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ABSTRACT 
In this paper, homotopy perturbation and modified Lindstedt-Poincare methods are employed for 
nonlinear free vibrational analysis of simply supported and double-clamped beams subjected to 
axial loads. Mid-plane stretching effect has also been accounted in the model. Galerkin's 
decomposition technique is implemented to convert the dimensionless equation of the motion to 
nonlinear ordinary differential equation. Homotopy and modified Lindstedt-Poincare (HPM) are 
applied to find analytic expressions for nonlinear natural frequencies of the beams. Effects of 
design parameters such as axial load and slenderness ratio are investigated. The analytic 
expressions are valid for a wide range of vibration amplitudes. Comparing the semi-analytic 
solutions with numerical results, presented in the literature, indicates good agreement. The results 
signify the fact that HPM is a powerful tool for analyzing dynamic and vibrational behavior of 
structures analytically. 
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1    INTRODUCTION 

EAMS are the most important structure of engineering. They have a wide application in variety of structures 
from micro/nano dimensions such as micro/nano resonators to macro dimensions such as airplane wings, 

flexible satellites and long span bridges. 
Large amplitude vibration of beams usually leads to material fatigue and structural damage. These effects 

become more important around the natural frequencies of the structure [1]. In these systems nonlinear effects come 
into play in large amplitude vibrations. The sources of the nonlinearities may be geometric, inertial or material in 
nature. The geometric nonlinearity may be caused by nonlinear stretching or large curvatures. Nonlinear inertial 
effects are caused by the presence of concentrated or distributed masses. Material nonlinearity occurs whenever the 
stresses are nonlinear functions of strains [2]. Euler-Bernoulli beam theory assumes that plane cross sections, normal 
to the natural axis before deformation, continue to remain plane and continue to remain normal to the neutral axis 
and do not undergo any strain in their planes [3]. In fact it assumes that warping, transverse shear deformation 
effects and transverse normal strains are considered to be negligible and can be neglected [4]. Pillai and Rao [5] 
examined the problem of large amplitude free vibrations of simply supported uniform beams and found the 
frequency response of the system by several methods, the elliptic function method, the harmonic balance method 
and the method which one assumes simple harmonic oscillations. Pirbodaghi et al [1] used HAM to investigate 
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nonlinear vibrational behavior of Euler Bernoulli beams subjected to axial loads and provided analytical expressions 
for geometrically nonlinear vibration of beams. 

Foda [7] used the method of multiple scales to analyze the nonlinear vibrations of a beam with pinned ends 
considering the effect of shear deformation and rotary inertia. Ramezani et al [6] used the same method for the same 
problem with doubly clamped boundary conditions. They concluded that when the theory of beams is used for the 
study of micro/nano electromechanical structures, shear deformation and rotary inertia effects should be considered 
for an accurate dynamic analysis. In general it is extremely difficult to find an exact solution for the nonlinear 
vibration of beams. Consequently one can use approximate analytical approach or numerical techniques for this 
purpose. Besides all advantages of numerical methods, due to convenience for parametric studies and accounting for 
the physics of the problem, an analytical solution appears more appealing than the numerical one. Also analytical 
solutions give a reference frame for verification and validation of the numerical approaches [1]. Although it is 
difficult to have an analytical approach for nonlinear vibrational analysis of beams, there are some analytic 
approaches for this problem such as perturbation techniques [7]. In general, the analytical methods have their own 
limitations. For example, perturbation methods, the most extensively used analytical techniques, are generally 
restricted to the case of weak non-linearity and are carried out with respect to a small parameter in the equation. 
Most of non-linear problems, especially those having strong non-linearity, have no small parameters at all [1]. Based 
on the homotopy method in topology, Liao has proposed homotopy analysis method (HAM) to present analytic 
solutions for strongly nonlinear problems [8]. Another useful method for strongly nonlinear problems is homotopy 
perturbation method (HPM), which has been proposed by He [9]. Although it was shown by several researchers that 
the homotopy perturbation method is a special case of the homotopy analysis method [10-12], it has been utilized in 
the present study due to its easier formulation. 

The current paper makes use of the HPM to analyze nonlinear free vibration analysis of clamped-clamped and 
simply supported beams. He [13] presented a new perturbation technique which does not depend upon the 
assumption of small parameters. He illustrated the well-known duffing equation as an example and found that even 
using a first order approximation, the maximal relative error of the period is less than 7% even the parameter e 
approaches infinity. He [14] proposed this new perturbation method which does not require a small parameter in an 
equation. His new method takes full advantages of the traditional perturbation methods and homotopy techniques. 
Blendez et al [15] solved the nonlinear differential equations which govern the nonlinear oscillation of a simple 
pendulum and showed that even only one iteration leads to the relative error of less than 2% for the approximated 
period even when for amplitudes as high as 130°. Blendez et al [16] find improved approximate solutions to 
conservative truly nonlinear oscillators using He’s homotopy perturbation method. They found that for the second 
order approximation the relative error in the analytical approximate frequency is approximately 0.03% for any 
parameter values involved. 

As it is seen in the literature of the HPM, this method overcomes the limitations of classical perturbation 
methods and at the same time provides an accurate prediction of the behavior of the nonlinear systems. So here, this 
method has been used in conjunction with the modified Lindstedt-Poincare method to solve the problem of 
nonlinear free vibration of micro beams considering the midplane stretching. 

2    PROBLEM FORMULATION 

The nonlinear partial differential equation of the beam, when the effects of mid-plane stretching are not negligible, is 
given by: 
 

∂ ∂ ∂ ∂ ∂⎛ ⎞+ − + =⎜ ⎟∂∂ ∂ ∂ ∂⎝ ⎠∫
24 2 2 2

04 2 2 20

ˆ ˆ ˆ ˆ ˆ
d 0

ˆ ˆ2ˆ ˆ ˆ

Lw w w EA w w
EI m N x

L xx t x x
  (1) 

In this equation E  is the Young’s modulus of elasticity of the beam material, I  is the second moment of area of 
the cross section with respect to the bending axis, ŵ  is the beam deflection, m  is the longitudinal density, t̂  is the 
time, A  is the cross sectional area of the beam, 0N  is the pretension of the beam and L  is the length of the beam. 
Where assuming that the beam is vibrating with one of its natural frequencies and introducing the 
nondimensionalized variables t , x , w  and T  which are defined in Eqs. (2) to (4), the Eq. (1) is 
nondimensionalized as Eq. (6). 
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where 
 

2 I
r

A
=  (7) 

 
Now the solution of the Eq. (6) can be assumed as 

 
φ=( , ) ( ) ( )w x t x q t  (8) 

 
Note that for simply supported boundary condition’s, when the  

 
n nβ π=  (9) 

 
φ( )x  is the first linear undamped vibrational mode of the beam. For simply support boundary condition’s φ( )x  can 
be stated as Eq. (10) 
 

φ π=( ) sin( )x n x  (10) 
 
And for clamped-clamped beams the first linear undamped vibrational mode of the beam can be stated as equation: 
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For 1n = , 1 4.730040745β =  
 

According to the Galerkin procedure, by substituting Eq. (8) into Eq. (6) and integrating the residual by weight 
φ( )x over the problem domain one may arrive to the following nonlinear ODE: 
 

2 3
0 0q q qω α+ + =  (13) 

= =max(0) , (0) 0
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q q
L

 (14) 

 
where 
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In Eqs. (15) and (16), iF ’s, 1 3i≤ ≤  are defined as follows 
 

φ φ φ′ ′′= = =∫ ∫ ∫
1 1 12 2 2

1 2 3
0 0 0

d , d , dF x F x F x  (17) 

 
From Eq. (13), 0ω  is the linear frequency of the beam. Now the method of homotopy perturbation is applied to 

solve the Eq. (13). The homotopy form is constructed as follows 
 

ω ω α⎡ ⎤ ⎡ ⎤− + + + + =⎣ ⎦ ⎣ ⎦
2 2 3

0 0(1 ) 0P q q P q q q  (18) 
 

Using the modified Lindstedt- Poincare method, q and 2
0ω  are perturbed using perturbation parameter P  

 
0 1q q Pq= +  (19a) 

2 2
0 11Pω ω ω= +  (19b) 

 
Substituting Eqs. (19) into Eq. (18) and setting the coefficient of each power of P  equal to zero leads to the 

following sets of equations 
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q q q q

L
ω+ = = =                          (20) 
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Solving Eq. (20) yields Eq. (22) for 0q  
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0 cos
W

q t
L

ω=  (22) 

 
Substituting 0q  from Eq. (22) to Eq. (21) one can conclude Eq. (23) 

 

( ) ( )
3

2 max max
1 1 11 1 1cos cos 0, 0 , 0 0

W W
q q t t q q

L L
ω ω ω α ω⎛ ⎞+ + + = = =⎜ ⎟

⎝ ⎠
 (23) 

 
Eliminating secular terms in Eq. (23) yields to Eqs. (24) 
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Letting 1P =  in Eq. (19b) 
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Eqs. (25) are then solved for finding the natural frequencies ω   
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Solving Eq. (21) yields 
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And the first-order approximation of the q(t) becomes as: 
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when 
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, the frequency of the beam can be expressed as follows: 
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which is in agreement with results of Ramezani et al. [6]. It should be noted that their results are valid only for small 
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3    RESULTS AND DISCUSSION 

In order to demonstrate the accuracy and effectiveness of the procedure explained in the previous section, a 
numerical example is implemented for the case of simply supported and clamped-clamped beams. Figs. 1 and 2 
show a comparison between results of HPM, and numerical results for a clamped-clamped and simply supported 
beam respectively. The results completely agree with each other. 
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Fig. 1 
Deflection variation of double-clamped beam versus t for 

50L r =  and 0 0N EA = . 
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Fig. 2 
Deflection variation of simply supported beam versus t for 

50L r =  and 0 0N EA = . 
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Fig. 3 
Nonlinear natural frequency of double-clamped beam 
versus maxW L  for various 0N EA . 
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Fig. 4 
Nonlinear natural frequency of simply supported beam 
versus maxW L  for various 0N EA . 

 
 

Figs. 3 and 4 illustrate the effects of the parameter ( )0N EA  on the nonlinear frequency versus non-
dimensional amplitude for doubly-clamped and simply supported beam. As it can be observed, the increase in non-
linear fundamental natural frequency with increasing the displacement is very low at small amplitudes. This leads to 
the conclusion that at small deflections data from linear and non-linear models agree well with each other. However, 
as the maximum amplitude increases, the non-linearity effect becomes significant. Applying pre-tensile loads will 
reduce the nonlinear period or increase the nonlinear frequency of the system. 
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Fig. 5 
Nonlinear natural frequency of double-clamped beam versus 

maxW L  for various L r . 
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Fig. 6 
Nonlinear natural frequency of simply supported beam 
versus maxW L  for various L r . 

 
 

Figs. 5 and 6 have been predicted to investigate the effect of the slenderness ratio to the nonlinear frequency of 
the system. It can be seen that with increasing the slenderness ratio the nonlinear natural frequency would increase 
regardless of the value of the pre-tensile axial load applied on the beam. 

4    CONCLUSION 

In this study, the method of homotopy perturbation and modified Lindstedt-Poincare method has been applied in 
order to find the nonlinear vibrational behavior of beams, considering the effects of midplane stretching. It has been 
shown that the results of the HPM are significantly more accurate that the previously reported analytical results in 
the literature. A parametric study has also been applied in order to characterize the behavior of the beam due to 
changes in applied axial loads and changes in slenderness ratio. It was observed that increasing the applied pre-
tensile loads and slenderness ratio would increase the nonlinear natural frequency of the beam. 
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