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 ABSTRACT 

 The present investigation is to study the surface waves propagation with imperfect boundary 

between an isotropic elastic layer of finite thickness and a homogenous isotropic thermodiffusive 

elastic half- space with rotation in the context of Green-Lindsay (G-L model) theory. The secular 

equation for surface waves in compact form is derived after developing the mathematical model. 

The phase velocity and attenuation coefficient are obtained for stiffness and then deduced for 

normal stiffness, tangential stiffness and welded contact. The dispersion curves for these quantities 

are illustrated to depict the effect of stiffness and thermal relaxation times. The amplitudes of 

displacements, temperature and concentration are computed at the free plane boundary. Specific 

loss of energy is obtained and presented graphically. The effects of rotation on phase velocity, 

attenuation coefficient and amplitudes of displacements, temperature change and concentration are 

depicted graphically. Some Special cases of interest are also deduced and compared with known 

results. 
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1    INTRODUCTION 

NTERFACE modeling has been the subject of numerous studies in material science and composite structure. 

The importance of researches in this topic can not be overemphasized as it is directly related to the prediction of 

the overall materials properties, delamination, transmission of force, etc (Benveniste [5], Achenbach and Zhu [1], 

Hashin [12-13], Zhong and Meguid [33], Pan [24]). The most ideal interface model, as it known, is called perfect 

bond interface where the displacement and traction are continuous across the interface. However, interfaces are 

seldom perfect. Therefore, various imperfect models such as three phase and linear like spring models have been 

introduced by Yu [32], Yu et al. [31] Benveniste [6]. Perhaps the most frequently studied imperfect interface model 

is the smooth bond interface, where the normal components of the displacements and traction are continuous across 

the interface, while the shear traction components are zero on the interface. 

The Generalized theory of thermoelasticity is one of the modified versions of classical uncoupled and coupled 

theory of thermoelasticity and has been developed in order to remove the paradox of physical impossible 

phenomena of infinite velocity of thermal signals in the classical coupled thermoelasticity. Lord and Shulman [18] 

formulated a generalized theory of thermoelasticity with one thermal relaxation time, who obtained a wave-type 

equation by postulating a new law of heat conduction instead of classical Fourier’s law. Green and Lindsay [11] 

developed a temperature rate- dependent thermoelasticity that includes two thermal relaxation times and does not 

violate the classical Fourier’s law of heat conduction, when the body under consideration has a center of symmetry.  
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One can refer to Hetnarski and Ignaczak [14] for a review and presentation of generalized theories of 

thermoelasticity. Diffusion can be defined as the random walk of an assemble of particles from regions of high 

concentration to that of low concentration. Nowadays, there is a great deals of interest in the study of phenomena 

due to its application in geophysics and electronic industry. In integrated circuit fabrication, diffusion is used to 

introduce “depants” in controlled amounts into semiconductor substance. In particular, diffusion is used to form the 

base and emitter in bipolar transistors, intregrated resistors and the source/drain in Metal Oxide Semiconductor 

(MOS) transistors and poly-silicon gates in MOS transistors. In most of the applications, the concentration is 

calculated using Fick’s Law. This is simple law which does not take into consideration the mutual interaction 

between the introduced substance and the medium into which it is introduced. Study of this phenomenon diffusion is 

used to improve the conditions of oil extractions. These days’ oil companies are interested in the process 

thermoelastic diffusion for more efficient extraction of oil from oil deposits. 

Until recently, thermodiffusion in solids, especially in metals, was considered as a quantity that is independent of 

body deformation. Practice, however, indicates that the process of thermodiffusion could have a very considerable 

influence on the deformation of the body. Thermodiffusion in elastic solid is due to the coupling of temperature, 

mass diffusion and strain in addition to the exchange of heat and mass with the environment. Nowacki [19-22] 

developed the theory of thermoelastic diffusion by using coupled thermoelastic model. This implies infinite speed of 

propagation of thermoelastic waves .Dudziak and Kowalski [9] and Olesiak and Pyryev [23], investigated the theory 

of thermoelastic diffusion and coupled quasi-stationary problems of thermal diffusion for an elastic layer. They 

studied the influence of cross effects arising from the coupling of the fields of temperature, mass diffusion and strain 

due to which the thermal excitation results in additional mass concentration and generates additional fields of 

temperature. Sherief et al. [27] developed the generalized theory of thermoelastic diffusion with one relaxation time 

which allows finite speeds of propagation of waves. Recently, Sherief and Saleh [28] investigated the problem of a 

thermoelastic half space in the context of the theory of generalized thermoelastic diffusion with one relaxation time. 

Singh [29] discussed the reflection phenomena of waves from free surface of a thermoelastic diffusion with one 

relaxation time and with two relaxation time in [30]. Aouadi [2-4] investigated different problems in thermoelastic 

diffusion. Sharma et al. [25-26] discussed the effect of rotation on Rayleigh waves in the piezothermoelastic half-

space. Kumar et al. [16] discussed the propagation of Rayleigh waves on free surface in transversely isotropic 

thermoelastic diffusion. Recently, Kumar et al. [17] derived the basic equations for generalized thermoelastic 

diffusion (GL model) and discussed the Lamb waves.  

In this paper, linear model is adopted to represent the imperfectly bonded interface conditions. The linear model 

is simplified and idealized situation of imperfectly bonded interface, where the discontinuities in displacements at 

interfaces have a linear relationship with the interface stresses. Taking these applications into account, the surface 

waves propagation at imperfect boundary between a isotropic elastic layer and isotropic thermodiffusive elastic half- 

space with rotation in the context of Green-Lindsay theory is investigated. The phase velocity and attenuation 

coefficients of wave propagation have been computed from the secular equations. The amplitudes of displacements, 

temperature, concentration and specific loss are computed and depicted graphically.  

2    BASIC EQUATIONS 

Following Kumar et al [17], the basic governing equations for homogenous generalized thermodiffusive solid in the 

absence of body forces, heat and mass diffusion sources are 

(i)  Constitutive relations 

 
1

1 1 22 [ ( ) ( )]ij ij ij kk T T C C       
 

(1) 

        

(ii)  Equations of motion in the rotating frame of reference are 

 

        Ω Ω u Ω u
1

, , 1 1 2
( ) ( ), ( ), [ ( ) (2 ) ]

i jj j ij i i i ii
u u T T C C u

 (2) 

  

(iii)  Equation of heat conduction 

 
0

0 1 0 0 ,( ) ( )E kk iiC T T T aT C C KT    
 (3) 
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(iv)  Equation of mass diffusion 

 
1

2 , 1 , ,( ) ( ) 0, , , 1,2,3kk ii ii iiD Da T T C Db C C i j k   
 (4) 

 

Here, the medium is rotating with angular velocity ˆ,Ω
 
where ̂ the unit vector along the axis of rotation and 

this equation of motion includes two additional terms namely: 

(i)   The centripetal acceleration ( )Ω Ω u due to time- varying motion 

(ii)   The Carioles acceleration (2 )Ω u  

where 1 (3 2 ) t     and 2 (3 2 ) ;c    ,   are Lame’s constants, t  is the coefficient of    linear thermal 

expansion. , EC  are, respectively, the density and specific heat at constant strain, ,a b  are respectively , coefficient 

describing the measure of thermoelastic diffusion effects and of diffusion effects, 0T
 
is the reference temperature 

assumed to be such that 
0

/ 1.T T  0 1,   are thermal relaxation times with 1 0 0   and 
0 1,   are diffusion 

relaxation times with
1 0 0  . iu  are components of displacement vector. 1 2 3( , , )T x x x  is the temperature 

change and C is the concentration , ( ),ij ji 
, ,

2

i j j i

ij

u u
  are respectively , the components of stress and strain 

tensor. The symbols “,”and “.” correspond to partial derivative and time derivative, respectively. 

Following Bullen [7], the equations of motion and constitutive relations in isotropic elastic medium are given by 

 

, ,
( ) e e e e e e e

j ij i jj i
u u u   

 (5) 

     2 , , 1,2,3e e e e e

ij ij ij
i j

 (6) 

 

where 

 

,

e e

k ku
 

(7) 

, ,( ) / 2, , 1,2,3e e e

ij i j j iu u i j
 

(8) 

                             

and 1 2 3( , , )e e e eu u u u  is the displacement vector, 
e is the density of the isotropic medium and ,e e  are the Lame’s 

constants, ( )e e

ij ji
   are components of stress tensor, and ij is the Kronecker delta. 

3    FORMULATION OF THE PROBLEM  

As shown in Fig. 1, we consider an isotropic elastic layer (Medium M1) of thickness H overlaying a homogeneous, 

isotropic, generalized thermodiffusive elastic half-space in rotating frame of reference (Medium M2). The origin of 

the co-ordinate system 1 2 3( , )x x x  taken at any point on the horizontal surface and 1x -axis in the direction of wave 

propagation and 3x - axis taking vertically downward into half-space, so that all particles on a line parallel to 2x - 

axis are equally displaced. Therefore, all the field quantities will be independent of 2x - axis co-ordinate. The 

interface between isotropic elastic layer and thermodiffusive elastic half-space with rotation has been taken at an 

imperfect boundary. The displacement vector u , temperature T, concentration C and rotation for medium M2 are 

taken as 

 

1 3 1 2 1 2( ,0, ), ( , , ), ( , , ), (0, ,0)u u u T x x t C x x t Ω  (9)
 

 

and displacement vector 
eu  for the layer (Medium 1M ) is taken as 

 

1 3( ,0, )e e eu u u  
(10) 
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Fig. 1 

Geometry of the problem. 
 

 

We define the dimensionless quantities 

 
* *

*1 1 1 2

1 2 2

1 1 1 1

, , , , ,i i

i i

x u T C
x t t u T C

v v v v

   


 
 

* * 0 * 0 1 * 1

0 1 0 1 1 1 1 1

1 0

, , , , ,
ij

ij
a T


            

 
 


    

2

2 *1 1 1

1 1* *

11 0 1 1 0 1

2
, , where , E

n n t t

v v C v
k k k k v

K  

(11)
 

 

Upon introducing the quantities in Eqs. (2)-(4) and (5), after suppressing the primes, with the aid of (9) and (10), 

we obtain 

 

     1 1 2

1,11 1 1,33 2 3,13 ,1 ,1 1 1 3
2

c
u u u T C u u u

 
(12) 

1 1 2

2 1,31 1 3,11 3,33 ,3 ,3 ,3 3 12cu u u T C u u u     
 

(13) 

2 0 0

1 2fT T C e   
 

(14) 

* 2 * 1 2 * 1 2

1 2 3 0cq e q T q C C 
 

(15) 

2
1,11 3,13 1

12 2

3 4

( )e e e

e
u u u

u
   

(16) 

2
1,13 3,33 3

32 2

3 4

( )e e e

e
u u u

u
   

(17)
 

 

where 

 
2 2

0 1 1 1 0

1 2 1 2* *

1 2 1

* 2 * * 2 2
* * * 21 2 1 2 1

1 2 34 2 2 2 2

1 1 1 1 1 3

1 1 1 0 0 0

1 0

2 2 2

2 2 21 1 1

3 4 5

, , ,
2 2

, , , ,

1 , 1 , 1 , 1 ,

, ,

c f

e e e

e e e e

aT v T

K K

D D a D b
q q q

v v v x x

t t t t

v v v

 

   
   

       

    

 

       

  
  

   

31

1 3

, ,
2 e

uu
e

x x

 

(18)
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For an isotropic elastic layer, we introduce potential function   and   through the relations 

 

1 3

1 3 3 1

,e eu u
x x x x

   

 
(19) 

 

From the Eqs. (16), (17) and (19), we have 

 

  2

,11 ,33 5
0

 (20)
 

2

,11 ,33 4 0  
 (21)

 

4    SOLUTION OF THE PROBLEM
 

To solve the Eqs. (12)-(15) and (20)-(21), we assume the solution in the form 

 

 
1 3 1 2 1 3

( , , , , , ) (1, , , , , )  exp  i ( )u u T C W S R P P U x mx ct
 

(22) 

 

where /c    is the non dimensional phase velocity,   is the frequency; m is still parameter, 1,W, S, R are 

respectively , the amplitude ratio of 1 3, , ,u u T C
 
w.r.t. 1.u  Substituting the values of 1 3, , ,u u T C  from (22) in Eqs. 

(12)-(15), we obtain 

 
2 2 2 2 1

1 2 11 211 (1 ) ( 2i ) i ( ) 0m c m c W c S R       (23) 

2 2 2 2 1

2 1 11 212i ( (1 )) i ( ) 0m c m c W cm S R       (24) 
1 2 2 1 2

2 10 2 10 20 1
i (i (1 ) ) i 0c mcW m c S c R          (25)

 

    * 2 * 2 1 2 * 1 2 * 2 3

1 1 11 2 3 21
(1 ) (1 ) i (1 ) (i (1 ) ) 0q m mq m W c m q S c m q c R  (26)

 

 

where 

 
1 1 0

11 1 21 10 0 20, 1 i , 1 i , 1 i , 1 i         
 

(27)
 

 

The system of Eqs. (23)-(26) have a non-trivial solution if the determinant of the coefficient 
T[1, , , ]W S R  

vanishes, which yield to the following polynomial characteristic equation 

 
8 * 6 * 4 * 2 * 0m A m B m C m D  (28)

 

 

The constants 
* * * *, , ,A B C D  are given in Appendix A.

 
The characteristic Eq. (28) is biquadratic in 

2m  and 

hence possesses four roots 2 ;pm  1,2,3,4p  corresponding to four roots; there exist three types of quasi-

longitudinal waves and one quasi-transverse wave. The formal expression for displacement, temperature and 

concentration satisfying the radiation condition Re  ( ) 0pm  can be written as 

 


4

1 3 1 2 3 1 3

1

( , , ) (1, , , ) exp i ( )
p p p p p

p

u u T C A n n n x im x ct  (29)
 

 

Substituting the values of   and   from (22) in (20) - (21) and with the aid of (19), we obtain 

 

1 1 5 2 5 6 1 6 2 6 1( ) ( )  exp ( )eu i B c B s m D s D c i x ct    (30)
 

3 5 2 5 1 5 1 6 2 6 1( ) ( )  exp ( )eu m B c B s i D c D s i x ct    (31)
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where 

 

  
 

 

   

2 2 2 2 2 2

5 5 6 4 1 22 2

1 1

5 5 3 6 6 3 5 5 3 6 6 3

2
1, 1, , ,

cos  ( ), cos  ( ), sin  ( ), sin  ( )

e e e

e e
m c m c E E

v v

c m x c m x s m x s m x
 

(32) 

 

where
 1 2 1 2( 1,2,3,4),  , , ,pA p B B D D  are arbitrary constants. The coupling constants 1 2 3, ,p p pn n n ( 1,2,3,4)p  are 

given in appendix B.  

5    BOUNDARY CONDITIONS 

In this paper, linear model is adopted to represent the imperfectly bonded interface conditions. The boundary 

conditions are the vanishing of the normal stress and tangential stress at free surface. The discontinuities in 

displacements have linear relations with stresses, continuity of normal and tangential stress, vanishing of the 

gradient of temperature and concentration at the interface between the isotropic elastic layer and isotropic 

thermodiffusive elastic half-space. Mathematically, these can be written as  

(i) Mechanical conditions 

 

1

1

33

3

31

( ) 0
,

( ) 0

e

M

e

M

x H



 

 

(33) 

1 2 1

1 2 1

1 2

1 2

33 3 3

31 1 1

3

33 33

31 31

( ) ( ) ( )

( ) ( ) ( )
, 0

( ) ( )

( ) ( )

M n M M

M t M M

e

M M

e

M M

k u u

k u u
x





 

 
 

(34) 

3

3

0, at 0
T

x
x

 

(35)
 

 

(iii) Concentration condition 

 

3

3

0, at 0
C

x
x  (36)

 

 

where tn kk , normal and transverse stiffness of layer have dimension 3N m .  

6    DERIVATION OF THE SECULAR EQUATIONS 

Substituting the value of 1 3 1 3, , , , ,e eu u T C u u  from Eqs. (29), (30), (31) in (33)-(36), with the aid of (1), (6) and (9)-

(11), after simplification we obtain 

 

6 6 6 6

5 5 1 5 2 3 4

5 5

tan( ) 0
b s b c

b m H b
c c

    
 (37)
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where 
1 7 7ijR the entries ijR  of the determinant are given in Appendix C and 

2
 is obtained by replacing the 

first column of 
1

 by 
T

* * * * *

11 41 51 61 710 0 ,R R R R R 
3
 is obtained by replacing the second column of 

2
 by 

T
* * * * *

12 42 52 62 72
0 0 ,R R R R R  and

 


4
 is obtained by replacing the third column of 

3
 by 

T
* * * * *

13 43 53 63 73
0 0 .R R R R R

 
The entries of ( 1,2,3,4)p p  are given in Appendix C. If we write 

 
1 1 1ic v G

 
(38) 

 

Then, i ,F G
 
where /F v

 

and G are real numbers. Also the roots of characteristic equations are in 

general complex. Hence, assume that i ,p p pm p q
 
so that exponent in the plane wave solutions in (22) becomes 

 

1 3 1 3i ( ) ( )A R

p p

G
F x m x vt F x m x

F
 (39) 

 

where 

 

i ,R A

p p p p p p

G G
m p q m q p

F F  

(40)

 
 

This shows that v  is the propagation velocity and G is the attenuation coefficient of the wave. Upon using the 

representation (38) in secular Eq. (37), the values of propagation speed v  and attenuation coefficient G of wave 

propagation can be obtained. 

7    PARTICULAR CASES 

(i) Normal stiffness 

In this case, 0,  n tK K  and the secular Eq. (37) remain the same. But the following will be replaced in the 

values of ( 1,2,3,4)p p
 

 

71 72 73 6 74 75

* * *

76 77 71 72 73

i , 0, , 1, 1,

1, 1, 0, i , 0

R R R m R R

R R R R R

 


 

(41)
 

(ii) Tangential stiffness 

In this case, 0,  t nK K
 
and the secular Eq. (37) remain the same with the change values of ( 1,2,3,4)p p

 
by taking

 
 

61 62 63 64 12 65 11

* * *

66 13 67 14 61 5 62 63

0, i , 0, , ,

, , , 0, i

R R R R n R n

R n R n R m R R



   
(42) 

(iii) Welded contact 

In this case ,  n tK K
 
and the secular Eq. (37) remain the same, but the value of ( 1,2,3,4).p p are 

given by replacing 
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71 72 73 6 74 75

* * *

76 77 71 72 73

, 0, , 1, 1,

1, 1, 0, i , 0,

R i R R m R R

R R R R R

 

  

61 62 63 64 12 65 11

* * *

66 13 67 14 61 5 62 63

0, i , 0, , ,

, , , 0, i

R R R R n R n

R n R n R m R R



 
 

(43)

 

8    SPECIAL CASES 

Case (i) 

If we take 0, i.e. in the absence of rotation effect, the frequency equation (37) will reduce to the frequency 

equation for an isotropic elastic layer and a homogenous isotropic thermodiffusive elastic half-space without 

rotation. 

 

Case (ii)  

If we take   1

1
0, 0, 0, 0H and in the absence of diffusion effect i.e. 1 3 0b b a b , the equation 

(37) will reduce to the frequency equation for Rayleigh wave 

 
2

2
2 2

2
1 2 1 2 1 2 3 1 2

2

1

2 ( 1 ) 4 ( ) 0
c

m m m m c m m m m m


 (44) 

 

Here 
2

3
2

1

1 ,
c

m


 and ( 1,2)pm p
 
are the roots of the equation (28), obtained by taking 1 3 0b b a b

 

and 
1

1 0, 0. 
 
The resulting equation (44) is similar to the equation (20) as given by Dawn et al. [8]. 

 

Case (iii)  

In the absence of isotropic elastic layer, thermal and diffusion effects, we obtain the frequency equation 

corresponding to isotropic elastic half-space by changing the dimensionless quantities into physical quantities as 

 
2 1/2 1/2

2 2 2

2 2 2

2 1 2

2 4 1 1
c c c

c c c  
(45) 

 

where 
2 2

1 2

2
, .c c

  

 
 

The frequency Eq. (45) is same as derived in Ewing et al. [10]
 

9    SURFACE DISPLACEMENTS, TEMPERATURE CHANGE AND CONCENTRATION 

The amplitude of surface displacements, temperature change and concentration at the surface 3 0x  during 

Rayleigh wave propagation in the cases of stress free, vanishing of the gradient of temperature and concentration of 

the half space are 

 

1 1 3 1exp  [i ( ), exp  [i ( ),u EA F x vt u RA F x vt
 

1 1exp  [ i ( ), exp  [ ( )T WA F x vt C LA iF x vt  (46) 

 

where 

 

1 1exp  ( ),A A Fx
 (47)
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* * * * * * * *

1 2 3 4 11 1 12 2 13 3 14 4

* *

1 1

( ) ( )
, ,

F F F F n F n F n F n F
E R

F F
 

* * * * * * * *

21 1 22 2 23 3 24 4 31 1 32 2 33 3 34 4

* *

1 1

( ) ( )
,

n F n F n F n F n F n F n F n F
W L

F F  

 

and *( 1,2,3,4)pF p
 
are given in Appendix D 

10    SPECIFIC LOSS 

The Specific loss is the ratio of energy ( )W dissipated in taking a specimen through a stress cycle, to the elastic 

energy (W) stored in the specimen when the strain is maximum. The Specific loss is the most direct method of 

defining internal friction for a material. For a sinusoidal plane wave of small amplitude, Kolsky [15], shows the 

specific loss /W W  equals 4  times the absolute value of imaginary part of 
 
to the real part of ,  i.e. 

 

Im( )
4 4 4

Re( )

W vG G

W F


  

 


 (48) 

11    NUMERICAL RESULTS AND DISCUSSION 

Following Sherief and Saleh [21], we take the following values of relevant parameter for the copper material as 

 
10 -1 -2 10 -1 -2 3

07.76 10 Kgm s , 3.86 10 Kgm s , 0.293 10 K,T 
 

3 -1 -1 5 -1 4 3 -1.3831 10 JKg K , 1.78 10 K , 1.98 10 m Kg ,E t cC  
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The elastic parameters for Granite are given by Bullen [32] 
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The non- dimensional phase velocity and attenuation coefficient of wave propagation in the context of Green 

Lindsay theory (G-L) of thermoelastic diffusion have been computed for various values of non dimensional wave 

number from Eq. (38) and represented graphically. The solid line, small dashes line, big dashes line, big dashes line 

with dotted respectively refer to stiffness(WS), normal stiffness(NS), tangential stiffness(TS),welded contact(WC) 

in case of without rotation(WTR) and centre symbols on these lines correspond to thermoelastic with rotation(WR). 

11.1.1 Phase velocity and attenuation coefficient 

Fig. 2 shows that the value of phase velocity for with stiffness (WS), normal stiffness (NS), tangential stiffness (TS) 

and welded contact (WC) decreases in case of WR for lower wave number, but in case of WTR the value of phase 

velocity for WS, TS, WC increases for lower wave number and for higher wave number, the values of phase 

velocity in both cases WT and WTR become dispersionless, and for comparison, it is noticed that the value of phase 

velocity for WS,NS,TS,WC remain more in case of WR more (in comparison with WTR) for higher wave number. 

Fig. 3 shows that the value of attenuation coefficient for WS, NS, TS,WC in both cases WT and WTR increases 

with oscillation and, in comparison, it is noticed that the value of attenuation coefficient for WS, NS, TS,WC in case 

of WR remain more (in comparison with WTR) for higher wave number. 
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11.1.2 Amplitudes of displacements, temperature change and concentration 

The variations of amplitude of displacements (u1, u3), temperature Change (T) and concentration with respect to 

wave number have been computed and are shown in Figs. 4-7. Fig. 4 indicates that for lower wave number, the 

value of u1 in case of WR, decreases, and for WTR it increases, but for higher wave number the values of u1 in both 

cases WR and WTR become constant and for comparison, it is noticed that the value of u1 in case of WR remain 

more (in comparison with WTR) for lower wave number, but for higher wave number reverse behavior occur. Fig. 5 

shows that the value of u3 in case of WR, decreases for lower wave number and it increases for higher wave number. 

But in case of WTR, reverse behavior occur and for comparison, it is evident that the value of u3 in case of WTR 

remain more (in comparison with WR).  

 

 

 
Fig. 2 

Variation of phase velocity w.r.t wave number. 

 

 Fig. 3 

Variation of attenuation coefficient w.r.t wave number. 

  

 

Fig. 4 

Variation of horizontal displacement (u1) w.r.t wave 

number. 



38                  Effect of Rotation and Stiffness on Surface Wave Propagation in a Elastic Layer … 

 

© 2010 IAU, Arak Branch 

 

Fig. 5 

Variation of vertical displacement (u3) w.r.t wave 

number. 

 

 

 
Fig. 6 

Variation of temperature change (T) w.r.t wave number. 

 

 

 

Fig. 7 

Variation of concentration change (E) w.r.t wave 

number. 

  

  

 
Fig. 8 

Variation of specific loss w.r.t wave number. 
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Fig. 6 indicates that the value of T in both cases, WR and WTR, increases monotonically for higher wave 

number and for comparison, it is noticed that the value of T in case of WTR remain more (in comparison with WR) 

for higher wave number. Fig. 7 shows that the values of C in both cases WR and WTR increases monotonically and 

for comparison it is evident that the value of C in case WTR remains more (in comparison with WR). 

11.1.3 Specific loss of energy 

Fig. 8 shows the variation of Specific Loss with respect to wave number. It is noticed that the value of Specific Loss 

for WS, NS, TS, WC decreases with oscillation in both cases WR and WTR for lower wave number but become 

dispersionless for higher wave number and for comparison it is noticed that the values of Specific Loss for WS, NS, 

TS, WC in case of WR remain more (in comparison with WTR) for higher wave number.  

12    CONCLUDING REMARKS 

The propagation of surface waves at imperfect boundary between isotropic elastic layer of finite thickness and 

isotropic thermodiffusive elastic half- space with rotation in the context of Green-Lindsay theory have been 

discussed. The secular equation in compact form has been derived. The phase velocity and attenuation coefficient 

are depicted graphically for stiffness, normal stiffness, tangential stiffness and welded contact. The amplitudes of 

displacements, temperature and concentration are computed at the free plane boundary and presented graphically. 

Specific loss of energy is obtained and depicted graphically. It is noticed that the value of phase velocity and 

attenuation coefficient for WS, NS, TS, WC in case of with rotation(WR) remain more (in comparison with without 

rotation WTR).The value of displacements 1 3,u u  remain more in case of with rotation(in comparison with without 

rotation) for lower wave number, but for higher wave number reverse behavior occur and the value of temperature 

change(T) and concentration(C) remain more in case of without rotation (in compare with rotation). 

The numerical results are found to be significantly in agreement with the corresponding analytic results. The 

effects of relaxation times and rotation are observed on phase velocity, attenuation coefficient and amplitudes of 

displacements, temperature change and concentration. The analysis to be carried will be useful in the design and 

construction of rotating sensors and surface acoustic wave’s devices in addition to possible biosensing applications. 
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Fig.1 Geometry of the problem 
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where  
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