8 1601.9 1713.1 2189.6 2251.4 2562.8 3018.4 3181.9 
0.06 0 1772.9 2096.7 3094.1 3745.6 4122.0 4424.3 5738.9 5832.7 6374.2 6416.3 
 0.5 1348.7 1617.1 2417.6 3194.9 3366.1 3473.3 4485.0 4517.0 5718.8 5764.2 
 1 1042.5 1253.4 1883.2 2528.8 2743.9 3050.6 3493.2 3533.1 4639.2 4983.7 
 2   861.09 1018.4 1536.1 2084.0 2232.6 2567.4 2851.1 2896.1 3796.2 4010.1 
0.08 0 2159.3 2583.7 3785.2 3792.8 4917.9 5335.6 6541.5 6616.3 6824.2 6945.2 
 0.5 1622.2 1916.9 2863.3 3398.1 3741.7 4005.0 5191.7 5314.9 5772.7 5830.6 
 1 1329.5 1556.9 2332.5 3077.8 3153.1 3383.6 4321.7 4396.7 5204.9 5260.7 
 2 1058.9 1246.2 1837.8 2459.8 2573.7 2629.4 3380.6 3425.7 4250.6 4324.3 
 
 
Table 15 
Variation of natural frequencies with the volume fraction index n for Al/Al₂O₃ FG trapezoidal plates with two circular holes 
(h/a=0.04) 
Boundary condition Mode n    

  0 0.5 1 2 
CCCC 1 2149.8 1591.6 1218.9 1040.9 

 2 3907.4 2966.8 2300.2 1936.5 
 3 4528.9 3412.9 2636.0 2196.0 
 4 5656.4 4282.2 3362.1 2833.2 
 5 6388.7 4854.7 3853.5 3163.7 

CFCF 1 1349.8    998.16    764.14   646.20 
 2 1585.4 1197.8    912.76   773.78 
 3 2392.9 1803.8 1392.8 1175.8 
 4 3266.1 2483.6 1923.2 1601.9 
 5 3522.2 2639.1 2071.3 1713.1 

CSCS 1 2137.5 1518.1 1213.9 1035.7 
 2 3888.6 2956.3 2294.9 1931.1 

 3 4489.3 3381.0 2616.8 2179.7 
 4 5591.4 4249.1 3342.3 2813.5 
 5 6346.1 4831.1 3835.7 3147.1 

4.4 Circular Plates or Discs 

Circular plates with different cutouts are shown in Fig. 5 
 

 

 
 
 
 
 
 
 
Fig. 5 
Circular plates with two cutouts. 
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Table 16 shows the comparison of natural frequencies of FG circular disc of radius R=1 with circular holes of 
radius r=0.1 at locations A(x/R=-0.55, y/R=0) and B(x/R=0.55, y/R=0) respectively. Thickness of the plate is 
h=0.05. Table 17 shows the variation of natural frequencies of Al/Al₂O₃ FG circular plate of radius R=1 having two 
holes of radius r = 0.1 at locations A(x/R= -0.5, y/R=0) and B(X/r = 0.5, y/R=0) respectively. Thickness ratio of the 
plate is h/R=0.04, 0.06 and 0.08 respectively. The results for first ten modes are computed. For the FG plates with 
fully clamped external boundary condition, the frequencies in all ten modes decreases as the volume fraction index 
increases. This is expected, because a large volume fraction index means that a plate has a smaller ceramic 
component and thus its stiffness is reduced. The comparisons show good agreement with most of the differences 
being less than 10 % and the maximum difference being 4 %. 

 
 
 
Table 16 
Comparison of natural frequencies of FG circular disc with two circular cutouts (fully clamped for external boundaries) 
     Mode      
 1 2 3 4 5 6 7 8 9 10 

r/R           
0.1 202.04 413.77 421.03 668.48 684.35 782.04 954.79 973.43 1123.9 1248.7 
[16] 206.01 420.34 427.10 684.40 694.61 782.63 991.48 1009.4 1173.5 - 
0.15 209.07 430.69 446.52 695.70 741.85 808.34 961.35 1071.9 1131.8 1265.5 
[16] 207.64 420.05 437.29 678.39 720.89 795.19 977.63 1051.3 1161.2 - 
0.2 210.75 420.98 460.54 676.99 775.70 836.75 959.11 1105.6 1178.8 1254.4 
[16] 204.84 411.34 444.64 659.38 727.09 823.53 946.89 1069.6 1176.0 - 

 
 
Table 17 
Variation of natural frequencies with the volume fraction index n for Al/Al₂O₃ FG circular plates with two circular holes (fully 
clamped for external boundaries) 
      Mode      

  1 2 3 4 5 6 7 8 9 10 
h/a n           
0.04 0 464.14   946.79   959.26 1541.2 1566.2 1732.9 2239.6 2286.1 2554.0 2643.8 
 0.5 410.78   832.36   870.92 1357.0 1377.4 1562.2 1911.7 1944.6 2269.0 2466.2 
 1 336.07   685.58   692.46 1129.2 1154.5 1265.5 1600.2 1625.3 1848.2 1985.5 
 2 291.81   568.65   582.18   936.01   992.84 1037.0 1345.5 1388.8 1513.8 1727.1 
0.06 0 576.64 1144.5 1167.6 1837.6 1883.2 2079.2 2626.3 2677.9 3026.9 3125.2 
 0.5 502.96 1000.4 1031.8 1656.6 1683.2 1850.3 2378.7 2419.1 2714.3 2895.6 
 1 401.20   809.53   825.37 1343.2 1357.3 1522.4 1881.5 1937.5 2237.7 2357.0 
 2 343.23   681.15   682.30 1105.3 1121.9 1239.0 1552.3 1594.4 1778.8 1902.7 
0.08 0 757.34 1481.6 1507.7 2367.5 2384.6 2638.5 3244.0 3291.6 3307.3 3348.0 
 0.5 584.96 1167.9 1195.9 1909.6 1924.6 2189.9 2673.0 2741.2 2939.1 2996.8 
 1 468.48   913.55   941.98 1493.7 1512.4 1647.8 2123.0 2188.6 2394.1 2505.6 
 2 392.02   764.37   792.53 1248.7 1267.0 1388.4 1766.3 1795.6 1990.1 2105.6 
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Fig. 6 
Variation of non dimensional fundamental frequencies with 
different thickness ratio (h/a) of FG square plate with 
circular hole. 
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The variation of first ten natural frequencies with the thickness ratio of 0.6, 0.8 and 1.0 are shown in Fig. 6. This 
is observed from the figure that the variation in frequencies is almost constant as the thickness ratio increases from 
0.6 to 0.8 and from 0.8 to 1.0. The variation of first ten natural frequencies with the different value of circular cut 
outs is shown in Fig. 7.  From this figure, it is clear that the first frequency of vibration is only increasing as the size 
of cutouts increases and the rest of other frequencies are not showing the clear distinction in the variation of 
frequencies. 
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Fig. 7 
Variation of non dimensional fundamental frequency with 
different circular cutouts in a square FG plate.  
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Fig. 8 
Variation of non dimensional fundamental frequency with 
different volume fraction index for FG square plate with 
circular hole. 

 
The first ten modes of frequencies with the different values of volume fraction index for FG square plate with 

circular cutouts are shown in Fig. 8. From this figure, it is observed that as the volume fraction index increases from 
0 to 3, the frequencies continuously decreasing but as the volume fraction index increases from 5 to 200, the 
variation in the frequencies are negligible. 

5    CONCLUSIONS 

Free vibration problem of moderately thick functionally graded plates of different shapes with different cutouts has 
been solved using the finite element method. The methodology developed proved robust and efficient solutions for 
the vibration analysis of functionally graded plates for different boundary conditions. The effect of volume fraction 
exponent on natural frequencies have been carried out and found that a volume fraction exponent that ranges from 0 
to 3 has a significant influence on the natural frequency of functionally graded plates. The natural frequency of 
moderately thick functionally graded plates decreases as the volume fraction index increases and increases as the 
thickness ratio increases. Extensive parametric studies with respect to the effect on natural frequencies have been 
carried out and the results have been plotted for future reference. 
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