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 ABSTRACT 

 In this paper torsion of hollow Poroelastic shaft with Elliptical section is developed. Using 

the boundary equation scheme. It looks for a stress function where satisfied Poisson 

equation and vanishes on boundary. It also analyzed stress function and warping 

displacement for the hollow elliptical section in Poroelastic shaft. At the end, the result of 

elastic and poroelastic shaft in warping displacement and stress function is compared. 
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1    INTRODUCTION 

 ORSION is one of the interesting fields for researches. Prandtl [1] introduced the stress function of the Saint-

Venant torsion and the method of membrane analogy [2]. In 1903, Prandtl presented a membrane analogy for 

torsional analysis and proved the accuracy and efficiency of his approximation. Baron [3] studied torsion of hollow 

tubes by multiplying the connected cross sections. He used an iterative method to satisfy the equilibrium and 

compatibility equations. A computational method for calculating torsional stiffness of multi-material bars with 

arbitrary shape was studied by Li et Al. [4]. In this work, they considered additional compatibility and equilibrium 

equations in common boundaries of different materials in their formulation and took good results. Mijak [5] 

considered a new method to design an optimum shape in beams with torsional loading. In his work, cost function 

was torsional rigidity of the domain and constraint was the constant area of the cross-section while shape parameters 

were co-ordinates of the finite element nodes along the variable boundary. The problem was solved directly by 

optimizing the cost function with respect to the shape parameters. He solved this problem using finite elements (FE 

method. A method based on finite elements for torsional analysis of prismatic bars by modeling only a small slice of 

the bar was published by Jiang et al. [6]. Another work related to the torsion in prismatic bars was introduced by 

Louis et al. [7], in which they presented a solution using a power fit model for the torsion problem of a rectangular 

prismatic bar. Recently, Doostfatemeh et al. [8] obtained a closed-form approximate formulation for torsional 

analysis of hollow tubes with straight and circular edges. In this work, the problem was formulated in terms of 

Prandtl’s stress function. Also, accuracy of the formulas was verified by accurate finite element method solutions. In 

recent years, the composition of several different materials has been often used in structural components in order to 

optimize responses of the structures subjected to thermal and mechanical loads. 

Since these pioneering works established the theory of torsion and solved many problems in engineering 

application, the torsion of a straight bar became a classical problem in the theory of elasticity, which was also 

presented as a numerical example in a seminal paper about the finite element method by Courant [9]. Some 

analytical solutions of the homogeneous section with various shapes are available in the literatures [10, 11]. The 

torsion of composite shafts has attracted many researchers’ attention in the development and application of 
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composite materials. Muskhelishvilli [12] presented the governing equation and boundary condition of the torsion of 

composite bars and its solution in Fourier series for composite section with two sub-rectangles. This solution was 

extended later for multiple rectangular composite section by Booker and Kitipornchai [13]. Kuo and Conway [14–

17] analyzed the torsion of the composite sections of various shapes. Packham and Shail [18] extended their work on 

two-phase fluid to the torsion of composite shafts. Ripton [19] investigated the torsional rigidity of composite 

section reinforced by fibers. Chen et al. [20] also analyzed exactly the torsion of composite bars. Apart from these 

analytical methods, numerical methods have also been employed to solve the torsion of the straight bars. Ely and 

Zienkiewicz [21] firstly solved the Poisson’s equation of the Prandtl’s stress function using finite difference method 

and investigated the rectangular section with and without holes. Herrmann [22] utilized the finite element method to 

calculate the warping function of the torsion of irregular sectional shapes. The boundary element method was 

applied to solve the boundary integral equation of the warping function of the torsion in Refs. [23–26]. 

Recently Poro's whose properties continuously vary with spatial coordinates, have been developed to overcome 

the problems associated with interfaces in traditional composite materials due to the abrupt change of the materials 

properties [27]. Although Ely and Zienkiewicz [21] and Plunkett [28] presented the governing equation of the 

torsion of inhomogeneous material before the introduction of the conception of Poros, it was paid little attention as 

there is no engineering significance  at that time. Once the FGMs were fabricated and applied in engineering 

practice, Rooney and Ferrari [29,30] and Horgan and Chan [31] resumed the research on the torsion of FGM bars. 

More recently, Tarn and Chang [32] obtained the exact solution of the torsion of orthotropic inhomogeneous 

cylinders and also analyzed the end effect. In particular, the torsion problem for inhomogeneous isotropic elastic 

materials has been investigated recently in [33]. 

Poroelasticity is a theory that models the interaction of deformation and fluid flow in a fluid-saturated porous 

medium. The deformation of the medium influences the flow of the fluid and vice versa. The theory was proposed 

by Biot [34-36]. As a theoretical extension of soil consolidation models developed to calculate the settlement of 

structures placed on fluid-saturated porous soils. The historical development of the theory is sketched by de Boer 

(1996). The theory has been widely applied to geotechnical problems beyond soil consolidation, most notably 

problems in rock mechanics. there has been recently a growing interest in the context of non-homogeneous and/or 

anisotropic shaft. Arghavan and Hematiyan[37] analyzed the torsion of functionally graded hollow tubes. Batra [38], 

Horgan and Chan [39] work on Torsion of a functionally graded cylinder.; Rooney and Ferrari [40]; Udea et al [41] 

and Yaususi and Shigeyasu [42] analyzed the torsion and flexure of inhomogeneous elements. Sofiyev A.H worked 

on The torsional buckling analysis of cylindrical shells with material non-homogeneity in thickness direction under 

impulsive loading and torsional buckling of cross-ply laminated orthotropic composite cylindrical shells subject to 

dynamic loading [43,44]. 

In this paper, we analyze torsion in Poroelastic shaft and calculate mechanical effects on circles and ellipses 

section shaft that made up of inhomogeneous materials. Boundary condition includes unbalanced torsion load that is 

linear in elastic condition and shift in internal and external surfaces in X ,Y direction. The problem will be solved 

based on direct Euler equation and by separation of variables. Finally differential equation will be solved. At the end 

of the paper comparison made between Elastic and Poroelstic shaft by use of graphs and plots, is provided and will 

be achieved.  

2    GOVERNING EQUATIONS [45] 

2.1 Stress-stress function formulation 

The stress formulation leads to the use of a stress function similar to the results of the plane problem discussed. 

Using the displacement form, the strain-displacement relations give the following strain field: 
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The corresponding stresses follow from Hooke’s law: 
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Note the strain and stress fields are functions only of x and y. For this case, with zero body forces, the quilibrium 

equations reduce to 
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Rather then using the general Beltrami-Michell compatibility equations, it is more direct to develop a special 

compatibility relation for this particular problem. This is easily done by simply differentiating (3) with respect to y 

and (4) with respect to x and subtracting the results to get    
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This represents an independent relation among the stresses developed under the continuity conditions of w(x,y). 

Relations (5) and (6) constitute the governing equations for the stress formulation. The coupled system pair can be 

reduced by introducing a stress function approach. For this case, the stresses are represented in terms of the Prandtl 

stress function ),( yx   by 
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The equilibrium equations are then identically satisfied and the compatibility relation gives 
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This single relation is then the governing equation for the problem and (9) is a Poisson equation that is amenable 

to several analytical solution techniques. 

To complete the stress formulation we now must address the boundary conditions on the problem. As previously 

mentioned, the lateral surface of the cylinder S is to be free of tractions, and thus 

 

 

 

 

 

 

Fig.1 

Differential surface element.. 

2.2 Multiply connected cross-sections 

We now wish to develop some additional relations necessary to solve the torsion of hollow cylinders with multiply 
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connected cross-sections. Fig.2 illustrates a typical section of this type with a single hole, and we shall establish 

theory capable of handling any number of holes. It is assumed that the original boundary conditions of zero tractions 

on all lateral surfaces applies to the external boundary so and all internal boundaries S1, . . . Therefore, the stress 

function is a constant and the displacement is specified on each boundary Si, i = 0, 1, . . . 
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Fig.2 

Multiply connected cross-section. 

 

where
i are constants. These conditions imply that the stress function and warping displacement can be determined 

up to an arbitrary constant on each boundary .
i

S  With regard to the stress function, the value of 
i may be 

arbitrarily chosen only on one boundary, and commonly this value is taken as zero on the outer boundary 
oS  similar 

to the simply connected case. For multiply connected sections, the constant values of the stress function on each of 

the interior boundaries are determined by requiring that the displacement w be single-valued. Considering the 

doubly connected example shown in Fig.2, the displacement will be single-valued if 
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This integral can be written as: 
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Now xz yzdx dy ds    , where 
i  is the resultant shear stress. Using Green’s theorem. 
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where 
1A  is the area enclosed by 

1
.S  Combining these results, the single-valued condition (11) implies that 
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The value of 
1  on the inner boundary 

1S  must therefore be chosen so that (14) is satisfied. If the cross-section 

has more than one hole, relation (14) must be satisfied for each; that is, 
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where k =1, 2, 3, . . . is the index corresponding to each of the interior holes. The resultant torque condition will give 
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For the case with N holes, this relation becomes 
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Justifying these developments for multiply connected sections requires contour integration in a cut domain 

following the segments 
0 1, ,S C S , as shown in Fig.2. 

3    SOLUTION     

3.1 Consider the torsion of a bar with a hollow elliptical section as shown in Fig. 2. The inner boundary is simply a 

scaled ellipse similar to that of the outer boundary 

The stress function solution for the hollow case is given by 
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and this form satisfies the governing equation, boundary conditions, and the multiply connected condition 25. The 

constant value of the stress function on the inner boundary is found to be using the boundary equation scheme, we 

look for a stress function of the form: 
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Fig.3 

Hollow elliptical section. 

 

We introduce   function by the relation: 
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Substitution   into Eq. (9) give 
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Equating the coefficients of the identical powers yields  
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Substituting Eqs. (19, 20) into Eq. (16) gives 

 
3 3 2 2 2

1 2 3 4

2 3 3 2 2

5 6 1 2 3

2 2 3 3

4 5 6 1 2

2 2 2 2

3 4 5

8( ) / 32 ( ) / 96 ( ) / 24 (2 ) /15

( ) /15 ( ) /16 ( ) / 96 ( ) / 32 ( ) / 24

( ) /15 (2 ) /15 ( ) /16 ( ) /16 ( ) /16

( ) / 8 ( ) / 3 ( ) / 3 (

T K a b K ab K a b K a b

K ab K ab K a b K ab K a b

K a b K ab K ab K a b K ab

K a b K a b K ab

 

  

  



    

    

    

   3 3 2 2

7 7 1 7 7) ( ) / ( ) ( )K a K b K a K b 

 

 

 

(24)                     

 

Eqs. (23) and (24) are a system of algebraic equations, where the solution is given by the Cramer’s method as: 
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Substituting Eq.(25) back into (24) give 
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which can be cast in the form to determine the angle of twist in terms of the applied loading as: 
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The shear stresses (7, 8) resulting are given by: 
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Substituting (25) back into (28) yields: 
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Substituting (25) back into (29) give 
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       

    

   2 )

 

                       

 

 

 

 

(31) 

 

Intuition from strength of materials theory would suggest that the maximum stress should occur at the boundary 

point most removed from the section’s center; that is, at x =+-a and y = 0 (assuming a > b). However, the membrane 

analogy would argue for a boundary point closest to the center of the section where the membrane slope would be 

the greatest shear stress becomes 

 

2 2

xz yz     
      (32)                       

 

Using the stress relations (32),it yields a system that can be integrated to determine the displacement field 

 

( )xzW y dx





   
 

 (33)    
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4    RESULTS AND DISCUSSION 

Consider a Poroelastic shaft with hollow elliptical section, where a=0.04 m and b=0.02 m are the semi major and 

minor axes in elliptic section. The modulus of elasticity is 2 2

1 2 3 4 5 6A x A y A xy A x A y A       . For 

simplicity of analysis we consider
1 2 3 6 0A A A A    . To examine the proposed solution method, one example 

problems are considered. As the example, consider a Poroelastic shaft with hollow elliptical section where the 

modulus of elasticity 
4 10A  Gpa, 

5 35A  Gpa and 
1 80   Gpa.The stress function and the warping displacement 

are substituted in appendix. 

Contour lines of the stress function for poroelasic with hollow elliptical section shaft are shown in Figs.3 and 4 , 

and it is observed that the maximum slope of the stress function (membrane) occurs at 0x  and y b  (on the top 

and bottom of the section). A three-dimensional plot of the warping displacement surface is also shown in Fig.5, 

illustrating the behavior of the w displacement. Contour lines of displacement field are represented by hyperbolas in 

the x , y-plane and are shown in Fig. 6 for the case of a positive counter clockwise torque applied to the section. 

Solid lines correspond to positive values of w, indicating that points move out of the section in the positive z 

direction, while dotted lines indicate negative values of displacement. 

Fig.7 compare the change of the warping in Elastic and Poroelastic shaft, where minimum chang of warping for 

both Elastic and Poroelastic due to mechanical loads is in the center of the shaft and it is increase at the outer radius 

of shaft. It also shows that Increasing the major axis of shaft will enhance the quntity of change of warping in the 

shaft. The Fig.7 also illustrates that changes of the warping in Poroelastic shaft follows a trend similar to the Elastic 

shaft, except its quantity which is different. Considerable point is that for both Elastic and poroelastic shaft the 

maximum quantity is between 2 and 2.5. Along each of the coordinate axes the displacement is zero, and for the 

special case with a = b (circular section), the warping displacement vanishes everywhere. If the ends of the elliptical 

cylinder are restrained, normal stresses 
xz are generated as a result of the torsion. The changes of the Stress 

Function in Elastic compare with Poroelastic shaft are shown in Fig.8, where illustrate a linear trend but looking to it 

in depth, shows it is like having its maximum near boundary point. As change of the warping, changes of the Stress 

Function (Fig.8 ) follow a trend similar to each other in both Elastic and Poroelastic shaft, but the quantity is not 

same, where the quantity of the stress function in elastic shaft is much more than the Poroelastic shaft. 

 

 

 

 

 

 

 

 

 

Fig.4 

Stress function for the elliptical section (2D). 

 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Warping displacement surface (3D). 
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Fig.6 

Displacement contours. 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Compare elastic with poroelastic. 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Compare elastic with poroelastic. 

5    CONCLUSIONS 

This paper presents the analytical solution for the torsion of Poroelastic shaft with hollow elliptical section. The 

method of solution is based on the direct method and use of stress function where satisfies Poisson equation and 

vanishes on boundary. Because the boundary is expressed by the relation f  , 0X Y  , this paper suggests a 

possible simple solution which is a scheme of expressing the stress function in terms of the boundary equation 

 ,fK x y  . It is to be emphasized that the proposed method does not have the mathematical limitations to 

handle the general types of boundary conditions which are usually countered in the potential function method. 

APPENDIX 

Stress for elliptic section 
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2 2 4 3 2 2 3 4 2 2 2 2

5 4 5

2 2 4 3 2 2 3 4 2 2 2 2

5 4 5

2 2 4 3 2 2 3 4 2 2 2 2

5 4 5

2

4

( ((2 ( 3 )) /15 (2 (3 )) /15)(3 )) / 8

( ((2 ( 3 )) /15 (2 (3 )) /15)(3 )) / 8

(3 ((2 ( 3 )) /15 (2 (3 )) /15)(3 )) / 8

(

xz A a b T A a b a b A a b a b a b

A b Tx A a b a b A a b a b a b

A a Ty A a b a b A a b a b a b

A a T

      

    

    

4 3 2 2 3 4 2 2 2 2

4 5((2 ( 3 )) /15 (2 (3 )) /15)( 3 )) / 4xy A a b a b A a b a b a b   

 

                       

 
2 2 2 4 3 2 2 3 4 2 2 3 4

7 4 5 7 1

2 4 3 2 2 3 4 2 2 2 2

4 4 5

2 2 4 3 2 2 5 3 4 2 2 2 2

5 4 4

( ( (2 ( 3 )) /15 (2 (3 )) /15 )) /16

( (15 ((2 ( 3 )) /15 (2 (3 )) /15)( 3 )

(15 ((2 ( 3 )) /15 (2 (3 )) /15)(3 )) / (2

W Ty b k A a b a b A a b a b ab k u

x A a Ty A a b a b A a b a b a b

A b Ty A a b a b A a b a b a b A

      

    

   

5

4

3 10 5 3 10 3 2 3 8 7 3 8 5 2

4 5 4 5 4 5 4 5 4 5

3 6 9 3 7 2 2 2 9 6 2 2 9 4 2

4 5 4 5 6 4 4 5

2 2 7 8 2 2 7 6 2 2 2 5 10 2 2 5 8 2

4 5 4 5 4 5 4 5

))) / (60 )

(log( )(300 7 1000 18

300 9 9 21

6 2 3 3

A

A x A y TA A a b TA A a b y TA A a b TA A a b y

TA A a b TA A a b y TA A a b TA A a b y

TA A a b TA A a b y TA A a b TA A a b y T



    

   

    3 8 5 2

4 5

3 6 7 2 3 4 9 2 4 7 6 2 4 5 8 2 4 3 10 2 3

4 5 4 5 5 5 5 4

2 2 4 3 2 2 3 4 2 2 2 2

5 4 5 4

10 3 9 6 )) / (60 )

( ((2 ( 3 ))) /15 (2 (3 )) /15)(3 )) / (16 )

A A a b y

TA A a b y TA A a b y TA a b y TA a b y TA a b y A

A b Tx A a b a b A a b a b a b A

    

    
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