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ABSTRACT 
In this paper static and dynamic responses of a fixed-fixed microbeam to electrostatic force and 
mechanical shock for different cases have been studied. The governing equations whose solution 
holds the answer to all our questions about the mechanical behavior is the nonlinear elasto-
electrostatic equations. Due to the nonlinearity and complexity of the derived equations analytical 
solution are not generally available; therefore, the obtained differential equations have been solved 
by using of a step by step linearization method (SSLM) and a Galerkin based reduced order 
model. The pull-in voltage of the structure and the effect of shock forces on the mechanical 
behavior of undeflected and electrostatically deflected microbeam have been investigated. The 
proposed models capture the other design parameters such as intrinsic residual stress from 
fabrication processes and the nonlinear stiffening or stretching stress due to beam deflection. 
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1    INTRODUCTION 

ICROELECTROMECHANICAL systems (MEMS) are increasingly gaining popularity in modern 
technologies, such as atomic force microscope (AFM), sensing sequence-specific DNA, and detection of 

single electron spin, mass sensors, chemical sensors, and pressure sensors [1–4]. MEMS devices are generally 
classified according to their actuation mechanisms. Actuation mechanisms for MEMS vary depending on the 
suitability to the application at hand. The most common actuation mechanisms are electrostatic, pneumatic, thermal, 
and piezoelectric [5]. Electrostatically actuated devices form a broad class of MEMS devices due to their simplicity, 
as they require few mechanical components and small voltage levels for actuation [5], which the electrostatic 
actuation is inherently non-linear. Microbeams (e.g., fixed-fixed and cantilever microbeams) under voltage driving 
are widely used in many MEMS devices such as capacitive micro-switches and resonant micro-sensors. These 
devices are fabricated, to some extent, in a more mature stage than some other MEMS devices. Fixed-fixed 
microbeams due to their high natural frequencies are widely used in resonant sensors and actuators. One of the most 
important issues in the electrostatically-actuated micro-devices is the pull-in instability. The pull-in instability is a 
discontinuity related to the interplay of the elastic and electrostatic forces. When a potential difference is applied 
between a conducting structure and a ground level, the structure deforms due to electrostatic forces. The elastic 
forces grow about linearly with displacement whereas the electrostatic forces grow inversely proportional to the 
square of the distance. When the voltage is increased the displacement grows until at one point the growth rate of the 
electrostatic force exceeds than the elastic force and the system cannot reach a force balance without a physical 
contact, thus pull-in instability occurs. The critical voltage is known as “pull-in voltage”. Some previous studies 
predicted pull-in phenomena based on static analysis by considering static application of a DC voltage [6-9].  
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Mechanical shock is one of the most critical parameters which is directly related to MEMS reliability, so it must 
be studied sufficeintly. MEMS devices can be exposed to shock during fabrication, deployment and operation. Some 
problems such as cracking, chipping and fracture due to mechanical shock which have dramatic influence on 
reliability and so long term stability of these kind of devices and it can also cause damage due to severe motion of 
portions of the device, which may lead to mechanical and/or electrical failure [10]. Mechanical shock loads can 
cause microstructures such as microbeams, to hit the stationary electrodes underneath them, causing stiction [11] 
and short circuit problems [12] and hence failure it. Failure in MEMS devices can occur through stiction and electric 
short circuits due to contacts between movable and stationary electrodes. The most cases of MEMS devices are 
fabricated of silicon or polysilicon, so, they have high toughness against stretching stresses due to shock loads. But 
when they hit substrate, they can be broken due to the contact stresses. A shock can be defined as a force applied 
suddenly and over a short period of time relative to the natural period of the structure [13] and a shock load pulse 
can be characterized by maximum value, duration and shape. MEMS devices response to mechanical shock has been 
studied by several researches. The response of commercial accelerometers to shock loads has experimentally been 
studied by Beliveau et al. [14] and reported some unexpected results. Brown et al. [15] subjected commercial 
accelerometers and a pressure sensor to high-tests. They could not receive suitable results and suggested that an 
improved dynamic model of MEMS devices under shock load is needed. Lim et al. [16] studied the effects of shock 
on a MEMS actuator using the FE software ANSYS. Wagner et al. [17] studied the response of a MEMS 
accelerometer to a shock load induced by a drop test. They used the linear beam theory, for rough estimations and 
FE analysis to calculate the stress history of the device during impact. Fan and Shaw [18] simulated the response of 
a comb-drive accelerometer subjected to severe dynamic shock loads in all directions using an FE model in software 
ABAQUS. They remarked that this problem requires a highly non-linear transient dynamic analysis, which is 
computationally very expensive. Li and Shemansky [19] studied the motion of MEMS accelerometers during drop 
tests. They used a single-degree-of-freedom (SDOF) model and a continuous system beam model to account for the 
flexibility of the structures and calculated their maximum deflection. Srikar and Senturia [20] modeled 
microstructures using an undamped SDOF model attached to an accelerating base. Yee et al. [21] and Millet et al. 
[22] analyzed the behavior of fixed-fixed microbeams under shock loads. They used a linear beam model for small-
deflection cases and Raleigh-Ritz technique for large-deflection cases and indicated that their solution is not 
numerically accurate even for small deflections. Tas et al. [11] identified electrostatic and acceleration forces during 
shock as two possible causes of the contact of the microstructures during the operation of the MEMS devices, but 
they did not study the simultaneous effect of electrostatic forces and mechanical shock loadings. Coster et al. [23] 
modeled the behavior of the RF MEMS switch actuated by an electrostatic force subjected to shock using a SDOF 
model. From the aforesaid background, it is understood that there is an insufficiency in the study of MEMS devices 
response under simultaneous effects of the electrostatic forces with mechanical shock loading.  

In this paper Galerkin based step by step linearization method (SSLM) and reduced order model, have been used 
based on a continuous beam model to investigate the static and dynamic response of MEMS devices employing 
fixed-fixed beams. Initially, it is focused on the static electrostatic loading considering the effects of stretching and 
residual stresses and investigating the static pull-in of the structure. Next, the dynamic response of an 
electrostatically deflected microbeam under different shock types with different shock durations and amplitudes is 
studied. It is presented as a complete solution for the shock problem of a fixed-fixed microbeam for the cases of 
half-sine shock pulse, saw-tooth shock pulse and rectangular shock pulse. Also combination of electrostatic force 
and half-sine shock pulse on the shifting of the pull-in voltage has been studied.  

2    NONLINEAR DISTRIBUTED ELECTROMECHANICAL COUPLED MODEL 

Fixed-fixed microbeams are of primary interest here (see Fig. 1) that the work is easily extendable to cantilevered 
beams. Capacitively-actuated microbeam is a suspended elastic beam with an applied electrostatic force. The device 
consists of a plate, called the ‘‘beam’’, suspended over a dielectric film deposited on top of the center conductor and 
fixed at both ends to the ground conductor. When a voltage is applied between the beam and substrate, the attractive 
electrostatic pressure pulls the beam down towards the dielectric film. The dielectric film serves to prevent stiction 
between the beam and substrate, and yet provides a low impedance path between the two contacts.  
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Fig. 1 
Schematic view of an electrostatically actuated fixed-fixed 
microbeam. 
 

The governing equation of motion for the transverse displacement of the beam ),( txw  actuated by a mechanical 
shock and an electrostatic load of voltageV  is written as: 
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where E
~

 is dependent on the beam width b and film thickness h . A beam is considered wide when hb 5≥ . Wide 
beams exhibit plane-strain conditions, and therefore, E

~
 becomes the plate modulus )1( 2υ−E , where E  and υ  are 

the Young’s modulus and Poisson’s ratio, respectively. A beam is considered narrow when hb 5< . In this case, E
~

 
simply becomes the Young’s modulus, E . )12( 3bhI =  is the effective moment of inertia of the cross-section 
which is wide relative to thickness and width, ρ  is density, ε  and d  are the dielectric constant of the gap medium 
and initial gap, respectively. The microbeam is subject to a viscous damping, which can be due to squeeze-film 
damping. This effect is approximated by an equivalent damping coefficient c  per unit length [9], a  is the package 
acceleration created by a mechanical shock force due to dropping of the package ( )(0 tgaa = ) where 0a  is the 
amplitude of the shock pulse and )(tg  is the shape of it. The fixed-fixed beam’s boundary conditions are given by: 
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2.1. Stretching Stress Effect 

Fixed-fixed microbeams represent an example of microstructure suffering from the geometric nonlinearity mid-
plane stretching. When a beam is in bending, the actual beam length L′  is longer than the original length L , 
although there is no displacement in the x  direction at the beam ends. The actual length along the center line of the 
beam is calculated by integrating the arc length sd  along the curved beam based on the cubic shape functions for 
small deflection of beam, :)(xw  
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Considering wL >> , hence 1)dd( 2 <<xw , as a result, the elongation is approximately given by: 
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Therefore the stretching stress and force is given by: 
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2.2. Residual Stress Effect 

Residual stress, due to the inconsistency of both the thermal expansion coefficient and the crystal lattice period 
between the substrate and thin film, is unavoidable in surface micromachining techniques. Accurate and reliable data 
for residual stress are crucial to the proper design of MEMS devices that are related to these techniques [24, 25]. 
Considering the fabrication sequence of MEMS devices, residual force can be expressed as: 
 

bhN rr )1( υσ −=  (6) 

where rσ  is the biaxial residual stress [26], and υ  is the Poisson’s ratio. Assuming the stretching and residual 
stresses effects, the governing differential equation takes the following form: 
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For convenience in analysis, this equation must be non-dimensionalized. In particular, both the transverse 
displacement, w , and the spatial coordinate, x , are normalized by characteristic lengths of the system and the gap 
size and beam length, respectively, according to: dww /ˆ =  and Lxx /ˆ = . Time is non-dimensionalized by a 
characteristic period of the system according to: ∗= ttt /ˆ  with 2/1* )~/( IEbhLt 4ρ= .                                                   

Substituting these parameters into Eq. (7), the following nondimensional equation is obtained: 
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The non-dimensional parameters appeared in Eq. (8) are: 
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3    NUMERICAL SOLUTIONS 

3.1. Static Analysis 

In the static analysis there is no exist time derivatives and the shock forcing term, so using Eq. (8) the governed 
equation describing the static deflection of the microbeam can be obtained as follow: 



Fathalilou et al. / Journal of Solid Mechanics 1 (2009) 45-57                   49 
 

© 2009 IAU, Arak Branch  

[ ] 0
)ˆ(ˆ1ˆd

ˆdˆˆ
ˆd
ˆd),ˆ(

2

12

2

4

4
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−+−=
xw

V

x

w
NN

x

w
VwL

s

s
ra

s
s α  (10) 

 
where the )ˆ(ˆ xws  for fixed-fixed end microbeam must be satisfied same boundary condition as mentioned in Eq. 
(2). Due to the nonlinearity of derived equation, the solution is complicated and time consuming. Direct applying 
Galerkin based reduced order model create a set of nonlinear algebraic equation. In this paper we use a method to 
solve it which consists of two steps. In first step, we use step by step linearization method (SSLM), and in second, 
Galerkin method for solving the linear obtained equation is used. Because of considerable value of ŵ  respect to 
initial gap especially when the applied voltage increases, the linearizing respect to ŵ , may causes some considerable 
errors, therefore, to minimize the value of errors, the method of step-by-step applied voltage increasing is proposed 
and the governing equation is linearized at each step [27]. 

To use SSLM, it is supposed that the k
sŵ , is the displacement of beam due to the applied voltage kV . Therefore, 

by increasing the applied voltage to a new value, the displacement can be written as: 
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Therefore, Eq. (10) can be rewritten as follow: 
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By considering small value of Vδ , it is expected that ψ  would be small enough, hence using of Calculus of 

Variation Theory and Taylor’s series expansion about kŵ , and applying the truncation to first order of it for 
suitable value of Vδ , it is possible to obtain desired accuracy. The linearized equation to calculate ψ  can be 
expressed as: 
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where variation of the hardening term based on Calculus Variation Theory can be expressed as: 
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By considering small value of V̂δ  and as a result )ˆ(xψ , multiplying aN̂δ  to 22 ˆd/d xψ would be small enough 
that can be neglected. The obtained linear differential equation is solved by Galerkin based reduced order model. 

)ˆ(xψ  based on function spaces can be expressed as: 
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where )ˆ(xiφ  is the ith shape function that satisfies the boundary conditions. The unknown )ˆ(xψ , is approximated by 
truncating the summation series to a finite number, n:  
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By substituting the Eq. (17) into Eq. (14), and multiplying by )ˆ(xiφ  as a weight function in Galerkin method and 

then integrating the outcome from 1    to0ˆ =x , the Galerkin based reduced-order model is generated.  

3.2. Dynamic Analysis 

To study the fixed-fixed microbeam response to dynamic loading a Galerkin-based reduced order model can be used 
[28]. Because of the non-linearity of the stretching and electrostatic force terms, direct applying of reduced order 
model to dynamic equation (Eq. (8)) leads to generation of n nonlinear coupled ordinary differential equation and 
consequently the solution is more complicated. To solve this difficulty, the hardening )ˆ( aN  and forcing terms in Eq. 
(8) are considered a constant term in each time step of integration and takes the value of previous step. By selecting 
small enough time steps this assumption leads to accurate enough results. Now Eq. (8) can be rewritten as following: 
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To achieve a reduced order model, )ˆ,ˆ(ˆ txw can be approximated as: 
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By substituting the Eq. (19) into Eq. (18) and multiplying by )ˆ(xiφ  as a weight function in Galerkin method and 

then integrating the outcome from 1    to0ˆ =x , the Galerkin based reduced order model is generated as: 
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where mKC M ,, and aK  are mass, damping, mechanical and axial stiffness matrices, respectively. Also F  
introduces the forcing vector. The mentioned matrices and vector are given by: 
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Now, Eq. (20) can be integrated over time by various numerical integration methods where aN̂  and )ˆ,ˆ(ˆ txw  in each 
time step of integration take the value of previous step.  
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4    NUMERICAL RESULTS AND DISCUSSION  

4.1. Microbeam behavior under static electrostatic load 

The pull-in results for a fixed-fixed microbeam obtained from our proposed method are compared with the results 
predicted in [7] and [8]. The fixed-fixed microbeam’s geometric and material properties are given as follows [8]: 
Young’s modulus E  is 169 GPa, Poisson’s ratio is 0.06, width of the beam b  is 50μm  for the simple beam, beam 
thickness h  is 3μm , initial gap d  is 1μm , and the permittivity of air is 8.85 pF/m. The results of Tables 1 and 2 
indicate that pull-in voltages calculated from the proposed method agree well with the results calculated from the 
predicted results by GDQM algorithm [7] and the 2-D distributed model and the 3-D MEMCAD model [8]. 

4.2. Microbeam behavior under dynamic loadings 

As a case study, the geometric and material properties of the fixed-fixed microbeam in all following sections are: the 
length of the beam L  is 900μm , the width of the beam b  is 100μm , Young’s modulus E

~
 is 169 Gpa , the 

thickness h  is 1.5μm , the initial gap d  is 2μm and the permittivity of air ε  is 8.85 pF/m. The pull-in voltage of 
this structure based on SSLM static analysis is 3.45 V that in the following sections, the pull-in instability based on 
some other conditions has been studied. 

4.2.1. Mechanical shock loading on the undeflected microbeam  

In this section, the dynamic behavior of the microbeam under a shock load is studied. The shock profile )(tg  can be 
approximated as a half-sine, a saw-tooth, or a rectangular pulse [29]. These pulses are expressed mathematically as: 
 

For half-sine pulse: { })()(sin)( TtHtHt
T

tg −−⎟
⎠
⎞

⎜
⎝
⎛=
π

           

For saw-tooth pulse: { } TTtrTtrtrtg /)()2/(2)(2)( −+−−=  
For rectangular pulse: )()()( TtHtHtg −−=  
 
where T  is the shock duration and )(tH  is the unit step function, and )(tr  is the unit ramp function. The duration 
of this pulse can vary from 0.1 to 1.0 ms, which spans all the possible durations of the shock pulse in the case of a 
hard-floor drop test [29]. 
 
Table 1 
Comparison of calculated pull-in voltages for fixed-fixed beams with m L μ250=  
Residual Stress (MPa) 0 100 -25 
V proposed model (SSLM) 39.42 57.65 33.49 
V (GDQM) [7] 39.13 57.62 33.63 
V (2D) [8] 39.50 56.90 33.70 
V (MEMCAD) [8] 40.10 57.60 33.60 
 
 
Table 2 
Comparison of calculated pull-in voltages for fixed-fixed beams with m L μ350=  
Residual Stress (MPa) 0 100 -25 
V proposed model (SSLM) 20.12 36.02 13.53 
V (GDQM) [7] 20.36 35.99 13.60 
V (2D) [8] 20.20 35.40 13.80 
V (MEMCAD) [8] 20.30 35.80 13.70 
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Figs. 2a and 2b depict the time response of the microbeam under a 1000g half-sine shock pulse for the cases of 
0.1=T  and ms1.0  T = , respectively. In Figs. 2c and 2d, the micro beam is subjected to a 500g half-sine shock 

pulse in 0.1=T  and ms1.0  T = and in Figs. 3a and 3b a 1000g saw-tooth shock pulse is applied to the microbeam. 
It should be pointed out that all above cases are in no damping case. Figs. 3c and 3d show the dynamic behavior of 
the microbeam subjected to rectangular shock pulse in 0.1=T  and ms1.0  T = . With attention to the response of 
the microbeam to shock load in 0.1 ms duration, which is close to the natural period of the microbeam, it can be seen 
that the maximum amplitude of the microbeam is larger than that subjected to shock pulse in 1 ms duration. It is 
noted that the maximum amplitude of the microbeam in rectangular shock pulse is larger than the cases of saw-tooth 
and half-sine shock pulses but saw-tooth and half-sine cases are in the same range. 

As mentioned in previous works [16, 29], the half-sine shape is a good representation for the shape of the actual 
shock pulse. So, is assumed the shock profile to be a half-sine in the next sections. Figs. 4a and 4b depict the effect 
of stretching stresses in the response of the microbeam versus shock amplitude in no damping case in two different 
shock durations. It is noted that by considering stretching stress effect in the governed equation, the microbeam 
deflection changes non-linearly with the shock amplitude and without this effect, it changes linearly. As shown, in 
small shock amplitudes, the effect of stretching is negligible but in higher shocks this effect is considerable. In Fig. 
5, the effect of residual stresses on the microbeam response to shock pulse is investigated. As seen, when the 
residual stress increases, the microbeam becomes more resistant to shock because it gets stiffer. Figs. 6a and 6b 
compare the response of the microbeam for different damping ratios in the case of 0.1=T ms and 1.0=T ms, 
respectively. 
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Fig. 2 
Time history of undamped response of the microbeam subjected to half-sine shock pulse; (a): 1000g shock amplitude, T=1 ms; 
(b): 1000g shock amplitude, T=0.1 ms; (c): 500g shock amplitude, T=1 ms; (d): 500g shock amplitude, T=0.1 ms. 
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Fig. 3 
Time history of the undamped response of the microbeam subjected to saw-tooth shock pulse; (a): T=1 ms; (b): T=0.1 ms and 
rectangular pulse; (c): T=1 ms; (d): T=0.1 ms with 1000g shock amplitude.
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Fig. 4 
The difference between the linear and nonlinear model of the microbeam in ;0=ζ  (a) T=1 ms; (b): T=0.1 ms. 
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In the case of 0.1=T ms, the response for no damping and damping ratio of 0.1 are compared and as seen, when 
the shock amplitude increases, damping parameter becomes considerable. In the case of 1.0=T ms, because of the 

1.0=ζ  cannot enough damp small oscillations of the microbeam in shock durations; the effect of damping is 
considerable up to higher damping ratios. 

4.2.2. Mechanical shock loading on electrostatically deflected microbeam  

When the shock load is applied to the electrostatically deflected microbeam, the governed equation can be written 
as:  
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The initial condition of the electrostatically deflected microbeam is: )ˆ(ˆ)0,ˆ(ˆ xwxw s= . By comparing Figs. 7a and 

7b, it is clear that 2.10 V is the pull-in voltage in this type of actuation and with attention to Figs. 8a and 8b, it can 
be gained that 1.75 V is the pull-in voltage in 0.1 ms shock duration case. 
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Fig. 5 
Response of the microbeam subjected to half-sine shock 
pulse for different residual stresses in .0=ζ  
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Fig. 6 
Maximum deflection of the microbeam subjected to half-sine shock for various damping ratios; (a): T=1 ms; (b): T=0.1 ms.
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Fig. 7 
Normalized maximum deflection of the deflected microbeam with half-sine shock with T=1 ms and 1000g shock amplitude 
actuation in ;0=ζ  (a): Vdc=2.05 V; (b): Vdc=2.10 V. 
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Fig. 8 
Normalized maximum deflection of the microbeam under DC and half-sine shock with T=0.1 ms and 1000g shock amplitude 
actuation in undamped condition; (a): Vdc=2.05 V; (b): Vdc=2.10 V.
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Fig. 9 
Pull-in voltage versus half-sine shock amplitude. 
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So it can be concluded that by decreasing the shock duration, the pull-in voltage decreases. Fig. 9 shows that by 
increasing the shock amplitude, the pull-in voltage decreases, so that it can be divided in two stable and unstable 
regions. If the actuation point be placed on the right hand, the system is unstable and if be placed in left hand, the 
system is stable. 

5    CONCLUSION 

In the presented work the mechanical behavior of a fixed-fixed microbeam under electrostatic actuation and 
mechanical shock was investigated. The governing nonlinear elasto-electrostatic equation of the microbeam was 
derived considering design parameters such as intrinsic residual stress from fabrication processes and the nonlinear 
stiffening or stretching stress due to beam deflection. Because of the nonlinearity and complexity of the derived 
static and dynamic equations, they were solved using step by step linearization method and Galerkin based reduced 
order model, respectively. Then the pull-in voltage of the structure in the case of static actuating by an applied DC 
voltage was calculated. The effect of shock forces on the mechanical behavior for undeflected and electrostatically 
deflected micro beam also was studied and shown that the mechanical shock can lead the structure to an unstable 
position in a lower applied voltage than the static electrostatic pull-in voltages. Also it was shown that by 
considering stretching stress effect in the governed equation, the microbeam deflection changes non-linearly with 
the shock amplitude and without this effect, it changes linearly and in small shock amplitudes, the effect of 
stretching is negligible but in higher shocks this effect is considerable. Finally, it was concluded that by decreasing 
the shock duration and increasing the shock amplitude, the pull-in voltage decreases. 

 REFERENCES  

[1] Basso M., Giarre L., Dahleh M., Mezic I., 1998, Numerical analysis of complex dynamics in atomic force microscopes, 
in: Proceedings of the IEEE International Conference on Control Applications, Trieste, Italy, 1-4 September: 1026-
1030. 

[2] Fritz J., Baller M.K., Lang H.P., Rothuizen H., Vettiger P., Meyer E., Gntherodt H.J., Gerber C., Gimzewski J.K., 
2001, Translating bio-molecular recognition into nanomechanics, Science 288: 316-318. 

[3] Sidles J.A., 1991, Noninductive detection of single proton-magnetic resonance, Applied Physics Letters 58(24): 2854-
2856. 

[4] Nabian A., Rezazadeh Gh., Haddad-Derafshi M., Tahmasebi A., 2008, Mechanical behavior of a circular micro plate 
subjected to uniform hydrostatic and non-uniform electrostatic pressure, Microsystem Technologies 14: 235-240. 

[5] Senturia S., 2001, Microsystem Design, Kluwer, Norwell, MA, USA. 
[6] Rezazadeh Gh., Sadeghian H., Abbaspour E., 2008, A comprehensive model to study nonlinear behaviour of 

multilayered micro beam switches, Microsystem Technologies 14(1): 143. 
[7] Sadeghian H., Rezazadeh Gh., Osterberg P.M., 2007, Application of the generalized differential quadrature method to 

the study of pull-in phenomena of mems switches, Journal of Microelectromechanical Systems 16(6). 
[8] Osterberg P.M., Senturia S.D., 1997, M-Test: a test chip for MEMS material property measurement using 

electrostatically actuated test structures, Journal of Microelectromechanical Systems 6: 107-118. 
[9] Abdel-Rahman E.M., Younis M.I., Nayfeh A.H., 2002, Characterization of the mechanical behavior of an electrically 

actuated microbeam, Journal of Micromechanical Microengineering 12: 759-766. 
[10] Younis M.I., Jordy D., Pitarresi J.M., 2007, Computationally efficient approaches to characterize the dynamic response 

of microstructures under mechanical shock, Journal of Microelectromechanical Systems 16(3). 
[11] Tas N., Sonnenberg T., Jansen H., Legtenberg R., Elwenspoek M., 1996, Stiction in surface micromachining, Journal 

of Micromechanical Microengineering 6(4): 385-397. 
[12] Tanner D.M., Walraven J.A., Helgesen K., Irwin L.W., Smith N.F., Masters N., 2000, MEMS reliability in shock 

environments, in: Proceedings of the IEEE International Reliability Physics Symposium, 129-138. 
[13] Meirovitch L., 2001, Fundamentals of Vibrations, McGraw-Hill, Boston, USA. 
[14] Béliveau A., Spencer G.T., Thomas K.A., Roberson S.L., 1999, Evaluation of MEMS capacitive accelerometers, 

Design & Test of Computers, IEEE 16: 48-56. 
[15] Brown T.G., Davis B., Hepner D., Faust J., Myers C., Muller P., Harkins T., Hollis M., Miller C., Placzankis B., 2001, 

Strapdown microelectromechanical (MEMS) sensors for high-G munition applications, IEEE Transactions on 
Magnetics 37: 336-342. 

[16] Lim B.B., Yang J.P., Chen S.X., Mou J.Q., Lu Y., 2002, Shock analysis of MEMS actuator integrated with HGA for 
operational and non-operational HDD, In: Digest of the Asia-Pacific Magnetic Recording Conference, WE-P-18-01-
WE-P-18-02. 



Fathalilou et al. / Journal of Solid Mechanics 1 (2009) 45-57                   57 
 

© 2009 IAU, Arak Branch  

[17] Wagner U., Franz J., Schweiker M., Bernhard W., Muller-Fiedler R., Michel B., Paul O., 2001, Mechanical reliability 
of MEMS-structures under shock load, Microelectronics Reliability. 41: 1657-1662. 

[18] Fan M.S., Shaw H.C., Dynamic response assessment for the MEMS accelerometer under severe shock loads, In: 
National Aeronautics and Space Administration NASA, Washington, DC, TP-2001-20997. 

[19] Li G.X., Shemansky J.R., 2000, Drop test and analysis on micro-machined structures, Sensors Actuators A 85: 280-
286. 

[20] Srikar V.T., Senturia S.D., 2002, The reliability of microelectromechanical systems (MEMS) in shock environments, 
Journal of Microelectromechanical Systems 11: 206-214. 

[21] Yee J.K., Yang H.H., Judy J.W., 2003, Shock resistance of ferromagnetic micromechanical magnetometers, Sensors 
Actuators A 103: 242-252.  

[22] Millet O., Collard D., Buchaillot L., 2002, Reliability of packaged MEMS in shock environments: crack and stiction 
modeling, In: Design, Test, Integration and Packaging of MEMS/MOEMS, Cannes, 696-703. 

[23] Coster J.D., Tilmans H.C., Van Beek J.T.M., Rijks T.G.S.M., Puers R., 2004, The influence of mechanical shock on the 
operation of electrostatically driven RF-MEMS switches, Journal of Micromechanical Microengineering 14: 549-554. 

[24] Mukherjee T., Fedder G.K., Ramaswamy D., White J., 2000, Emerging simulation approaches for micromachined 
devices, IEEE Computer-Aided Design of Integrated Circuits and Systems 19: 1572-1589. 

[25] Senturia S.D., Aluru N., White J., 1997, Simulating the behavior of MEMS devices, IEEE Computational Science & 
Engineering 4(1): 30-43. 

[26] Gupta R.K., 1997, Electrostatic pull-in test structure design for in-situ mechanical property measurement of 
microelectromechanical systems (MEMS), PhD dissertation, MIT, Cambridge, MA, 10-27. 

[27] Rezazadeh Gh., Tahmasebi A., Zubtsov M., 2006, Application of piezoelectric layers in electrostatic mem actuators: 
Controlling of pull-in voltage, Microsystem Technologies 12(12): 1163-1170. 

[28] Nayfeh A.H., Mook D.T., 1979, Nonlinear Oscillations, Wiley, New York. 
[29] de Silva Clarence W., 2005, Vibration and Shock Handbook, CRC Press, Taylor & Francis Group. 


