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 ABSTRACT 

 In this article, the free vibration analysis of magneto-electro-elastic (MEE) 

Timoshenko micro beam model based on surface stress effect and modified 

strain gradient theory (MSGT) under moving nano-particle is presented. 

The governing equations of motion using Hamilton’s principle are derived 

and these equations are solved using differential quadrature method 

(DQM). The effects of dimensionless electric potential, dimensionless 

magnetic parameter, material length scale parameter, external electric 

voltage, external magnetic parameter, slenderness ratio, temperature 

change, surface stress effect, two parameters of elastic foundation on the 

dimensionless natural frequency are investigated. It is shown that the effect 

of electric potential and magnetic parameter simultaneously increases the 

dimensionless natural frequency. On the other hands, with considering two 

parameters, the stiffness of MEE Timoshenko micro beam model increases. 

It can be seen that the dimensionless natural frequency of micro structure 

increases by MSGT more than modified couple stress theory (MCST) and 

classical theory (CT). It is found that by increasing the mass of nano-

particle, the dimensionless natural frequency of system decreases. The 

results of this study can be employed to design and manufacture micro-

devices to prevent resonance phenomenon or as a sensor to control the 

dynamic stability of micro structures.                                                              
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1    INTRODUCTION 

 AGENTO-ELECTRO-ELASTIC (MEE) composite materials with piezoelectric and piezomagnetic phases 

can be utilized as materials providing energy conversion among magnetic, electric and mechanical energies 

[1]. These materials are applied in various applications such as structural health monitoring, vibration control, sensor 

and actuator applications, robotics, medical instruments and energy harvesting [2-5]. In recent years, static, 

buckling, and vibration analysis of MEE materials has found significance among many researchers. Bhangala and 

Ganesan [6] studied the free vibration of functionally graded (FG) non-homogeneous MEE cylindrical shell by using 
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the semi-analytical finite element approach. They illustrated that the piezoelectric effect has the tendency of 

stiffening the shell and hence increases the structural natural frequency but magnetic effect has a negative influence 

on the system frequency and reduces the natural frequency. Lang and Xuewu [7] analyzed the buckling and 

vibration analysis of FG magneto-electro-thermo-elastic circular cylindrical shells. Their result represented that 

influence of piezo-magnetic constant on the value of the critical thermal buckling load is more than that of 

piezoelectric constant. 

Razavi and Shooshtari [8] investigated the nonlinear free vibration of MEE rectangular plates. In their work, it is 

observed that length-to-thickness ratio has negligible effect on the nonlinear frequency ratio in comparing with the 

effects of side ratio. Ke et al. [9] employed the free vibration of size-dependent MEE nanoplates based on the 

nonlocal elasticity theory. They obtained that the natural frequency is quite sensitive to the mechanical loading, 

electric loading and magnetic loading, while it is insensitive to the thermal loading. Li et al. [10] analyzed the 

buckling and free vibration of MEE nanoplate under Pasternak foundation based on Mindlin’s plate theory. Their 

results depicted that the buckling load and vibration frequency decrease linearly with increasing of electric potential, 

spring and shear coefficients of the Pasternak foundation, and increases with an increase in the magnetic potential. 

Shooshtari and Razavi [11] studied linear and nonlinear free vibration of a multilayered MEE doubly-curved shell 

on elastic foundation. They showed that negative electric potentials and positive magnetic potentials increase the 

fundamental natural frequencies of MEE doubly curved shells, whereas the positive electric potentials and negative 

magnetic potentials have inverse effect on the natural frequency of MEE doubly-curved shells. They [12] also 

investigated large amplitude free vibration of symmetrically laminated MEE rectangular plates on Pasternak type 

foundation. Mohammadimehr et al. [13] investigated electro-elastic analysis of a sandwich thick plate considering 

FG core and composite piezoelectric layers on Pasternak foundation using third-order shear deformation theory 

(TSDT). Their results showed that the dimensionless natural frequency and critical buckling load decrease with 

increasing of the power law index, and vice versa for dimensionless deflection and electrical potential function, 

because of the sandwich thick plate with considering FG core becomes more flexible; while these results are reverse 

for thickness ratio. Ansari et al. [14] described nonlinear forced vibration of magneto-electro-thermo-elastic Nano 

beams based on Eringen’s nonlocal elasticity theory. Their research showed that the effects of external magnetic 

potential and electric voltage are dependent on their sign. Xin and Hu [15] derived semi-analytical solutions for free 

vibration of arbitrary layered MEE beams using the state space approach (SSA) and discrete singular convolution 

(DSC) algorithm. Their results revealed that by increasing thickness natural frequency increases for higher mode 

and different material parameter affects natural frequency greatly. Also, they [16] obtained free vibration of 

multilayered MEE plates using SSA-DSC approach with simply supported boundary conditions. Based on strain 

gradient theory, Mohammadimehr et al. [17] investigated the free vibration analysis of tapered viscoelastic micro-

rod resting on visco-Pasternak foundation. They assumed the material properties of micro-rod as the visco-elastic 

and modeled using the Kelvin-Voigt. Then, they derived the governing equation of motion of viscoelastic micro-

rods using Hamilton's principle and energy method, and also solved these obtained equations using the differential 

quadrature method (DQM) for different boundary conditions. Their results showed that with an increase in the 

Winkler and Pasternak coefficients, the natural frequency increases as well as the obtained non-dimensional natural 

frequencies by modified couple stress theory (MCST) and strain gradient theory (SGT) decrease by increasing the 

material length to radius ratio. It was shown that the non-dimensional frequencies increase by increasing the 

damping coefficient for all theories. Moreover, at the specified value of damping coefficient of the elastic medium, 

the variation of non-dimensional natural frequency is approximately smooth. In the other work, Rahmati and 

Mohammadimehr [18] presented electro-thermo-mechanical vibration analysis of non-uniform and non-

homogeneous boron nitride Nano rod (BNNR) embedded in elastic medium. They developed the steady state heat 

transfer equation without external heat source for non-homogeneous rod and derived temperature distribution. Also, 

using Maxwell׳s equation and nonlocal elasticity theory, they obtained the coupled displacement and electrical 

potential equations and implemented the DQM to evaluate the natural frequencies. Ke and Wang [19] showed the 

free vibration of MEE Timoshenko Nano beams based on the nonlocal elasticity theory. They depicted that the 

natural frequency of nonlocal Nano beam is always smaller than that of the classical Nano beam, and it decreases 

with increasing of the nonlocal parameter. Wang et al. [20] analyzed axisymmetric bending of FG circular MEE 

plates of transversely isotropic materials based on linear three-dimensional elasticity theory. They represented that 

the electric potential and magnetic potential are parabolic-like along the thickness of the plate and this phenomenon 

may be considered in some approximate methods for bending of the MEE plates. Rao et al. [21] studied 

geometrically nonlinear finite rotation shell element for static analysis of layered MEE coupled composite 

structures. Mohammadimehr et al. [22] investigated free vibration of viscoelastic double-bonded polymeric 

nanocomposite plate reinforced by functionally graded-single walled carbon nanotubes (FG-SWCNTs) embedded in 

viscoelastic foundation based on modified strain gradient theory (MSGT). They defined material properties of 



                               Vibration Analysis of Magneto-Electro-Elastic Timoshenko …                        3 

 

© 2018 IAU, Arak Branch 

viscoelastic nanocomposite plates by extended mixture rule (EMR), and also extracted the governing equations of 

motion using Hamilton's principle and sinusoidal shear deformation theory. Then, they determined natural frequency 

of nanocomposite plates by Navier's and meshless methods, and also, using meshless method, the effect of various 

boundary conditions on dimensionless natural frequency. In the other work, they [23] extended modified strain 

gradient Reddy rectangular plate theory for biaxial buckling and bending analysis of double-coupled polymeric 

nanocomposite plates reinforced by functionally graded single-walled boron nitride nanotubes (FG-SWBNNTs) and 

FG-SWCNTs. Kattimani and Ray [24] investigated control of geometrically nonlinear vibrations of functionally 

graded MEE plates. Their results revealed that the electro-elastic and the magneto-elastic couplings have negligible 

influence on the nonlinear transient response of the FG MEE plates while increasing the stiffening effect marginally. 

Liu et al. [25] proposed guided wave propagation and mode differentiation in the layered MEE hollow cylinder. 

They illustrated that in a low frequency range, radius-thickness ratio have significant effect on the wave 

characteristics. Sedighi and Farjam [26] presented a modified model for dynamic instability of CNT based actuators 

by considering rippling deformation, tip-charge concentration and Casimir attraction. They concluded that the tip 

charge concentration and rippling phenomenon can substantially affect the electromechanical performance of 

actuators fabricated from cantilever CNT. Zare [27] considered pull-in instability behavior analysis of functionally 

graded micro-cantilevers under suddenly DC voltage. By employing modern asymptotic approach namely homotopy 

perturbation method with an auxiliary term, he obtained high-order frequency-amplitude relation, then the influences 

of material properties and actuation voltage on dynamic pull-in behavior are investigated. Sedighi [28] illustrated the 

influence of small scale on the pull-in behavior of nonlocal nano bridges considering surface effect, Casimir and van 

der Waals attractions. He investigated the effects of applied voltage and intermolecular parameters on pull-in 

instability as well as the natural frequency. Furthermore, he considered the influence of nonlocal parameter and 

surface energy on the dynamic pull-in voltage. 

The effects of material length scale parameters on the rotation angle, dimensionless electric potential, and 

dimensionless magnetic parameter are taken into account. Also, the influences of dimensionless electric potential, 

dimensionless magnetic parameter, material length scale parameter, external electric voltage, external magnetic 

parameter, slenderness ratio, temperature change, surface stress effect, spring Winkler constant, and shear Pasternak 

constant on the dimensionless natural frequency are investigated. 

2    THE GOVERNING EQUATIONS OF MOTION FOR MEE TIMOSHENKO MICRO BEAM MODEL 

The governing equations of motion using Hamilton’s principle are derived for magneto-electro-elastic (MEE) 

Timoshenko micro beam model based on surface stress effect and modified strain gradient theory (MSGT) under 

moving nano-particle and these equations are solved using differential quadrature method (DQM). 

2.1 Modified strain gradient theory 

The size dependent effect has an important role at micro scale. Fleck and Hutchinson [29-31] extended and 

reformulated the classical couple stress theory and renamed it as the strain gradient elasticity theory (SGET), in 

which for homogeneous isotropic and incompressible materials, three additional higher-order material length scale 

parameters are introduced. Lam et al. [32] proposed a modified strain gradient elasticity theory (MSGT) in which a 

new additional equilibrium equations to govern the behavior of higher-order stresses, the equilibrium of moments of 

couples is introduced, in addition to the classical equilibrium equations of forces and moments of forces. 

Meanwhile, there are only three independent higher-order materials length scale parameters for isotropic linear 

elastic materials in the present theory. 

According to the modified strain gradient theory (MSGT) proposed by Lam et al. [32], the strain energy of a 

linear MEE continuum occupying region   is written as follows [22, 25, 33, and 34]: 

 

(1) (1)1
( D )

2
Eij ij ijk ijki i i i i iij ijp Bm dHU V    


              (1) 

 

where 
(1), , , ,,ij ijk iji i iE H    denote the strain, the dilatation gradient tensor, the symmetric rotation gradient 

tensor, the deviatoric stretch gradient tensor, the electric field and magnetic field, respectively, which are defined by 

following form [10, 33, and 34]: 
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, ,( )
1

2
ij i j j iu u            (2) 

 

,i mm i           (3) 

 

     (1)

, , , , , , , , ,

1 1 1 1
( 2 2 2

3 1 15 15
)

5
jk i ki j ij k ij mm k mk m jk mm iijk mi m ki mm j mj m                         (4) 

 

, ,

1 1
( ) (curl(u))

2 2
ij i j j i i i            (5) 

 

,i iE         (6) 

 

,i iH         (7) 

 

In which , , ,i mm iu    and  represent the displacement vector, dilatation strain, the infinitesimal rotation vector, 

electric and magnetic potentials respectively. ij and ijke are the Knocker and the alternate symbols respectively. The 

basic equations for a MEE material may be expressed as follows:  

 

ij ijkl kl mij m nij n ijc e E q H T             (8) 

 

i ikl kl im m in n iD e s E d H v T           (9) 

 

i ikl kl im m in n iB q d E H T                (10) 

 

In which , , , ,ij ij i i iD E B  and 
iH are the stress, strain, electric displacement, electric field, magnetic induction 

and magnetic field, respectively. , , , , , ,ijkl mij nij im in in ic e q s d v and 
i are the elastic, piezoelectric, piezo-magnetic, 

dielectric constant, magneto-electric, magnetic, pyroelectric and pyro-magnetic constants, respectively. ij and 

T are the thermal moduli and temperature change, respectively. The higher-order stresses (1),i ijkp   and 
ijm are 

given by [33, 34]: 
 

2

02i ip l           (11) 

 
(1) (1)2

12ijk ijkl           (12) 

 
2

22ij ijlm           (13) 

 

where   is the shear modulus and  0 1 2, ,l l l are independent material length scale parameters. 

2.2 Surface stress effect  

The ratio of surface to volume at nano and micro structure is high, therefore the surface stress has important role and 

should be considered in analyze of these structures. The classical stress tensor related to the surface can be 

calculated using Gurtin and Murdoch theory [35-38]: 

 

0 11 31 31

s s s s s s

xx xx z zc e E q H               (14) 
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where 
0 11 31, , ,s s s s

xxc e  and 
31

sq  are the residual surface stress, elastic modulus, normal strain, piezoelectric and piezo 

magnetic constants in surface layer, respectively. The higher-order surface stresses (1)s,s

i ijkp  and s

ijm can be expressed 

as [39]: 

 
2

02s s

i s ip l           (15) 

 
(1) 1 s

1

s ( )22 sijk ijkl           (16) 

 
2

22 s

s s

ij ijlm            (17) 

 

In which (1)s, ,s

i

s

ijk ij  and
s are the surface dilatation gradient tensor, the surface symmetric rotation gradient 

tensor, the surface deviatoric stretch gradient tensor and surface shear moduli, respectively. 

2.3 MEE Timoshenko micro beam model  

A schematic view of MEE micro-beam subjected to an electric and magnetic potentials and a uniform temperature 

with considering surface layer rand elastic medium under moving nano-particle is shown in Fig. 1. The displacement 

fields based on Timoshenko micro-beam model can be expressed as follows [40-41]: 

 

   1( ,z, ) , ,u x t u x t z x t           (18) 

 

2 ( ,z, t) 0u x           (19) 

 

3( ,z, t) ( , )u x w x t          (20) 

 

where u and w are axial and transverse displacements for neutral axis, respectively, and   is the rotation angle of a 

transverse normal about the x-axis. 

 

 
 

 

 

 

 

 

 

 

 

Fig.1 

A schematic view of MEE micro-beam with considering 

surface layer and elastic medium under moving micro-

particle. 

 

The electric and magnetic potential distributions along the thickness direction of micro-beam are considered as 

follows [19], [42]: 

 

2
(x, z, t) cos( z) (x, t)

2
(x, z, t) cos( z) (x, t)

E

E

H

H

zV

h

z

h

  



  


    

         (21) 
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where , (x, t)E
h


   and (x, t)H  are the variation of electric and magnetic potentials in the x -direction which 

must satisfy the electric and magnetic boundary conditions. EV and H are the  external electric voltage and 

external magnetic parameter, respectively. 

By substituting Eqs. (18)- (20) into Eq. (2), the components of normal and shear strains for both bulk and surface 

are given by: 

 

s

xx xx

u
z

x x


 





 

 
         (22) 

 

, 0s

xz xz

w

x
  


 


         (23) 

 

Using Eqs. (3), (22), (23), the following equations are obtained: 

 
2 2

2 2

s

x x u z
x x

  
 







         (24) 

 

s

z z
x

  


  


         (25) 

 

By employing Eqs. (4), (22), (23), the non-zero component of deviatoric stretch gradient tensor yields: 

 
2 2

2 2

2

2

(1) s(1)

111 111

(1) s(1)

333 333

(1) (1) (1) s(1) s(1) s(1)

113 131 311 113 131 311

(1) (1) (1) s(1) s(1) s(

313 331 133 313 331 133

2

2

,

8 4
,

15

2 2

5 5

2 1 1

5 5 5

15 5

4

1

u
z

x x

w

x xx

w

x xx

 

 

     

     



 

 

  

 

       

  

 

 

  


 

  




 

 1)

(1) (1) (1) s(1) s(1) s(1)

122 212 221 122 212 221

(1) (1) (1) s(1) s(1) s(1)

322 232 223 3

2 2

2 2

2 2

2

2

2

2 232 2

2

232

1 1

5 5

1 1

5 5

2 1 1
,

15 15 15

u
z

x x

u
z

x x

w

x xx

     

   











 


 



 

    



 

  




 

  


 




         (26) 

 

By substituting Eqs. (22), (23) into Eq. (5) leads to the following equation: 

 
2

2

1
(

4
)s s

xy yx xy yx

w

xx


   

 
    


         (27) 

 

The higher-order stresses can be obtained by substituting Eqs. (24) - (27) into Eqs. (11)- (13) and (15)-(17) as 

follows: 
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x
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


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
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

 

 

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         (28) 
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x
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







 
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

  
   
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
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






         (29) 

2.4 Plane stress state 

If consider that micro-beam is under the plane stress state, the constitutive equations in one-dimensional form can be 

written as follows: 

 

11 31 31 1

44 15 15

15 11 11

31 33 33 3

2 2
e ( sin( z) ) ( sin( z) )

e cos( z) cos( z)

e cos( z) cos( z)
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E H

xx xx E H

E H
xz xz

E H

x xz

E H

z xx E H

x

V
c q T

h h

c q
x x

D s d
x x

V
D s d T

h h

B q

       


   


  

      


       

 
  

 

 
  

 


       

 15 11 15

31 33 33 3

cos( z) cos( z)

2 2
( sin( z) ) ( sin( z) )

E H

xz

E H

z xx E H

d
x x

V
B q d T

h h


   
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 

 


       

         (30) 

 

In which , , , , , , ,ij ij ij ij ij ij ij ic e q s d v   and 
i  are elastic, piezoelectric, piezo-magnetic, dielectric constant, 

thermal moduli, magneto-electric, magnetic, pyroelectric and pyro-magnetic constants, respectively for MEE micro-

beam under plane stress state. These constants are written in Appendix A with details. 

The total strain energy with considering the strain gradient theory and the surface effect theory is written as 

follows: 

 

(1) (1)

s(1) s(1)

D E )

1
)

1
(

2

(
2

b s

ij ij ijk ijk ij ij

s s

ij ij ijk i

i i i i i i

s s s s

i i jj ijk i

p B H dU U Adx

p dSdx

m

m

 



   

   





   









 





         (31) 
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where 
bU and 

sU are the strain energy for the bulk and surface, respectively. By substituting Eqs. (6), (7), (11)-

(13), (15)-(17) and (22)-(30) into Eq. (31), the total strain energy is obtained as follows: 

 

       

     

   

2

0 0 0 0

0 1 1 20

2 2

(1) (1) (1) (1)0 0 0

3 3 1 1 111 1112 2

2

(1) (1) (1)0 0

111 111 3332

1
{ N N

2

2

5

2 2

5 5

L
b s u w u

U U M M Q P P
x x x x

u
P P M M T T

x x x

M M T
x




 

 

         
               

          

      
         

       

  
   

 



 

     

   

2

(1)0 0

3332

2 2

(1) (1) (1)0 0 0 0 0

113 113 2232 2

2

(1) (1) (1) (1)0 0

223 221 221 2212

1 1

5 5

8 4 4 2 1
3 3 3

15 15 15 15 15

1 1
3 6 6

15 5

w
T

x xx

w w
T T T

x x xx x

u
T T T M

x x



  



   
    

    

        
         

       

   
      

    
 

 

   

   

2

(1) 0

221 2

2

0 0

12 12 2

0

0

1

5

1
}dx

2

21
{ sin cos }

2

21
{ sin cos }

2

L

E E

z E x

A

L

H H

z H x

A

M
x

w
Y Y

x x

V
D z D z dAdx

h x

B z B z dAdx
h x






   

  

 
  

 

  
   

  

   
     

   

    
      

   

 

 

         (32) 

 

The normal stress resultant force  ,N N , bending moments  ,M M , couple moment  12 12,Y Y and other higher-

order resultant force and moment can be expressed in Appendix A [43-45]. 

The total kinetic energies for MEE micro-beam contain of bulk kinetic energy bk  and surface kinetic energy sk  

can be calculated from: 

 
2 2 2

0 0 0

0 0 2 2

0

2 2

0 0 2 2

1
( I I ) ( I I )

2      

I , I , I , I

L

b s

s s

A S A S

u w
k k dx

t t t

dA dS z dA z dS


   

          
                       

   



   

         (33) 

 

The work done by the external force including the external magnetic potential
H , external electric potential 

EV and temperature change T can be calculated as follows: 

 

3 3 1

2

1

0

1

)
1

(

,

2
0

2 , 2

external

m H e E

m e t

t

V N N N w

L

q e V T

x

N h

dx

N N 

  
   
  

 

      




         (34) 

 

The work due to elastic foundation can be obtained as follows: 

 

2

0 0 0

0

1
[( ) ]

2

L

elastic medium w gV k w k w w dx             (35) 

 

where wk is the spring constant of the Winkler type and gk represents the shear constant of the Pasternak type.  

The work done due to moving nano-particle can be written as [46]: 
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2

0

02

0

[( (x x
1

2
)) ]

L

c

Particle p

m w
V w dx

b t



 

          (36) 

 

where , ,c pm x b and x are the nano-particle mass, the location of nano-particle, the width of micro-beam and the 

impulse function, respectively. The Dirac-delta function for the moving nano-particle is defined as follows [46-47]: 

 

2

1

1 2( 1) (x ) x x x
(x) (x x )dx

0

x n n

p pn

p

x

g
g

otherwise


   
 


          (37) 

 

where ( )n x  denotes nth derivative of Dirac-delta function. 

Hamilton’s principle for MEE micro-beam is used to derive the governing equations of motions as follows: 

 
1

0

0

t

b s b s

external elastic medium particle

t

U U k k V V V                      (38) 

 

Substituting Eqs. (31) - (36) into Eq. (38), the following equations of motion can be derived as: 

 

       
 

 

0

2 2 (1) (1) 2 (1) (1) 2
1 1 111 111 221 221 0

0 02 2 2 2

0

22 (1) 2 (1) 2 (1) 2
12 12333 113 223 0

2 2 2 2 2

2

0 0

:

N N 2 6
0

5 5

:

1 4 1 1
)

5 5 5 2

( )

(

( (c

w

s

m e t

g

u

P P T T T T u
I I

x x x x t

w

Y YT T T wQ

x x x x x x

m
k

N N

w k
b

N

w







 
        

      
    

    
       
     

     

       

2 2

0 0

0 02 2

0

2 (1) (1) 2 (1) (1)

3 3 1 1 111 111

2 2

(1) (1) (1) (1) (1) (1)

333 333 113 113 223 223

2 (1) (

221 221

x x ))( ) 0

:

2

5

2 1 8 4 2 1

5 5 5 5 5 5

6

5

m sp

w w
I I

t t

M M P P M M M M
Q

x x x x

T T T T T T

x x x x x x

M M

 



 
   

 

       
   

   

     
     

     

 


   
 

1) 2
12 12 0

2 22 2

:

( cos( z) sin( z)) 0

:

( cos( z) sin( z)

1
0

2

) 0

s

E

x

z
A

H

x

z
A

Y Y
I I

D
D dA

x

x

B

x

t

B A

x

d

 



  



  




 






 



  
   

 





 

        (39) 

 

Substituting Appendix (A.2) into Eq. (39), the governing equations of motion can be obtained as follows: 
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 

0

2 4 2

0 0 0

11 11 55 55 0 02 4 2

0

44 44 55 2 55 55

2 2

0 1

2 3

2 20 0 0

12 3

4

2 2

15

2

0

55 55 55

0

1 2 4 2

4
2

5

16 1
( ( (

:

(A A ) (A A )( ) 0

:

(A ) A ) (A A )) )

1
(

15 4

8
( ) (
15

A A ) )
4

m

E

s

e t

u

u u u
I I

x x t

w

l l

w
l l

x x
A

x x

w
l l N N

x

w
A N

E

x

 













   
  

 


  





      

  

 


    






 

15

2 2

2 0 0

0 0 0 02 2

0

3 3 4

4

4 44

55 55 2

2 2 0 0

0 1 04

2

2 2

55 55 55 55 11 11

5

2 2 0

1 1 0

2

5

2

1

)

( ) ( (x x ))( ) 0

:

(I I ) ( ) ( )

8
A A (A A ) (A A ) D D

(

4
(2 )

5

32 1
( 2
15 15 4

1

1

)

6

5
A(

H

c

w g mp s

Q

m w w
k w k w I I

b t

x

w
l l

xx

l l l l
x

l

t

A A

 














 
 

 
       

 
















    



 

3

2 0

3

2 2 2

0 0 0

11 332 2 2

2 2

2 55 55 15 31 31

2

0

15 31 31 2 2 2

31 15 1

2

0

1 33

31

0 0

11 11215 2

(A A )) )

)

1
(

4

(

:

:

0

( ) 0

( )

E

H

E H

E H

E

s

E

H

w
l

xx

x

w
Y X

x xx x x

w
Q Y

E E E

Q Q Q

T
x x

I I
t

E E X Y

Q
x x





 



  




  

 









     
    

   



  

  


   

  
 




  


 



 


33 32 3 0H

E HY
x

T  


 

        (40) 

 

where the constants of Eq. (40) are defined in Appendix A. 

The dimensionless parameters for magneto-electro-elastic Timoshenko micro beam model based on surface 

stress effect and MSGT under moving nano-particle are defined as follows: 

 

11 11

0 0 0 0 0

0 0 33 33

0 011

110 110

0 11 0

2 2 3 3

220 220 33 33 11 55 44 11 52

2 11

(U, W)
, (u , w ) , , , , ,

(N , N , N ) ( I , I )
, , (N , N , N ) , (I , I )

I

( I , I ) (I , I )
(I , I ) , (I , I ) , (a ,a ,a ,a ,a

I

E H

m e t s

m e t

s

A Ax
X

L h X T

At L

L I h A

A h


 



 
 

 

 




          



   

  11 55 44 11 55 44

5 44

11

2

0 1 211 11

11 11 0 1 22

11 11 011

15 0 31 0 31 0 15 0

15 31 31 15 31 31

11 11 11 11

(A , , ,A , , )
,a )

kk (l , l , l )( , )
(d ,d ) , (k , k ) ( , ),m ,( , , )

I

ˆˆ ˆ ˆˆ ˆ(E ,E ,E ) ( , , ), ( ,Q ,Q ) (

gw c

w g c

A A A A

A

L mD D

A A b hA h

E E E Q
Q

A h A h A h A



  



   


  31 0 31 0

11 11

2 2

11 0 33 0

11 33 2

1111

2 2

11 0 33 0 11 0 0 33 0 0

11 33 11 332 2

11 1111 11

, , )

ˆ ˆ, (X , ) ( , )

ˆ ˆ ˆ ˆ( ,T ) ( , ), (Y ,Y ) ( , )

Q Q

h A h A h

X X
X

AA h

T T Y Y
T

A AA h A h

 

 

 



   
 

 
        (41) 
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Using Eq. (41), the dimensionless governing equations of motion can be written as: 

 

 
2 4 2

2 2

11 11 55 55 110 1102 4 2

2 3 2
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:

( ) ( )( ) 0

:
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   
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      
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  
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2
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5
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1
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W
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X

wW
k W k W m I I

a
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
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ˆ
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


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 
    



 
  

 











     
    

   
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  
 

 

 



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1
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31 11 332 2 3
ˆ ˆ ˆ ˆ) 0Y T Y
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T 

    
   

 
  



 

        (42) 

 

The dimensionless simply supported (S-S) boundary conditions for MEE are considered as follows: 

 
2

2
0, 0 (X 0,1)

W
U W at

X X

 
        

 
         (43) 

3    DIFFERENTIAL QUADRATURE METHOD 

In this section, differential quadrature method (DQM) is utilized to solve the governing equations of motion. This 

technique is numerical method which approximates the spatial derivatives of a function at a particular sampling 

point as a weighted linear sum of the function values at all sampling points chosen in a specified direction. 

According to this method, the function f and derivatives are approximates as [48-49]: 

 

( )

1

(x )

i

n N
n

ij jn
jx x

d f
C f

dx 

          (44) 

 

where f can be taken as , , ,U W   and . 
(n)

ijC  and N are the weighting coefficients matrix and number of grid 

point respectively.  To determine the unequally spaced position of the grid points the Chebyshev–Gauss–Lobatto 

polynomials was employed as follow [50]: 
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2 1
1 cos

2 1
i

L i
x

N


   
    

  
         (45) 

 

Using Eqs. (42) and (43), a set of linear ordinary differential equations and boundary conditions are obtained that 

are written in Appendix B. Using Eqs. (B.1)- (B.2), a set of nonlinear homogenous partially differential equations 

are obtained which in matrix form can be expressed as follows: 

 

       ( K ) 0X M X           (46) 

 

where    K , M are the stiffness and mass matrices, respectively and  X denotes displacements vector as: 

 

            , , , ,
T

T T T T T
X U W             (47) 

 

General solution of motion equations is considered as follows: 

 

U( , ) ( ) e

W( , ) ( ) e

( , ) ( ) e

( , ) ( ) e

( , ) ( ) e

i

i

i

i

i

x t U X

x t W X

x t X

x t X

x t X















  

  

  

         (48) 

 

where 0

11

I
L

A


    is the dimensionless natural frequency and,   and   denote the fundamental natural 

frequency and the density of micro-beam, respectively. Substituting Eq. (46) into Eq. (47) yields the linear 

eigenvalue equations as follows: 

 

       2( K ) 0M X           (49) 

 

By solving Eq. (49), the dimensionless natural frequencies  and their associated vibration mode shapes can be 

extracted. 

4    NUMERICAL RESULTS AND DISCUSSION 

The presented results are based on the following data for geometry of MEE micro-beam [51-52]. Also the material 

properties of BiTiO3–CoFe2O4 can be stated as follows [14]: 

 

l 17.6 , 2 , 2 ,L 10m h l b h h             (50) 

 

First, the effect of the grid point numbers on the accuracy and convergence of analysis is studied. In this regard 

the dimensionless fundamental natural frequency versus number of total discrete grid points N is illustrated in Fig. 2. 

Thus, the number of grid points for convergence and acceptable accuracy of the results is selected to be N>=15. It 

should be noted that all of represented results are based on Eq. (50), the data of each Table or Figure stated under 

them. To check the accuracy of the present work, the obtained results are compared with the analytical solutions 

given by Ansari et al. [53] in Table 1. This Table gives the dimensionless natural frequencies for the simply 

supported Timoshenko micro-beam and different theories. A good agreement is found between the present results 

and those of analytical solutions. 
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Fig.2 

Dimensionless natural frequency versus number of grid 

points  11 31 31 0 .s s s

w g E H c sk k V T m c e q            

 

 
Table1 

The comparison between the present work and the obtained results by Ansari et al. [53] for simply supported Timoshenko micro-

beam based on various size dependent theories. ( 
3

l 15 , 0.17,E 427 , 3100
kg

m GPa
m

      ). 

Ceramic material Strain gradient 

theory(SGT)  0 1 2l l l l    

Modified couple stress 

theory(MCST)  0 1 20,l l l l    

Classical theory(CT) 

 0 1 2 0l l l    

Ansari [53] 1.2608 0.8538 0.5776 

Present work 1.2667 0.8573 0.6063 

 

Fig.3 shows the rotation angle versus length of MEE micro-beam for various material length scale parameters 

based on the modified strain gradient theory and simply supported boundary conditions. It is seen that by increasing 

the value of 
h

l
, the values of the rotation angle for MEE micro-beam increases. Also, the rotation angle is 

symmetric and at 0.5
X

L
  the value of rotation angle varies from negative to positive along length of the micro-

beam.  
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Fig.3 

The rotation angle versus length of MEE composite micro-

beam for various material length scale parameters. 

 11 31 31 0s s s

w g E H c sk k V T m c e q            

 

The effect of material length scale parameter on the dimensionless electric potential for MEE Timoshenko micro 

beam model is illustrated in Fig.4 that maximum electric potential is occurred at midline simply supported MEE 

micro-beam and by increasing the value of 
h

l
, the value of dimensionless electric potential decreases at 0.3-0.7 

ranges. 
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Fig.4 

The effect of material length scale parameter on the 

dimensionless electric potential for MEE micro composite 

Timoshenko beam model.  

 11 31 31 0s s s
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Fig.5 depicts dimensionless magnetic parameter for different material length scale parameters based on modified 

strain gradient model. It is observed that by increasing value of 
h

l
 increases the dimensionless magnetic parameter. 
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Fig.5 

The effect of material length scale parameter on the 

dimensionless magnetic parameter for MEE micro 

composite Timoshenko beam model.  

 11 31 31 0s s s

w g E H c sk k V T m c e q            

 

 

Figs. 6, 7 and 8 present the effect of electric potential and magnetic parameter simultaneously  on the 

dimensionless fundamental natural frequency based on modified strain gradient (MSGT), modified couple stress 

(MCST) and classical theories (CT), respectively. It can be seen that the effect of electric potential and magnetic 

parameter simultaneously increases the dimensionless natural frequency. On the other hands, with considering two 

parameters, the stiffness of MEE Timoshenko micro beam model increases. It can be seen that the stiffness of micro 

structure increases by MSGT is more than MCST and CT. Moreover, the dimensionless natural frequency based on 

MSGT is more than two other theories. 
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Fig.6 

The influence of dimensionless electric potential and 

magnetic parameter on dimensionless first natural 

frequency for MEE composite micro-beam based on 

modified strain gradient model.  

 11 31 31 0s s s

w g E H c sk k V T m c e q            
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Fig.7 

The influence of dimensionless electric potential and 

magnetic parameter on dimensionless first natural 

frequency for MEE composite micro-beam based on 

modified couple stress theory.  
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Fig.8 

The influence of dimensionless electric potential and 

magnetic parameter on dimensionless first natural 

frequency for MEE composite micro-beam based on 

classical theory.  

 11 31 31 0 1 2 0s s s

w g E H c sk k V T m c e q l l l               

 

The effect of the external electric voltage and external magnetic parameter on the dimensionless fundamental 

natural frequency of the micro-beam based on MSGT is illustrated in Figs. 9 and 10, respectively. It is shown from 

this figure that with increasing slenderness ratio, the dimensionless fundamental natural frequency decreases. Also, 

the influence of the external electric voltage and external magnetic parameter on the dimensionless frequency for 

Timoshenko micro beam model in higher slenderness ratios is more. Also, it is realized from Fig. 9 that the 

dimensionless natural frequency of the MEE micro-beam decreases with increasing the external electric voltage for 

strain gradient theory. However, it is concluded from Fig. 10 that by increasing the external magnetic parameter, the 

dimensionless natural frequency of the MEE micro-beam increases. 

 

5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

L/h


1

 

 

V
E
=-4(KV)

V
E
=-2(KV)

V
E
=0(KV)

V
E
=2(KV)

V
E
=4(KV)

 

 

 

 

 

 

 

 

 

 

Fig.9 

The effect of external electric voltage on the dimensionless 

fundamental natural frequency based on MSGT.  
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Fig.10 

The effect of external magnetic parameter on the 

dimensionless fundamental natural frequency based on 

MSGT. 

 11 31 31 0s s s

w g E c sk k V T m c e q           

 

Figs. 11(a) and 11(b) show the effect of two parameters elastic foundation on the dimensionless electric potential 

based on MSGT. It is seen that with increasing elastic foundation, the electric potential decreases. 
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Fig.11 

a) The effect of shear Pasternak constant on the dimensionless electric potential based on MSGT. 
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b) The effect of spring Winkler constant on the dimensionless electric potential based on MSGT. 

 11 31 31 0s s s
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Figs. 12(a) and 12(b) depict the effect of two parameters elastic foundation on magnetic parameter based on 

MSGT. It is concluded that the magnetic parameter increases with an increase in the elastic foundation.  
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Fig.12 

a) The effect of shear Pasternak constant on the dimensionless magnetic parameter based on MSGT. 
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b) The effect of spring Winkler constant on the dimensionless magnetic parameter based on MSGT. 

 11 31 31 0s s s
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Fig. 13 illustrates the effect of nano particle mass on dimensionless natural frequency based on MSGT. It is 

assumed that the nano particle is placed at 
2

P

L
x  . It is found that by increasing the mass of nano-particle, the 

dimensionless natural frequency of system decreases. 
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Fig.13 

The effect of nano particle mass on dimensionless natural 

frequency based on MSGT.  
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g w E H c sk k V T c e q           

 

Table 2. shows the effect of temperature change on dimensionless first three natural frequencies based on various 

size dependent theories such as MSGT, MCST and CT. It can be seen that with an increase in the temperature 

change, dimensionless natural frequency of micro beam model decreases. Also with increasing temperature change 

the stiffness of micro-beam decreases. According to Ghorbanpour Arani et al. [54], the mechanical and electrical 

properties for surface stress effect are defined as follows: 

 

11 31 312
5.61 6 , 44.2 and 0.216 , 3 5s s s

s

kg N nC N
e c e q e

m m mm
                (51) 

 

Using the data of Eq. (51), Table 3. shows the surface stress effect on dimensionless first three natural 

frequencies of MEE micro-beam for different values of slenderness ratio (
L

h
) based on MSGT, MCST and CT. It is 

concluded that by considering the surface stress effect, the dimensionless natural frequency of system decreases. 

 
 

Table2 

The effect of temperature change ( C)T  on the dimensionless first three natural frequency based on various size dependent 

theories.  11 31 31 0s s s

g w E H c sk k V m c e q         . 

Various  

theories 
mode 

 ( C)T    

0 40 80 120 160 200 

MSGT 

1 1.0722 1.0719 1.0717 1.0714 1.0711 1.0708 

2 2.3280 2.3276 2.3272 2.3267 2.3263 2.3259 

3 3.5361 3.5361 3.5361 3.5361 3.5361 3.5361 

MCST 

1 0.7804 0.7801 0.7797 0.7793 0.7789 0.7786 

2 1.8283 1.8278 1.8273 1.8268 1.8263 1.8258 

3 3.0703 3.0698 3.0693 3.0688 3.0683 3.0678 

CT 

1 0.6005 0.6000 0.5995 0.5990 0.5985 0.5980 

2 1.4041 1.4035 1.4028 1.4021 1.4015 1.4008 

3 2.3361 2.3354 2.3347 2.3340 2.3333 2.3327 
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Table3 

Surface stress effect on the dimensionless first three natural frequencies for different values of slenderness ratio based on various 

size dependent theories.  0, 1 .g w E H ck k V T m l m         

various 

theories 
mode 

With neglecting 

surface  effect 

With  

considering 

surface  effect 

With neglecting 

surface  effect 

With  

considering 

surface  effect 

With 

neglecting 

surface  effect 

With  

considering 

surface  

effect 
10L h  20L h  30L h  

 

MSGT 

1 1.0722 1.0716 0.6302 0.6299 0.4366 0.4364 

2 2.3280 2.3262 1.5689 1.5679 1.1416 1.1410 

3 3.5361 3.5342 2.7730 2.7711 2.1048 2.1036 

 

MCST 

1 0.7804 0.7802 0.4379 0.4378 0.2997 0.2996 

2 1.8283 1.8270 1.1341 1.1336 0.8012 0.8009 

3 3.0703 3.0682 2.0722 2.0711 1.5119 1.5113 

 

CT 

1 0.6005 0.6005 0.3272 0.3271 0.2222 0.2222 

2 1.4041 1.4034 0.8519 0.8517 0.5965 0.5964 

3 2.3361 2.3350 1.5546  1.5541 1.1257 1.1255 

5   CONCLUSIONS 

In this research, the free vibration analysis of magneto-electro-elastic (MEE) Timoshenko micro beam model based 

on surface stress effect and modified strain gradient theory (MSGT) under moving nano-particle was investigated. 

The governing equations of motion using Hamilton’s principle were derived and these equations were solved using 

differential quadrature method (DQM). The effects of material length scale parameters on the rotation angle, 

dimensionless electric potential, and dimensionless magnetic parameter were taken into account. Also, the 

influences of dimensionless electric potential, dimensionless magnetic parameter, material length scale parameter, 

external electric voltage, external magnetic parameter, slenderness ratio, temperature change, surface stress effect, 

spring Winkler constant, shear Pasternak constant on the dimensionless natural frequency were considered. The 

results of this study are listed as follows: 

1. The number of grid points for convergence and acceptable accuracy of the obtained results is selected to be 

N>=15. 

2. It is observed from the results that with an increase in the value of
h

l
, the values of the rotation angle for 

MEE micro-beam increases. Also, the rotation angle is symmetric and at 0.5
X

L
  the value of rotation 

angle varies from negative to positive along length of the micro-beam. 

3. It can be seen that the effect of electric potential and magnetic parameter simultaneously increases the 

dimensionless natural frequency. On the other hands, with considering two parameters, the stiffness of 

MEE Timoshenko micro beam model increases. It can be seen that the stiffness of micro structure increases 

by MSGT more than MCST and CT. Moreover, the dimensionless natural frequency based on MSGT is 

more than two other theories. 

4. It is shown that with increasing slenderness ratio, the dimensionless fundamental natural frequency 

decreases. Also, the influence of the external electric voltage and external magnetic parameter on the 

dimensionless frequency for Timoshenko micro beam model in higher slenderness ratios is more. Also, it is 

found that the dimensionless natural frequency of the MEE micro-beam decreases with increasing the 

external electric voltage based on MSGT. However, it is concluded that by increasing the external magnetic 

parameter, the dimensionless natural frequency of the MEE micro-beam increases. 

5. It is seen that with increasing elastic foundation, the electric potential decreases, while the stiffness of 

micro-beam as well as natural frequency increases. 

6. It is concluded that the electric potential increases with an increase in the elastic foundation. 

7. It is found that by increasing the mass of nano-particle, the dimensionless natural frequency of system 

decreases.  
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8. It is seen that with increasing of the temperature change, the dimensionless natural frequency of micro 

beam model decreases. Moreover with increasing temperature change the stiffness of micro-beam 

decreases. 

9. It is concluded that by considering the surface stress effect, the dimensionless natural frequency of system 

decreases. 
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APPENDIX A 

The constants in Eq. (30) are written as follows: 
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       (A.1) 

 

In Eq. (32), the normal stress resultant force  ,N N , bending moments  ,M M , couple moment  12 12,Y Y and 

other higher-order resultant force and moment can be expressed as follows [43-45]: 
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The constants in Eq.(40) are defined as the following form: 
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APPENDIX B 

Using Eqs. (42) and (43), a set of linear ordinary differential equations are obtained as follows: 
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And for boundary conditions, one can be written as the following form: 
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It should be noted that subscripts 1 and N return to grid point numbers.  

REFERENCES 

[1] Sun K.H., Kim Y.Y., 2010, Layout design optimization for magneto-electro-elastic laminate composites for maximized 

energy conversion under mechanical loading, Smart Materials and Structures 19: 055008. 



                               Vibration Analysis of Magneto-Electro-Elastic Timoshenko …                        21 

 

© 2018 IAU, Arak Branch 

[2] Wang B.L., Niraula O.P., 2007, Transient thermal fracture analysis of transversely isotropic magneto-electro-elastic 

materials, Journal of Thermal Stresses 30: 297-317. 

[3] Priya S., Islam R., Dong S., Viehland D., 2007, Recent advancements in magneto-electric particulate and laminate 

composites, Journal of Electroceramics 19: 149-166. 

[4] Zhai J., Xing Z., Dong S., Li J., Viehland D., 2008, Magnetoelectric laminate composites: an overview, Journal of the 

American Ceramic Society 91: 351-358. 

[5] Nan C.W., Bichurin M., Dong S., Viehland D., Srinivasan G., 2008, Multiferroic magnetoelectric composites: 

historical perspective, status, and future directions, Journal of Applied Physics 103: 031101. 

[6] Bhangale R.K., Ganesan N., 2006, Free vibration of functionally graded non-homogeneous magneto-electro-elastic 

cylindrical shell, International Journal for Computational Methods in Engineering Science and Mechanics 7: 191-200. 

[7] Lang Z., Xuewu L., 2013, Buckling and vibration analysis of functionally graded magneto-electro-thermo-elastic 

circular cylindrical shells, Applied Mathematical Modelling 37: 2279-2292. 

[8] Razavi S., Shooshtari A., 2015, Nonlinear free vibration of magneto-electro-elastic rectangular plates, Composite 

Structures 119: 377-384. 

[9] Ke L.L., Wang Y.S., Yang J., Kitipornchai S., 2014, Free vibration of size-dependent magneto-electro-elastic 

nanoplates based on the nonlocal theory, Acta Mechanica Sinica 30: 516-525. 

[10] Li Y.S., Cai Z.Y., Shi S.Y., 2014, Buckling and free vibration of magneto-electro-elastic nanoplate based on nonlocal 

theory, Composite Structures 111: 522-529. 

[11] Shooshtari A., Razavi S., 2015, Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-

curved shell on elastic foundation, Composite Part B 78: 95-108. 
[12] Shooshtari A., Razavi S., 2015, Large amplitude free vibration of symmetrically laminated magneto-electro-elastic 

rectangular plates on Pasternak type foundation, Mechanics Research Communications 69: 103-113. 

[13] Mohammadimehr M., Rostami R., Arefi M., 2016, Electro-elastic analysis of a sandwich thick plate considering FG 

core and composite piezoelectric layers on Pasternak foundation using TSDT, Steel and Composite Structures 20: 513-

543. 

[14] Ansari R., Gholami R., Rouhi H., 2015, Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-

elastic Timoshenko Nano beams based upon the nonlocal elasticity theory, Composite Structures 126: 216-226. 

[15] Xin L., Hu Z., 2015, Free vibration of layered magneto-electro-elastic beams by SS-DSC approach, Composite 

Structures 125: 96-103. 

[16] Xin L., Hu Z., 2015, Free vibration of simply supported and multilayered magneto-electro-elastic plates, Composite 

Structures 121: 344-350. 

[17] Mohammadimehr M., Monajemi A.A., Moradi M., 2015, Vibration analysis of viscoelastic tapered micro-rod based on 

strain gradient theory resting on visco-Pasternak foundation using DQM, Journal of Mechanical Science and 

Technology 29 (6): 2297-2305. 

[18] Rahmati A.H., Mohammadimehr M., 2014, Vibration analysis of non-uniform and non-homogeneous boron nitride 

nanorods embedded in an elastic medium under combined loadings using DQM, Physica B: Condensed Matter 440: 

88-98. 

[19] Ke L.L., Wang Y.S., 2014, Free vibration of size-dependent magneto-electro-elastic Nano beams based on the nonlocal 

theory, Phisyca E 63: 52-61. 
[20] Wang Y., Xu R., Ding H., 2011, Axisymmetric bending of functionally graded circular magneto-electro-elastic plates, 

European Journal of Mechanics-A/Solid 30: 999-1011. 

[21] Rao M.N., Schmidt R., Schröder K.U., 2015, Geometrically nonlinear static FE-simulation of multilayered magneto-

electro-elastic, Composite Structures 127: 120-131. 

[22] Mohammadimehr M., Rousta Navi B., Ghorbanpour Arani A., 2015, Free vibration of viscoelastic double-bonded 

polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and 

meshless method, Composite Structures 131: 654-671. 

[23] Mohammadimehr M., Rousta Navi B., Ghorbanpour Arani A., 2016, Modified strain gradient Reddy rectangular plate 

model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced 

by FG-SWNT, Composite Part B: Engineering 87: 132-148. 

[24] Kattimani S.C., Ray M.C., 2015, Control of geometrically nonlinear vibrations of functionally graded magneto-electro-

elastic plates, International Journal of Mechanical Sciences 99: 154-167.  

[25] Liu Y., Han Q., Li C., Liu X., Wu B., 2015, Guided wave propagation and mode differentiation in the layered magneto-

electro-elastic hollow cylinder, Composite Structures 132: 558-566. 

[26] Sedighi H. M., Farjam N., 2016, A modified model for dynamic instability of CNT based actuators by considering 

rippling deformation, tip-charge concentration and Casimir attraction, Microsystem Technologies 23: 2175-2191. 

[27] Zare J., 2015, Pull-in behavior analysis of vibrating functionally graded micro-cantilevers under suddenly DC voltage, 

Journal of Applied and Computational Mechanics 1(1): 17-25. 

[28] Sedighi H. M., 2014, The influence of small scale on the pull-in behavior of nonlocal nano bridges considering surface 

effect, Casimir and van der Waals attractions, International Journal of Applied Mechanics 6(3): 1450030.  

[29] Fleck N. A., Hutchinson J. W., 1993, Phenomenological theory for strain gradient effects in plasticity, Journal of the 

Mechanics and Physics of Solids 41(12): 1825-1857.  

[30] Fleck N. A., Hutchinson J. W., 1997,  Strain gradient plasticity, Advances in Applied Mechanics 33: 296-358. 

http://link.springer.com/article/10.1007/s12206-015-0522-2
http://link.springer.com/article/10.1007/s12206-015-0522-2
http://www.sciencedirect.com/science/article/pii/S0921452614000581
http://www.sciencedirect.com/science/article/pii/S0921452614000581
http://www.sciencedirect.com/science/article/pii/S1359836815006009
http://www.sciencedirect.com/science/article/pii/S1359836815006009
http://www.sciencedirect.com/science/article/pii/S1359836815006009
http://link.springer.com/journal/542
http://www.journals.elsevier.com/journal-of-the-mechanics-and-physics-of-solids
http://www.journals.elsevier.com/journal-of-the-mechanics-and-physics-of-solids


22                              M. Mohammadimehr and H. Mohammadi Hooyeh 

 
 

© 2018 IAU, Arak Branch 

[31] Fleck N. A., Hutchinson J. W., 2001, A reformulation of strain gradient plasticity, Journal of the Mechanics and 

Physics of Solids 49(10): 2245- 2271. 

[32] Lam D.D.C., Yang F., Chong A.C.M., Wang J., Tong P., 2003, Experiments and theory in strain gradient elasticity, 

Journal of the Mechanics and Physics Solids 51: 1477-1508. 

[33] Akgöz B., Civalek Ö., 2013, A size-dependent shear deformation beam model based on the strain gradient elasticity 

theory, International Journal of Engineering Science 70: 1-14. 

[34] Mohammadimehr M., Salemi M., Rousta Navi B., 2016, Bending, buckling, and free vibration analysis of MSGT 

microcomposite Reddy plate reinforced by FG-SWCNTs with temperature- dependent material properties under hydro-

thermo-mechanical loadings using DQM, Composite Structures 138: 361-380. 

[35] Gurtin M., Ian Murdoch A., 1975, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and 

Analysis 57: 291-323. 

[36] Gurtin M., Ian Murdoch A., 1987, Surface stress in solids, International Journal of Solids and Structures 14: 431-440. 

[37] Mohammadimehr M., Rousta Navi B., Ghorbanpour Arani A., 2015, Surface stress effect on the nonlocal biaxial 

buckling and bending analysis of polymeric piezoelectric Nano plate reinforced by CNT using Eshelby-Mori-Tanaka 

approach, Journal of Solid Mechanics 7( 2): 173-190. 

[38] Karimi M., Shokrani M. H., Shahidi A. R., 2015, Size-dependent free vibration analysis of rectangular nanoplates with 

the consideration of surface effects using finite difference method, Journal of Applied and Computational Mechanics 

1(3): 122-133. 

[39] Ghorbanpour Arani A., Kolahchi R., Mosayebi M., Jamali M., 2016, Pulsating fluid induced dynamic instability of 

visco-double-walled carbon nano-tubes based on sinusoidal strain gradient theory using DQM and Bolotin method, 

International Journal of Mechanics and Materials in  Design 12(1): 17-38. 

[40] Ansari R., Gholami R., Sahmani S., 2011, Free vibration analysis of size-dependent functionally graded microbeams 

based on the strain gradient Timoshenko beam theory, Composite Structures 94 : 221-228. 

[41] Şimşek M., Kocatürk T., Akbaş Ş.D., 2013, Static bending of a functionally graded microscale Timoshenko beam 

based on the modified couple stress theory, Composite Structures 95: 740-747. 

[42] Li Y.S., Feng W.J., Cai Z.Y., 2014, Bending and free vibration of functionally graded piezoelectric beam based on 

modified strain gradient theory, Composite Structures 115: 41-50. 

[43] Ghorbanpour Arani A., Abdollahian M., Kolahchi R., 2015, Nonlinear vibration of a Nano beam elastically bonded 

with a piezoelectric Nano beam via strain gradient theory, International Journal of Mechanical Sciences 100: 32-40. 

[44] Ansari R., Mohammadi V., Faghih Shojaei M., Gholami R., Rouhi H., 2013, Nonlinear vibration analysis of 

Timoshenko Nano beams based on surface stress elasticity theory, European Journal of Mechanics-A/Solid 45 :143-

152. 

[45] Ke L.L., Wang Y.S., Wang Z.D., 2012, Nonlinear vibration of the piezoelectric Nano beams based on the nonlocal 

theory, Composite Structures 94: 2038-2047. 

[46] Şimşek M., 2011, Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system 

under a moving nanoparticle, Computational Materials Science 50: 2112-2123. 

[47] Ghorbanpour Arani A., Mortazavi S.A., Kolahchi R., Ghorbanpour Arani A.H., 2015, Vibration response of an 

elastically connected double-Smart Nano beam-system based nano-electro-mechanical sensor, Journal of Solid 

Mechanics 7: 121-130. 

[48] Ghorbanpour Arani A., Atabakhshian V., Loghman A., Shajari A.R., Amir S., 2012, Nonlinear vibration of embedded 

SWBNNTs based on nonlocal Timoshenko beam theory using DQ method, Phisyca B 407: 2549-2555. 

[49] Murmu T., Pradhan S.C., 2009, Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium 

based on nonlocal elasticity and Timoshenko beam theory and using DQM, Phisyca E 41: 1232-1239. 

[50] Civalek O., 2006, Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear 

static and dynamic analysis of rectangular plates on elastic foundation, Journal of Sound and Vibrations 294: 966-980. 

[51] Akgoz B., Civalek O., 2011, Strain gradient elasticity and modified couple stress models for buckling analysis of 

axially loaded micro-scaled beams, International Journal of Engineering Science 49: 1268-1280. 

[52] Zhang B., He Y., Liu D., Gan Z., Shen L., 2014, Non - classical Timoshenko beam element based on the strain gradient 

elasticity theory, Finite Element in Analysis and Design 79: 22-39. 

[53] Ansari R., Gholami R., Darabi M.A., 2012, A non-linear Timoshenko beam formulation based on strain gradient 

theory, Journal of Mechanics of Materials and Structures 7: 195-211. 

[54] Ghorbanpour Arani A., Kolahchi R., Zarei M.Sh., 2015, Visco-surface-nonlocal piezo-elasticity effects on nonlinear 

dynamic stability of graphene sheets integrated with ZnO sensors and actuators using refined zigzag theory, Composite 

Structures 132: 506-526. 

http://www.journals.elsevier.com/journal-of-the-mechanics-and-physics-of-solids
http://www.journals.elsevier.com/journal-of-the-mechanics-and-physics-of-solids
http://www.sciencedirect.com/science/article/pii/S0927025611001078

