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 ABSTRACT 

 In this paper, the transverse vibrations of rectangular plate with circular central hole have 
been investigated and the natural frequencies of the mentioned plate with point supported 
by Rayleigh-Ritz Method have been obtained. In this research, the effect of the hole is 
taken into account by subtracting the energies of the hole domain from the total energies of 
the whole plate. To determine the kinetic and potential energies of plate, admissible 
functions for rectangular plate are considered as beam functions and it has been tried that 
the functions of the deflection of plate, in the form of polynomial functions proportionate 
with finite degrees, to be replaced by Bessel function, which is used in the analysis of the 
vibrations of a circular plate. Consideration for a variety of edge conditions is given 
through a combination of simply supported, clamped and free boundary conditions. In this 
study, the effects of increasing the diameter of the hole and the effects of number of point 
supported on the natural frequencies were investigated and the optimum radius of the 
circular hole for different boundary conditions are obtained. The method has been verified 
with many known solutions. Furthermore, the convergence is very fast with any desirable 
accuracy to exact known natural frequencies. 

                                                     © 2014 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 ECTANGULAR plate with a rectangular or a circular hole has been widely used as a substructure for ship, 
airplane, and plant. Uniform circular, annular and rectangular plates have been also widely used as structural 

components for various industrial applications and their dynamic behaviors can be described by exact solutions. 
However, the vibration characteristics of a rectangular plate with an eccentric circular hole can not be analyzed 
easily. Perforated plates or plates with cut-outs are commonly encountered in engineering practice. Cut-outs are 
introduced to provide access, reduce weight, and alter the dynamic response of structures. Furthermore, structure-
borne noise generated by machinery such as the diesel engines, gearboxes, generators, and auxiliary machinery are 
also radiated by these plate structures and should be suppressed in the various operating conditions. 

Rectangular plates with point supports can model several structures of practical interest, such as slabs supported 
on columns, printed circuit boards or solar panels supported at a few points. 

The vibration characteristics of a rectangular plate with a hole can be solved by either the Rayleigh-Ritz method 
or the finite element method. The Rayleigh-Ritz method is an effective method when the rectangular plate has a 
rectangular hole. However, it cannot be easily applied to the case of a rectangular plate with a circular hole since the 
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admissible functions for the rectangular hole domain do not permit closed-form integrals. Many studies have been 
done on the subject, some of which are mentioned in this section. 

Monahan et al. [1] applied the finite element method to a clamped rectangular plate with a rectangular hole and 
verified the numerical results by experiments. Paramasivam [2] used the finite difference method for a simply-
supported and clamped rectangular plate with a rectangular hole. There are many research works concerning plate 
with a single hole but a few works on plate with multiple holes. Aksu and Ali [3] also used the finite difference 
method to analyze a rectangular plate with more than two holes. Rajamani and Prabhakaran [4] assumed that the 
effect of a hole is equivalent to an externally applied loading and carried out a numerical analysis based on this 
assumption for a composite plate. Rajamani and Prabhakaran [5] investigated the effect of a hole on the natural 
vibration characteristics of isotropic and orthotropic plates with simply-supported and clamped boundary conditions. 
Ali and Atwal [6] applied the Rayleigh-Ritz method to a simply-supported rectangular plate with a rectangular hole, 
using the static deflection curves for a uniform loading as admissible functions. Lam et al. [7] divided the 
rectangular plate with a hole into several sub areas and applied the modified Rayleigh-Ritz method. Lam and Hung 
[8] applied the same method to a stiffened plate. Laura et al. [9] calculated the natural vibration characteristics of a 
simply-supported rectangular plate with a rectangular hole by the classical Rayleigh-Ritz method. Sakiyama et al. 
[10] analyzed the natural vibration characteristics of an orthotropic plate with a square hole by means of the Green 
function assuming the hole as an extremely thin plate. The vibration analysis of a rectangular plate with a circular 
hole does not lend an easy approach since the geometry of the hole is not the same as the geometry of the 
rectangular Plate. Takahashi (1958) used the classical Rayleigh-Ritz method after deriving the total energy by 
subtracting the energy of the hole from the energy of the whole plate. He employed the eigenfunctions of a uniform 
beam as admissible functions. Joga-Rao and Pickett [11] proposed the use of algebraic polynomial functions and 
biharmonic singular functions. Kumai [12] Hegarty [13], Eastep and Hemmig [14], and Nagaya [15-16] used the 
point-matching method for the analysis of a rectangular plate with a circular hole. The point-matching method 
employed the polar coordinate system based on the circular hole and the boundary conditions were satisfied along 
the points located on the sides of the rectangular plate. Lee and Kim [17] carried out vibration experiments on the 
rectangular plates with a hole in air and water. Kim et al. [18] performed the theoretical analysis on a stiffened 
rectangular plate with a hole. Avalos and Laura [19] calculated the natural frequency of a simply-supported 
rectangular plate with two rectangular holes using the Classical Rayleigh-Ritz method. Lee et al. [20] analyzed a 
square plate with two collinear circular holes using the classical Rayleigh-Ritz method. A circular plate with en 
eccentric circular hole has been treated by various methods. Khurasia and Rawtani [21] studied the effect of the 
eccentricity of the hole on the vibration characteristics of the circular plate by using the triangular finite element 
method. Lin [22] used an analytical method based on the transformation of Bessel Functions to calculate the free 
transverse vibrations of uniform circular plates and membranes with eccentric holes. Laura et al. [23] applied the 
Rayleigh-Ritz method to circular plates restrained against rotation with an eccentric circular perforation with a free 
edge. Cheng et al. [24] used the finite element analysis code, Nastran, to analyze the effects of the hole eccentricity, 
hole size and boundary condition on the vibration modes of annular-like plates. Lee et al. [25] used an indirect 
formulation in conjunction with degenerate kernels and Fourier series to solve for the natural frequencies and modes 
of circular plates with multiple circular holes and verified the finite element solution by using ABAQUS. Zhong and 
Yu. [26] Formulated a weak-form quadrature element method to study the flexural vibrations of an eccentric annular 
Mindlin plate. Wang [27], the Ritz method is used to determine the minimum stiffness location of the elastic point 
support for raising the fundamental natural frequency of a rectangular plate to the second frequency of the 
unsupported plate, which usually is the upper limit of the first frequency for a single support. Joseph Watkins et all. 
[28] Studied the vibration of an elastically point supported rectangular plate using eigensensitivity analysis. Lorenzo 
[29] is employed the trigonometric functions as admissible solutions in the Ritz method for general vibration 
analysis of rectangular orthotropic Kirchhoff plates.  

As it was mentioned earlier, in most of the researches done in this field, Rayleigh-Ritz method and numerical 
methods have been used and with the help of reducing the hole energy comparing to the energy of the whole 
rectangular plate, the problem has been analyzed. Also for studying the issues considering the position conditions 
and angle, the quantity of so many points in the edges of the rectangular plate have been used. In this study, the 
analysis of transverse vibrations of rectangular plate with circular central hole with different point support is studied 
and the natural frequencies and natural modes of a rectangular plate with circular hole have been obtained. In this 
method, a simple polynomial functions, the desired frequency range, which can replace the Bessel functions will be 
used, and convergence the problem will be obtained easily. 
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2    FORMULATION OF THE PROBLEM 
2.1 Applying the Rayleigh-Ritz approach to rectangular plate 

From the vibration theory of thick plates, the strain energy pU  and kinetic energy pT of an elastic isotropic 

rectangular plate in the cartesian coordinate can be written as follows: 
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where  is the mass density of the material, and D is the plate flexural rigidity defined as: 
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Here, E is Young’s modulus and  is Poisson’s ratio. With side lengths a in the X  direction and b in the Y , 

Taking the following non-dimensional coordinates: 
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The Ritz approximation is employed by assuming the following solution: 
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where 1 2( , ) .....   m      is a1m  matrix consisting of the admissible functions and 1 2( ) .....   mQ t Q Q Q  

is a 1m  vector consisting of generalized coordinates, in which m is the number of admissible functions used for 

the approximation of the deflection. 
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In which ( )m  and ( )n   denote the assumed admissible functions in the x and y directions, respectively, 

with substituting Eq (4) into Eq (1) results in Eq (6) . 
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M and K represent the non-dimensionalized mass and stiffness matrice. After substituting the plate displacement 

function in Eq (5) into the above energy expressions, a set of m n homogeneous equations of mnA is then 

formulated by differentiating the Lagrangian energy, defined by U T , with regard to each of the undetermined 

coefficient mnA . Afrer choosing a set of appropriate admissible function for  and , the eigenvalue equation can be 

derived as: 
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   is the natural frequency parameter. Then, the non-dimensionalized mass and stiffness matrices 

given by Eq (5) can be expressed as [28-30].   
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Here , M and K are a diagonal matrices.  In this section, by considering the following as admissible function for 

the plate simply supported on all side, the boundary matrices will be applied easily. 
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and 
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In the case of the clamped condition in the x direction, the eigen function of a clamped–clamped uniform beam 

can be used: 
 

( ) cosh( ) cos( ) (sinh( ) sin( )), 1, 2,...    i i i i i i i n            (12) 

 
where i  is obtained by solving the equation of cosh( ) cos( ) 1 0 i i  and 4.730, 7.853,...i and 

cosh( ) cos( )
sinh( ) sin( )





i i

i
i i

 


 
. 

In a similar manner, expressions for a plate with free edges in the x direction, the eigenfunction of a free–free 
uniform beam: 
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( ) cosh( ) cos( ) (sinh( ) sin( )), 1,2,...    i i i i i i i n            (13) 

 
where i  and i  are the same as the ones for the clamped–clamped beam. For the admissible functions in 

the y direction, the same method can be applied. The frequency parameter, is obtained by solving the generalized 

eigenvalue problem defined by Eq (9). 
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2.2 Applying the Rayleigh-Ritz approach to circular plate  

To obtain the natural frequencies of rectangular plate with circular central hole, It is similar to the rectangular plate, 
the mass and stiffness matrices are determined. From the vibration theory of circular plates, the strain energy CU  

and kinetic energy CT of an isotropic uniform circular plate with radius R  and thickness h  can be expressed as 

follows: 
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The Ritz approximation is employed by assuming the following solution: 
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admissible functions used for the approximation of the deflection [30]. With substituting Eq (16) into Eq (15) results 
in Eq (17). 
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The origin of the polar coordinate system is at the center of the circular plate. The boundary conditions possess 

symmetry with respect to the diameter of the circular plate. The deflection function in terms of Bessel functions and 
trigonometric functions is written as [30, 31]: 
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where the coefficients , ,n n nA B C and nD are determined from the boundary conditions and nJ and nI are the Bessel 

function and the modified Bessel function of the first kind, nY and nK are Bessel function and the modified Bessel 

function of the second kind of order n , respectively. Since the circular hole is to be free of all applied stress, the 

boundary conditions to be satisfied along the edge of the hole at r R are: 
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where rM is the bending moment normal to the hole, rM   is the twisting moment in the same plane, and the rQ is 

the shear force acting at the edge of the hole. For instance, if the boundary of the plate is considered to be clamped at 
the radius R of the plate then the boundary terms for solution ( , )r  can be written as: 
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Also, solution ( , )r  must be finite at all points within the plate. This makes constants ,n nB D vanish since the 

Bessel functions of second kind nY and nK become infinite at  0.r  As it has been shown in Eq (20), deflection of 

the intended plate, can be expressed in terms of Bessel functions of the first kind. Due to the properties of the Bessel 
functions and regardless of terms with high degrees in Eq (20) and also obtained frequencies with the use of Finite 
Element method, in this section it has been tried to acquire the natural frequencies and the mode shapes of the 
rectangular plate with a central hole, with the use of polynomial functions proportionate with finite degrees in the 
intended frequency limits instead of the mentioned Bessel functions. Bessel functions of the first kind, denoted 
as ( )nJ R , are solutions of Bessel's differential equation that are finite at the origin ( 0R ) for integer n , and 

diverge as R approaches zero for negative non-integer n . The solution type (e.g., integer or non-integer) and 
normalization of ( )nJ R are defined by its properties below. It is possible to define the function by its Taylor series 

expansion around 0R . 
 

2

0

( 1) 1( ) ( ) ( )
! ( 1) 2

m
m n

n n
m

J R R P R
m m n







 

    
 

(22) 

 



34                   Vibration Analysis for Rectangular Plate Having a Circular Central Hole with Point Support … 

© 2014 IAU, Arak Branch 

where ( ) Z  is the gamma function. The series expansion for ( )nI R  is thus similar to that for ( )nJ R , but without 

the alternating ( 1) m  factor. 
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The series expansion for ( )nY R and ( )nK R  using a series expansion of Bessel functions  ( )nJ R  and ( )nI R  will 

be obtained easily. Here, ( ), ( ), ( ), ( )n n n nP R Q R S R T R  are the polynomials with a limited degree, will be sought in 

the form of series expansions and in the desired frequency range, will be replaced by the Bessel 
functions ( ), ( ), ( ), ( )n n n nJ R Y R I R K R , respectively. Other relationships, by substituting the polynomials functions 

and simplify the equations will be obtained. 
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For example, if 1n , the following proposed polynomials, can be replaced by the Bessel functions. 
 

2 2 4 4 6 6
1 1 1 1 1

2 2 21
1 1 1 1

2 2 4 4 6 6
1 1 1 1 1

2 2 21
1 1 1 1 1

1 1 1( ) 1 ,
4 64 2304

2log ( / 2) 2 2 2 log ( / 2)( ) ,
4 2

1 1 1( ) 1 ,
4 64 2304

log ( / 2)2 2 3 2( ) log ( / 2)
8 4 128

J P R R R R

R R
Y Q R R

I S R R R R

R
K T R R R

  

  
   

  


   

    

        
 

    

           
 

4 4 41
1 1

log ( / 2) ,
64

R
R


  

 

 

 
 
 
 

(25) 

 
After choosing a set of appropriate admissible function for , the eigenvalue equation for circular plate can be 

derived as: 
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And the frequency parameter for circular plate, is obtained by solving the generalized eigenvalue problem defined 
by Eq (27). 
 

 2det 0   c cK M  
 

(27) 
 

where 
4 2

4 .
hR

D

   

2.3 Applying the Rayleigh-Ritz approach for rectangular plate with circular hole 

For a rectangular plate with cutouts, the normal Rayleigh-Ritz method will require a beam function that is 
continuous over the plate domain while satisfying the inner and external boundary requirements. No such function 
has been reported in the open literature, and the analysis of such problem using the Rayleigh-Ritz scheme will 
require some modifications to the numerical procedures. To demonstrate the numerical procedures, a rectangular 
plate with a centrally located circular cutout is considered.  The geometry and dimensions of the plate are shown in 
Fig.1. In this case, the total kinetic and potential energies can be obtained by subtracting the energies to the hole 
from the total energies for the rectangular plate. 



K. Torabi and A.R. Azadi                   35 

© 2014 IAU, Arak Branch 

1 1
2 2
1 1
2 2

 

 

   T T
total p c c c

T T
total p c c c

T Q M Q Q M Q

U Q K Q Q K Q
 

 
 

(28) 

 
Note that the boundary condition around the circular hole can be satisfied exactly, while the boundary condition 

along the rectangular outer edges of the plate must be handled with some numerical procedure. By using the 
coordinate transformation technique and geometrical relation between the Cartesian and polar coordinates, the 
displacement matching condition should be satisfied. Hence, the following condition should be satisfied inside the 
circular hole domain [30]. 

 

1 1 1

( , ) ( , ), ( , ) ( ) ( , ) ( ) ( ) ( ) ( )
  

    
cm m m

c cj cj l l l l l
j l l

W r W r Q t r Q t Q t            
 

(29) 

 
In this section , with the use of a weak solution and also with the use of orthogonality properties of trigonometric 

functions ( , )ci r   and multiplying these functions in Eqs (29) and integration of these equations in the intervals of 

0 2   , the equations will be obtained in the form of polynomial functions based one finite degrees of R .  
 

2 2

0 0 0 01 1

( , ) ( , ) ( ) ( , ) ( ) ( ) ( )
 

    
cm mR R

ci cj cj ci l l l
j l

r r Q t r dr d r Q t r dr d
 

             
 

(30) 

 
Using the orthogonal property of ( , )ci r  , Eq (30) can be rewritten as: 

 

2

0 01 1

( ) ( , ) ( ) ( ) ( ) ( ) ( )
 

   
m mR

ci ci l l l c il l
l l

Q t r Q t r dr d F Q t


        
 

(31) 

 
Eq (31) can be expressed in matrix form: 
 


c cQ F Q  (32) 

 
where cF  is a cm m  transformation matrix [30]. By using the coordinate transformation technique and 

geometrical relation between the Cartesian and polar coordinates, the non-dimensionalized relationship can be 
written as: 
 

1 2cos( ) sin( ), .   
l lr r

a a b b

    
 

(33) 

 
with substituting Eq (32) into Eq (29) results in Eq (34). 

1 1 1
2 2 2
1 1 1
2 2 2

  

  

     T T T T
total p c c c pc

T T T T
total p c c c pc

T Q M Q Q F M F Q Q M Q

U Q K Q Q F K F Q Q K Q

 

 
 

(34) 

 
By using the Eqs (7) and (18) and simplifying the Eq (34) can be written as follow:  
 

  T
cp p c c c cpM M F M F hab M  (35a) 
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3  T
cp p c c c cp

Db
K K F K F K

a
 

 
(35b) 

 
where 

 
2( )  T

pc p c c cM M F M F  (36a) 

2 ,  T
pc p c c c

R
K K F K F

a

 


 
 

(36b) 

 
 which is the aspect ratio given as /R a .The eigenvalue equation for rectangular plate with circular hole can 

be derived as: 
 

 2 0   cp cpK M A  (37) 

 
And the frequency parameter for rectangular plate with circular hole, is obtained by solving the generalized 
eigenvalue problem defined by Eq (20)  

 

 2det 0   cp cpK M  (38) 

 
 

 

 
 
 
 
 
 
 
 

Fig. 1  
Rectangular plate with circular central hole. 

2.4 Applying the Rayleigh-Ritz approach for rectangular plate having a circular hole with point support 

In this section, the transverse vibrations of rectangular plate with point supported have been studied and the natural 
frequencies are obtained by the classical Rayleigh-Ritz method. Strain energy of the supporting springs given by 
 

2

1

1 ( ) ( ) ( , , )
2 

  
N

ps s s s s s
A

s

U k x x y y W x y t   
 

(39) 

 
where sk the stiffness of the sth is spring and ( , )W x y is the transverse displacement. The kinetic energy can be 

expressed as: 
 

2
2

1

( ) ( ) ( , , )
2 

  
N

ps s s s s s
A

s

T m x x y y W x y t
    

 
(40) 

 
By using the Eq (5) for the displacement of ( , )W x y , the dynamic stiffness matrix of the plate will be derived as 

[28, 29]: 

1
( ) ( ) ( ) ( )


 N

ijmn i s j s m s n ss
x x x x     

(41) 
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where ijmn is the product of the basis functions and is evaluated where the springs and masses are located. In which 

case the stiffness matrix of the plate   T
ps r rK . Where r is the rank of the support stiffness matrix. In the case of 

the plate with a elastic point supports, r=1, and 
 

 1 1 1 1 1 1 2 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  T
s s s s m s n s m s n s                 (42) 

 
To determine the strain energy PCSU  and kinetic energy PCST  of rectangular plate having a circular central hole 

with an elastic point supports, using the Eqs (39), (40) and Eq (34) results in Eq (43) 
 

1 1 1 1 ,
2 2 2 2
1 1 1 1 ,
2 2 2 2

   

   

       T T T T T
PCS p s c c c pcs

T T T T T
PCS p s c c c pcs

T Q M Q Q M Q Q F M F Q Q M Q

U Q K Q Q K Q Q F K F Q Q K Q

 

 
 

(43) 

 
where 
 

2

2
1

( ) ,


   
N

Ts
pcs p c c c

s

k a
K K F K F

D

 


 
 

(44a) 

2( ) ( ) .    Ts
pcs p c c c

m
M M F M F

habM



 

 
(44b) 

 

Above sm  is the sth discrete mass. The eigenvalue equation for rectangular plate having a circular hole with 

several point supports can be derived as: 
 

 2 0,   pcs pcsK M A  
(45) 

 
And the frequency parameter for rectangular plate with circular hole, is obtained by solving the generalized 
eigenvalue problem defined by Eq (46) 
 

 2det 0.   pcs pcsK M  
(46) 

3    NUMERICAL RESULTS    

In this section, numerical results are presented for the derived approximate closed-form results and compared to 
results generated using the previous and finite element method (FEM) for the elastically point supported plate. 
 
 
 
 
Table 1 
Fundamental natural frequency   for simply supported square plate with a central hole 

02r

a
 

  
0.2 0.3 0.4 

Present Ref[16] FEM Present Ref[16] FEM Present Ref[16] FEM 
0.1   19.7409 19.61 19.81 19.7396 19.53 19.72 19.4521 19.3   19.49 
0.15  19.7329 19.56 19.75 19.5795 19.39 19.58 19.2923 19.12 19.31 
0.2    19.7358 19.6   19.79 19.4758 19.29 19.48 19.1883 18.91 19.09 
0.25   19.7541 19.72 19.91 19.4796 19.32 19.51 19.1921 18.8   18.98 
0.3     20.1234 20.01 20.21 19.7543 19.51 19.71 19.4668 18.89 19.07 
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Fig. 2  
Modes of vibration for simply supported plate with a 
circular central hole. 

 
As it has been presented in Table 1, with increasing the radius of the hole, the frequency values are first 

decreased and then increases, this gained a special importance in optimizing the hole radius in analysis of these 
types of problems. In addition, the obtained results indicate that with increasing the value of Poisson's ratio, the 
frequency values would decrease. In Fig. 2, the first five modes of vibration for simply supported square plate with a 
central hole have been shown. In Table 2. also the frequency parameter of   has been shown based on the different 
radius of the circular hole and different values of   for a clamped square plate with a central hole and the results are 
very near to the results of reference [16], which indicate the accuracy of the suggested method. In this section also 
with increasing the hole radius, the values of frequencies are first decreased and then increased. Only with this 
difference that when we are using clamped square plate, the values of frequency parameter shows bigger values 
comparing to the case of simply supported plate. 
 
 
Table 2  
Fundamental natural frequency   for clamped square plate with a central hole 

02r

a
 

  
0.2 0.3 0.4 

Present Ref[16] FEM Present Ref[16] FEM Present Ref[16] FEM 
0.1  35.9988 35.98 35.64 35.5256 35.83 35.46 35.2619 35.56 35.26 

0.15  36.1068 36.28 35.89 35.6336 35.92 35.59 35.3699 35.49 35.16 
0.2    36.6508 36.98 36.62 36.1776 36.41 36.12 35.9139 35.87 35.48 
0.25   37.9834 36.83 37.73 37.5102 37.58 37.11 37.2465 36.82 36.38 
0.3     38.9968 38.64 39.02 38.5236 39.39 38.95 38.2599 38.63 38.21 

 
 
Table 3 
Fundamental natural frequency  of a simply supported square plate with a simply supported central hole. 

02r

a
 

  
0.2 0.3 0.4 

Present Ref[28] FEM Present Ref[28] FEM Present Ref[28] FEM 
0.1 52.62 52.65 53.14 50.64 50.75 51.14 48.79 48.9 49.28 
0.2 58.95 59.02 59.25 56.73 56.78 57.02 54.67 54.71 54.89 
0.3 70.08 70.11 70.64 67.44 67.53 67.98 64.98 65.07 65.52 

 
 

In Fig.3, the first five modes of vibration for clamped square plate with a central hole have been shown.  
In Table 3. also the frequency parameter of   has been shown base on the different radius of the circular hole 

and different values of   for a simply supported square plate with a simply supported central hole. In this section 
also with increasing the hole radius, the values of frequencies are increased. 
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Fig. 3  
Modes of vibration for clamped square plate with a 
circular central hole. 

 
In Table 4. also the frequency parameter of   has been shown based on the different radius of the circular hole 

and different values of   for a simply supported square plate with a clamped central hole. In this section also with 
increasing the hole radius, the values of frequencies are increased. 

 
 

Table 4 
Fundamental natural frequency  of a simply supported square plate with a clamped central hole. 

02r

a
 

  
0.2 0.3 0.4 

Present Ref[16] FEM Present Ref[16] FEM Present Ref[16] FEM 
0.1 62.68 62.79 63.31 60.32 60.42 60.92 58.12 58.22 58.70 
0.2 75.92 76.14 76.75 73.12 73.27 73.85 70.46 70.60 71.16 
0.3 93.06 93.16 93.99 89.55 89.64 90.44 86.29 86.38 87.15 

 
 
Table 5 
Fundamental natural frequency  of a clamped rectangular plate with a circular central hole. 

a

b
 

02r a  

0.2 0.3 0.4 
present Ref[16] FEM present Ref[16] FEM present Ref[16] FEM 

1      35.76   37.83   36.12   38.57   40.63   38.95   45.72   46.35   46.42 
1.5   66.1   65.83   65.92   73.42   74.38   74.69   91.88   91.92   91.06 
2    110.05 109.79 111.02 127.73 129.46 129.42 160.38 162.97 161.25 

 
 
Table 6 
 Fundamental natural frequency  of a simply supported rectangular plate with a circular central hole. 

a

b
 

02r a  

0.2 0.3 0.4 
present Ref[16] FEM present Ref[16] FEM present Ref[16] FEM 

1    19.33 20.24 19.48 19.62 20.95 19.71 20.72 22.15 21.5   
1.5 33.23 33.17 33.19 34.6   34.77 34.83 37.64 37.63 37.56 
2       51.29 51.12 51.16 53.43 53.67 53.71 57.24 57.98 58.13 

 
 

In Table 5. also the frequency parameter of   has been shown based on the different radius of the circular hole 
and different values of a b  for a simply supported rectangular plate with a circular central hole. In this section also 

with increasing the hole radius and length of plate, the values of frequencies are increased. 
In Table 6. also the frequency parameter of   has been shown based on the different radius of the circular hole 

and different values of a b  for a simply supported rectangular plate with a circular central hole. In this section also 
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with increasing the hole radius and length of plate, the values of frequencies are increased. In Table 7. the three first 
fundamental natural frequencies   for rectangular plate with a corner point support Fig. 4 have been shown and 
depict a comparison of results between frequency coefficients available in reference [32, 33]. 
 
 
Table 7 
Fundamental natural frequency   for SFSF and CFCF rectangular plate with a corner point support. 

n 
Boundary condition for rectangular plate 

SFSF CFCF 
present Ref[32] Ref[33] present Ref[32] Ref[33] 

1    9.745  9.61 9.7 23.88 15.17 23.93 
2 17.31 17.32 16.81 23.62 15.38 23.29 
3 30.56 30.61 30.44 39.36 39.4   39.29 

 
 

 

 

 
 
 
 
 

Fig. 4 
Plate considered in the present study. 

 
 

Table 8 
Frequency parameters  for a fully free square plate with a four point supports on the diagonals and 0.2  

n 
Plate without hole Plate with central  hole 

present Ref[27] FEM[34] present FEM 
1 13.5204 13.4682 13.4722 14.4838 14.3991 
2 19.6103 19.5961 19.5963 20.7877 20.6544 
3 26.9512 26.5941 26.5943 29.8700 29.4622 
 
 
The final analysis model is a fully free square plate without any restraint on the boundary edges, as shown in Fig. 

5 along with the new coordinate system. Four identical elastic supports, located symmetrically along the plate 
diagonals, are utilized to increase the fundamental natural frequency [27]. Table 8. lists the three first natural 
frequency parameter for free square plate with circular central hole. 

The final results of the optimal solutions of the supports are given in Table 8 along with the result estimated by 
FEM [34,27]. With the respective optimal support solution, the fundamental natural frequency becomes a doubly 
repeated frequency for the desired frequency parameter 13.4682, and a triply repeated frequency for the desired 
frequency parameter 19.5961. In Fig. 6, some modes of vibration for A uniform square plate of fully free edges is 
supported by four elastic point supports on the diagonals (see Fig. 5) with a central hole have been shown. 

 
 

 

 
 
 
 
 
 
 
 

Fig. 5 
A uniform square plate of fully free edges is supported by four elastic point 
supports on the diagonals (full points) or on the axes (hollow points). 
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Fig. 6 
Modes of vibration for a uniform square plate of 
fully free edges is supported by four elastic point 
supports on the diagonals with a central hole. 

4    CONCLUSIONS 

In this paper, the free vibration of rectangular plates with circular central hole for various boundary conditions was 
analyzed and natural frequencies were derived and compared with the reported results of other researchers. To solve 
the problem, it is necessary both Cartesian and polar coordinate system be used. For the validation, using the finite 
element method and modes of vibration for clamped and simply supported square plate with a central hole has been 
obtained. Comparison of the results obtained from the method used in this article, shows that the results are 
sufficiently accurate. Also to investigate the problem, long term and complex relationships, are not used and the 
problem is simply desired convergence is reached. In this study, the effects of increased the diameter of the hole on 
the natural frequencies were investigated and the optimum radius of the circular hole for different boundary 
conditions are obtained. The optimum value of the radius hole for simply supported square plate at 0 0.1r a and in 

this case will have the least frequency, also the minimum value of the frequency for clamped square plate at 

0 0.075r a . On the other hand, in this paper the free vibration of rectangular plate with circular central hole for 

point supported in different boundary condition was analyzed and natural frequencies were obtained and compared 
with the reported result by finite element method.   
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