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 ABSTRACT 
 This article gravitates toward analyzing the vibration response of a 

moving beam functionally graded (FG) in two orthogonal 
directions. In order to gain a high level of accuracy, higher-order 
shear deformation theory for beam structures is employed to define 
the displacement field and determine the system’s governing 
differential equations. Also, this study considers the effect of 
different sets of boundary conditions to find the oscillatory response 
of the system in a more comprehensive way. This matter leads the 
authors to utilize the differential quadrature method (DQM) as a 
numerical solution to solve the governing differential equations. The 
accuracy of the applied solution is examined and confirmed by 
comparing its results with those available in the literature. In this 
study, the natural frequency of a moving beam with varying 
properties along both the axial and transverse directions was 
investigated. The study examined the influence of boundary 
conditions, gradational properties, axial velocity, and the parameter 
L/h on the natural frequency. One of the applicable results for 
related industries is that designers should pay special attention to the 
FG power index, and the type of boundary conditions of the moving 
beams. This study provides novel insights to adjust design factors in 
order to gain a high level of vibration response for moving loads. 
 

 Keywords: Free vibration; Functionally graded axially moving 
beam; Instability; Differential quadrature method; Higher-order 
shear deformation theory. 

1    INTRODUCTION 

UNCTIONALLY Graded Beams (FGBs) have gained significant attention in structural engineering due to 
their unique material properties and versatility in various applications [1]. FGBs exhibit spatial variation in 
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material composition, enabling tailored mechanical characteristics along the length and thickness of the beam [2]. 
FGBs find extensive applications in aerospace engineering [3]. The gradual variation of material properties in FGBs 
allows for enhanced performance in structural components such as wing spars [4], fuselage frames, and rotor blades 
[5]. FGBs can be designed to provide optimal strength-to-weight ratios [6], improved load-bearing capacity [7], and 
resistance to high-temperature gradients [8]. Additionally, FGBs offer excellent thermal stability, making them 
suitable for aerospace applications that involve extreme operating conditions [9]. In civil engineering, FGBs are 
utilized in various structural elements [10]. They are employed in bridge decks, beams, columns, and other load-
bearing members [11]. FGBs can effectively withstand dynamic loads, vibrations, and thermal 
expansion/contraction [12]. The tailoring of material properties in FGBs allows for improved durability, reduced 
weight, and better resistance to corrosion, making them suitable for long-span structures and infrastructure exposed 
to harsh environments [13]. 

FGBs find applications in mechanical engineering, particularly in the design of rotating machinery components 
such as turbine blades [14], crankshafts [15], and camshafts [16]. By incorporating FGBs in these components, it is 
possible to optimize their performance and reliability [17]. The tailored material properties of FGBs enable the 
achievement of desired characteristics, such as improved strength [18], reduced stress concentrations [19], and 
enhanced fatigue resistance [20]. FGBs also offer the advantage of minimizing weight, contributing to overall 
energy efficiency [21]. FGBs have applications in energy systems, including wind turbines and solar panel structures 
[22,23]. In wind turbines, FGBs can be used to optimize the performance of blades, providing improved energy 
capture and reduced material usage [24]. Similarly, in solar panel structures, FGBs can enhance the structural 
integrity and efficiency of the components [25]. The ability to tailor material properties in FGBs allows for better 
utilization of renewable energy resources [26]. In biomedical engineering, FGBs are employed in the design and 
fabrication of various prosthetic devices and implants [27]. By tailoring the material composition along the length 
and thickness of the beam, FGBs can mimic the mechanical properties of natural tissues and bones [28]. This allows 
for improved biocompatibility and reduced stress shielding, leading to better integration with the human body [29]. 
FGBs have been utilized in dental implants [30], bone plates [31], and joint replacements [32], among other 
applications, to enhance patient outcomes and increase longevity. 

Tabarrok et al. [33] gave an examination of the dynamic stability of a beam that moves axially.   Kong et al. [34] 
investigated the approximate Eigen-solutions of axially moving beams with low flexural stiffness.   Ref. [35] 
conducted a study on the non-linear vibrations and stability of a beam that moves axially at a velocity that varies 
over time.   Beni et al. [36] conducted an investigation on the torsional behavior of flexoelectric micro/nanotubes 
made of porous functionally graded materials, taking into account the size dependency and the coupling between 
electromechanical effects.  Beni et al. [37] conducted a study on the dynamic stability analysis of a nano-beam made 
of viscoelastic/piezoelectric material, taking into account its size dependence.   Sze et al. [38] investigated the use of 
the incremental harmonic balance technique to analyze the nonlinear vibration of axially moving beams. Chen et al. 
[39] conducted a study on the use of the multidimensional Lindstedt-Poincaré technique to analyze the nonlinear 
vibration of axially moving beams. Ref. [40] conducted a study on the natural frequencies of nonlinear vibration in 
axially moving beams. Karimipour and colleagues [41] conducted a study on the nonlinear dynamic analysis of 
nonlocal composite laminated toroidal shell segments under mechanical stress. 

Despite numerous analyses carried out to determine the mechanical response of the functionally graded 
structures, there is no record of exploring the vibration of bi-directionally graded moving beams among them. 
Accordingly, this article gravitates toward analyzing the vibration response of a moving beam functionally graded in 
two orthogonal directions. In order to gain a high level of accuracy, higher-order shear deformation theory for beam 
structures is employed to define the displacement field and determine the system’s governing differential equations. 
Also, this study considers the effect of different sets of boundary conditions to find the oscillatory response of the 
system in a more comprehensive way. This matter leads the authors to utilize the differential quadrature method 
(DQM) as a numerical solution to solve the governing differential equations.  
 

2    MATHEMATICAL MODELING   

The schematic of the bi-directionally graded moving beams with their corresponding dimensions is shown in Fig. 1. 
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Fig. 1 
Schematic of bi-directionally graded moving beams. 
 

The circumstance of the neutral axis of the beam is intended to satisfy the first moment due to Young's modulus 
being zero as given below [42] 
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, (1) 
Thus, the circumstance of the neutral surface can be given as 

. 
(2) 

Note: the neutral surface is zero for homogeneous beams, as expected. 
Based on modified power law, material property P of the Bi-FGMs layer is defined as [43], 

, (3) 
In Eq. (3), Pc, and Pm are the material properties of the structure in =0,  = , and =L, = , 

respectively. It should be noted that , and  show the FG power index along with axial, and transverse 
directions, respectively.  

The materials properties of bi-directionally graded layer are as follows: 
 

Table 1 

Material characteristics of the bi-directionally graded moving beams [44]. 

Source Symbol Definition Value Unit 

Ceramic 

(Silicon 
Nitride) 

 

Poisson’s ratio of ceramic 
  

 

Mass density of ceramic 
 

 

 

Elastic modulus of ceramic 
  

Metal 

(Stainless 
Steel) 

 

Poisson’s ratio of metal 
  

 

Mass density of metal 
 

 

 

Elastic modulus of metal 
  

 
 
Consider an Bi-FG beam with length  and rectangular cross-section , with  being the width and  

being the height. The beam is made of isotropic material with material properties varying smoothly in the thickness 
direction. The assumptions of the present theory are as follows: 

1) The origin of the Cartesian coordinate system is taken at the neutral surface of the Bi-FG beam. 
2) The effect of temperature and moisture is ignored. 
3) The displacements are small in comparison with the height of the beam and, therefore, strains involved are 

infinitesimal 
Based on the above assumptions, we have [45]: 

 
(4)  

, 
, 

. 
The strain–stress equations of the structure can be given as follows [45]: 
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,  
(5) 

where  

. 
(6) 

where ( , , ) are the stresses and ( , , ) shows the linear strain and the 's are elastic 
constants with reference to the x-z axes. 

For obtaining the equations of motions along with associated end conditions of the bi-directionally graded 
moving beams, We can use from variational energy method as follows [46–50]: 

(7)   , 

In which kinetic energy of the system is [50]: 

(8) 
  

where 
, 

(9) . 

Also, the strain energy of these bi-directionally graded moving beams can be attained through the following 
equation [51]. 

(10) 

. 

Finally, by using Eqs. (8), (9), and (10) in Eq. (7), the motion equations of the bi-directionally graded moving 
beams are acquired as: 

(11) 

, 

, 

, 

, 
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, 

, 

, 

. 

In which: 

, 

(12) 

, 

. 

Also, the boundary conditions of the current system are: 

  

(13) 

 

 

  

  

 

3    NUMERICAL SOLUTION   

This section outlines the key steps involved in achieving a numerical solution using the DQM. 
 

3.1. Differential quadrature method (DQM) 

Based on the principles of DQM, the pth derivative of  as a one-dimensional function can be acquired as [51] 
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. (14) 
here  signifies the weight coefficients for the th grid-point  and  signifies the grid-

points’ total number. 
According to Eq. (15),  for   can be achieved as 

, 
(15) 

here  would be formulated by the next relation 

, 
(16) 

Next relationship would be employed to acquire  

, (17) 
 in Eq. (16) can be derived as 

. (18) 
The grid-points  can be achieved as below, with the aid of the Chebyshev–Gauss–Lobatto function [51] 

,, 
(19) 

In addition to, the displacement field can be written as below, 
. (20)     

. 

By substituting Eqs. (12), (14), and (20) in to Eq. (11) we have: 
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. 

(21a)  
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. 

)21b( 
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, 

)21c( 
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, 

)19c( 
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, 

)19d( 
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 )19g( 
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 )19h( 
Where 

(22)  
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Eqs. (21a-h) in their compact form are as 

. (23) 
The matrix , , and  in can be written in Appendix section. In addition to, the nontrivial solutions of Eq. 

(23) are equal to the vibration frequencies of the system. Also, the vibration frequency of the system in 
dimensionless form can be defined as:  

,    

(24) 
.   

4    NUMERICAL STUDY  

4.1. Present Solution Validation 

Table 2 to 4 demonstrates the validation of the derived equations in the current study under various boundary 
conditions. 

Table 2 illustrates the natural frequency values based on the parameter nz which represents the degree of 
gradient in the material function, under clamped-clamped boundary conditions. A comparison is made for clamped-
clamped boundary conditions with Ref. [52] (EBBT) and Ref. [52] (TBT) for aspect ratios of 5 and 20. As shown in 
Table 2, for an aspect ratio of 5, the obtained values closely match those of Ref. [52] (TBT), with a maximum 
difference occurring at nz=0, which is less than 4%. However, for L/h=5, the presented model in this study shows 
significantly larger differences compared to Ref. [52] (EBBT), reaching up to 20% in some cases. On the other 
hand, for an aspect ratio of 20, the agreement between the results of this study and the reported values in Ref. [52] 
(EBBT) and Ref. [52] (TBT) is quite satisfactory, with a maximum difference of less than 2%. From this 
perspective, the present study accurately predicts the natural frequency values for different degrees of material 
gradient under clamped-clamped boundary conditions. 
 

Table 2 

Comparison of the frequency parameters  for functionally graded beam with CC edge conditions. 

   

L/h  0 0.2 0.4 0.6 0.8 1 

5 

Present 5.3675 5.2440 5.2316 5.2110 5.1826 5.1466 

Ref. [52] 
(EBBT) 

6.3291 6.3232 6.3056 6.2763 6.2333 6.1826 

Ref. [52] (TBT) 5.1943 5.1904 5.1806 5.1630 5.1396 5.1083 

20 

Present 6.3759 6.3544 6.3358 6.3051 6.2627 6.2090 

Ref. [52] 
(EBBT) 6.4508 6.4434 6.4251 6.3934 6.3494 6.2933 

Ref. [52] (TBT) 6.3486 6.3427 6.3251 6.2939 6.2529 6.2001 
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Furthermore, according to Table 2, it is evident that the natural frequency of the system increases with an 
increase in the value of the parameter nz for all cases of L/h. The reason for this increase in natural frequency with 
an increase in the L/h ratio is that the stiffness matrix of the system improves with this ratio, resulting in a higher 
natural frequency. Another significant observation inferred from Table 2 is that the natural frequency decreases as 
the coefficient nz increases in all cases. However, the effect of this parameter on the natural frequency is less 
pronounced compared to the L/h ratio. The decrease in the natural frequency with an increase in the nz parameter is 
attributed to the non-uniform distribution of material properties along different directions of the beam. In the 
uniform case (nz=0), the stiffness matrix of the system is more proper compared to the case where the properties 
vary as a graded function. As the material properties become more non-uniform (higher nz values), this non-
uniformity increases and leads to resistance in the stiffness matrix, ultimately resulting in a decrease in the natural 
frequency of the system. 

On the other hand, Table 3 presents the natural frequency values based on the parameter nz for clamped-simply 
boundary conditions, along with Ref. [52] (EBBT) and Ref. [52] (TBT), for aspect ratios of 5 and 20. Similar to the 
findings from Table 2, it is evident from Table 3 that, for an aspect ratio of 5, the obtained values closely match 
those of Ref. [52] (TBT), with a maximum difference occurring at nz=0, which is approximately 2%. However, for 
an aspect ratio of 5, the presented model in this study shows significantly larger differences compared to Ref. [52] 
(EBBT), reaching up to 10% in some cases. Conversely, for an aspect ratio of 20, the agreement between the results 
of this study and the reported values in Ref. [52] (EBBT) and Ref. [52] (TBT) is highly satisfactory, with a 
maximum difference of less than 1%. From this perspective, the present study predicts the natural frequency values 
for different degrees of material gradient under clamped-simply boundary conditions with high precision. 
 

Table 3 

Comparison of the frequency parameters  for functionally graded beam with CS edge conditions. 

   

L/h  0 0.2 0.4 0.6 0.8 1 

5 

Present 3.9595 3.9000 3.8920 3.8787 3.8604 3.8372 

Ref. [52] 
(EBBT) 

4.3682 4.3634 4.3511 4.3304 4.3011 4.2657 

Ref. [52] (TBT) 3.8779 3.8759 3.8662 3.8505 3.8310 3.8037 

20 

Present 4.4169 4.4078 4.3977 4.3810 4.3580 4.3289 

Ref. [52] 
(EBBT) 4.4451 4.4415 4.4281 4.4061 4.3756 4.3377 

Ref. [52] (TBT) 4.4072 4.4033 4.3896 4.3681 4.3388 4.3017 

 
As previously mentioned in Table 1, by observing Table 3, it can be also stated that, at a specific value of the 

parameter nz, the natural frequency of the system exhibits an increasing behavior with an increase in the L/h ratio, 
and this behavior holds true for all values of nz. The reason for this increase in natural frequency with an increase in 
the L/h ratio remains the same, as the stiffness matrix of the system improves with this ratio, leading to higher 
natural frequencies. Furthermore, from Table 3, it is evident that the natural frequency decreases as the coefficient nz 
increases for all cases. However, the effect of this parameter on the natural frequency remains less pronounced 
compared to the L/h ratio. The underlying reason for this behavior is consistent with what was discussed earlier – in 
the uniform case (nz=0), the stiffness matrix of the system is more favorable compared to the case where the 
properties vary as a graded function. As the material properties become more non-uniform (higher nz values), this 
non-uniformity increases and results in resistance in the stiffness matrix, ultimately leading to a decrease in the 
natural frequency of the system. 
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Finally, Table 4 presents the natural frequency values based on the parameter nz for clamped-free boundary 
conditions, along with Ref. [52] (EBBT) and Ref. [52] (TBT), for aspect ratios of 5 and 20. According to Table 4, it 
is evident that, for an aspect ratio of 5, the obtained values closely match those of both Ref. [52] (EBBT) and Ref. 
[52] (TBT), with a maximum difference occurring at nz=0, which is approximately 1%. In this case, as the value of 
nz increases from smaller to larger values, the difference between the results decreases. Moreover, for an aspect 
ratio of 20, there is excellent agreement between the results of this study and the reported values in Ref. [52] 
(EBBT) and Ref. [52] (TBT), with a maximum difference of less than 1%. From this point of view, the present study 
predicts the natural frequency values for different degrees of material gradient under clamped-free boundary 
conditions with high precision. 

As indicated in Table 4, at a specific value of the parameter nz, the natural frequency of the system exhibits an 
increasing behavior with an increase in the L/h ratio, and this behavior holds true for all values of nz. The reason for 
this increase in natural frequency with an increase in the L/h ratio remains the same: the stiffness matrix of the 
system improves with this ratio, resulting in higher natural frequencies. Furthermore, from Table 3, it is evident that 
the natural frequency decreases as the coefficient nz increases for all cases. The reason for this behavior is consistent 
with what was discussed earlier – in the uniform case (nz=0), the stiffness matrix of the system is higher compared 
to the case where the properties vary as a graded function. As the material properties become more non-uniform 
(higher nz values), this non-uniformity increases and leads to resistance in the stiffness matrix, ultimately resulting in 
a decrease in the natural frequency of the system. It is worth noting that the influence of nz on the natural frequency 
is less pronounced compared to the effect of the L/h ratio. 
 

Table 4 

Comparison of the frequency parameters  for functionally graded beam with CF edge conditions. 

   

L/h  0 0.2 0.4 0.6 0.8 1 

5 

Present 0.9910 0.9865 0.9836 0.9790 0.9725 0.9644 

Ref. [52] 
(EBBT) 

1.0068 1.0068 1.0029 0.9990 0.9912 0.9833 

Ref. [52] (TBT) 0.9844 0.9832 0.9796 0.9735 0.9661 0.9576 

20 

Present 1.0162 1.0111 1.0081 1.0031 0.9963 0.9877 

Ref. [52] 
(EBBT) 

1.0146 1.0126 1.0107 1.0048 0.9990 0.9892 

Ref. [52] (TBT) 1.0126 0.0126 1.0087 1.0029 0.9970 0.9873 

 

4.2. Convergence study 

As previously mentioned, DQM was used to solve the equations of the presented analysis model. Table 5 
demonstrates the convergence behavior for the number of points in the DQM for each of the boundary conditions: 
clamped-clamped, clamped-simply, and clamped-free. 
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Table 5 

Convergence of fundamental frequency of the bi-directionally graded moving beams. 

  

 6 8 10 12 14 16 18 20 

CC 13.23 12.64 12.62 12.60 12.59 12.59 12.59 12.59 

CS 8.67 8.68 8.67 8.67 8.67 8.67 8.68 8.68 

SS 5.48 5.57 5.57 5.57 5.57 5.57 5.57 5.57 

 
 

Table 6  

The impacts of mode number on the dimensionless frequency of various supported bi-directionally graded moving beams. 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

CC 10.2991 26.4489 47.9106 53.5095 72.9153 100.2954 

CS 7.2740 22.2394 43.1435 51.5774 68.1822 95.8456 

SS 4.7622 18.1622 38.3534 49.7363 63.3180 91.2094 

CF 1.7107 10.2418 26.6536 27.0904 49.0603 74.7426 

 
 
According to Table 5, it is evident that, for a specific number of points, as we move from the simply-simply 

boundary condition towards the clamped-clamped condition, the convergence value increases. This implies that, in 
general, fewer points are required to achieve convergence when the boundary conditions have more constraints and 
fewer degrees of freedom. In other words, for the simply-simply boundary condition, which has more degrees of 
freedom and fewer constraints compared to the clamped-clamped condition, a higher number of points is required to 
achieve the desired convergence. To show the effect of mode number, and boundary conditions on the 
dimensionless frequency of the bi-directionally graded moving beam, Table 6 is presented. As is observed in this 
table, by increasing the mode number, the dimensionless frequency increases. Also, clamped-clamped (CC) 
boundary conditions due to high rigidity in boundary edges has higher dimensionless frequency than other types of 
boundary conditions. 
 

4.3. Parametric study 

The behavior of the dimensionless natural frequency ( ) as a function of different L/h ratios is 

shown in Figure 2 for various moving velocities and under clamped-clamped boundary conditions. According to 
Figure 2, both parameters, L/h, and the average velocity, significantly influence the natural frequency of the 
material. For velocities of 0 and 1, after an initial increase (from L/h=10 to 20), the natural frequency remains 
relatively constant at approximately 12 to 12.5 for other L/h values. In other words, when the velocity is either 0 or 
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1, the natural frequency becomes independent of L/h values greater than 20. On the other hand, for velocities of 2 
and 3, the natural frequency first increases and then exhibits a decreasing behavior. The maximum reported natural 
frequency is consistently associated with lower velocities, such that at any chosen L/h ratio, the natural frequency 
decreases with an increase in velocity. According to Figure 2, it is evident that, in general, for a specific L/h ratio, 
the natural frequency experiences a decrease, and system instability increases with an increase in axial velocity. 
Although the behaviors vary at different velocities, the overall trend shows a consistent reduction in the natural 
frequency with increasing axial velocity. 

Figure 3 illustrates the behavior of the dimensionless natural frequency ( ) as a function of various 

L/h ratios for different moving velocities under clamped-simply boundary conditions. Similar to the observations in 
Figure 2, both parameters, L/h and the average velocity, significantly influence the natural frequency of the material. 

For velocities of 0 and 1, after an initial increase (from L/h=10 to 30), the natural frequency remains nearly 
constant at approximately 8.4 to 8.6 for other L/h values. On the other hand, for velocities of 2 and 3, the natural 
frequency first increases and then exhibits a decreasing trend. This decreasing behavior is particularly pronounced 
for the velocity of 3. Additionally, it is evident that the reported maximum natural frequency consistently 
corresponds to lower velocities. Specifically, for any chosen L/h ratio, an increase in velocity leads to a reduction in 
the natural frequency. As stated earlier, similar to the observations in Figure 2, Figure 3 also indicates that, in 
general, for a specific L/h ratio, the natural frequency experiences a decrease, and system instability increases with 
an increase in axial velocity. Although the behaviors vary at different velocities, the overall trend consistently shows 
a reduction in the natural frequency with increasing axial velocity. 

Figure 4 depicts the behavior of the dimensionless natural frequency as a function of various L/h ratios for 
different moving velocities under simply-simply boundary conditions. Similar to the observations in Figure 3, it can 
be deduced from Figure 4 that both parameters, L/h, and the average velocity, significantly influence the natural 
frequency of the system. For velocities of 0 and 1, the natural frequency remains nearly constant across all L/h 
values. In other words, when the velocity is either 0 or 1, the natural frequency remains unaffected by changes in 
L/h. On the other hand, for velocities of 2 and 3, the natural frequency exhibits a decreasing trend without displaying 
a clear extremum. This decreasing behavior is particularly pronounced for the velocity of 3. Consistent with 
previous observations, Figure 4 also demonstrates that the reported maximum natural frequency corresponds to 
lower velocities. Specifically, for any chosen L/h ratio, an increase in velocity leads to a reduction in the natural 
frequency. 

Figure 5 illustrates the behavior of the dimensionless natural frequency as a function of various L/h ratios for 
different moving velocities under clamped-free boundary conditions. In contrast to the observations in Figure 4, at 
the velocity of 0, the natural frequency is not constant across all L/h values. Instead, it exhibits an increasing trend in 
almost all L/h ratios, except for large L/h values. Similarly, for the velocity of 1, the natural frequency shows a 
gently increasing trend and reaches its maximum around L/h approximately equal to 35, after which it displays a 
decreasing behavior. Consistent with previous findings, velocities 2 and 3 show decreasing trends in the natural 
frequency without displaying a clear extremum. This decreasing behavior is particularly significant for the velocity 
of 3. Also, Figure 5 highlights that the reported maximum natural frequency corresponds to lower velocities. 
Regardless of the chosen L/h ratio, an increase in velocity leads to a reduction in the natural frequency. 

 

  
Fig. 2 
The impacts of L/h, and  on the dimensionless frequency of 
CC-supported bi-directionally graded moving beams. 

Fig. 3   
The impacts of L/h, and  on the dimensionless frequency of 
CS-supported bi-directionally graded moving beams. 
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Fig. 4 
The impacts of L/h, and  on the dimensionless frequency of 
SS-supported bi-directionally graded moving beams. 

Fig. 5   
The impacts of L/h, and  on the dimensionless frequency of 
CF-supported bi-directionally graded moving beams. 
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Fig. 6 
The impacts of , and  on the dimensionless frequency of 
CC-supported bi-directionally graded moving beams. 

Fig. 7   
The impacts of , and  on the dimensionless frequency of 
CS-supported bi-directionally graded moving beams. 

 
The comparison of Figures 2 to 5 also reveals that despite similar trends in different moving velocities across all 

boundary conditions, the type of boundary condition significantly affects the magnitude of the natural frequency. 
Specifically, the highest natural frequencies occur under clamped-clamped boundary conditions, while the lowest 
frequencies are observed under clamped-free boundary conditions. The intermediate values are observed for 
clamped-simply and simply-simply boundary conditions. Another crucial point to note in comparing Figures 2 to 5 
is that changing the boundary conditions from simply-simply to clamped-clamped drives the maximum natural 
frequency at the velocity of 3 towards smaller values of L/h. Additionally, transitioning from simply-simply to 
clamped-clamped boundary conditions consistently results in increasing natural frequency values. For instance, at 
L/h = 10, the natural frequency value for clamped-free boundary condition is approximately 2.5, for simply-simply 
it is around 5.5 at all velocities, for clamped-simply it is 8.5, and for clamped-clamped it is 12.5. Furthermore, a 
general observation from Figures 2 to 5 is that the influence of the axial velocity on the natural frequency is 
dependent on the parameter L/h. For lower values of L/h (between 10 to 20), an increase in axial velocity has a 
minimal impact on the variation of natural frequency. However, for higher values of L/h, the natural frequency 
undergoes significant changes with variations in axial velocity. 

Figure 6 illustrates the behavior of dimensionless natural frequency concerning the parameter of the graded 
function, nx, for various axial velocities when the boundary conditions are clamped-clamped. According to the 
depicted diagram, as the parameter nx increases, the natural frequency decreases for all velocities. This decrease 
initially occurs at a steep rate and then gradually decreases in intensity with further increments of nx. On the other 
hand, as shown in Figure 6, with an increase in axial velocity, the natural frequency values decrease. However, the 
effect of axial velocity on the reduction of the natural frequency is significantly lower compared to the impact of the 
nx parameter. 

Figure 7 depicts the behavior of dimensionless natural frequency concerning the parameter of the graded 
function, nx, for various axial velocities under clamped-simply boundary conditions. Similar to the observations 
made earlier for Figure 6, it is evident from Figure 7 that an increase in the nx parameter leads to a reduction in the 
natural frequency for all velocities. This decrease initially occurs at a steep rate and then gradually decreases in 
intensity with further increments of nx. Moreover, in accordance with Figure 7, an increase in axial velocity results 
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in a decrease in the natural frequency values. However, the effect of axial velocity on the reduction of the natural 
frequency is significantly lower compared to the impact of the nx parameter. 

Figure 8 also illustrates the behavior of dimensionless natural frequency concerning the parameter of the graded 
function, nx, for various axial velocities, this time under simply-simply boundary conditions. Similar to the previous 
figures (6 and 7), Figure 8 shows that an increase in the nx parameter leads to a reduction in the natural frequency for 
all velocities. This decrease initially occurs at a steep rate and then gradually decreases in intensity with further 
increments of nx. However, a notable distinction in this figure compared to Figures 6 and 7 is that the effect of 
increasing axial velocity on the behavior of the natural frequency is more pronounced. In other words, for a specific 
value of nx, the difference in natural frequency between different axial velocities is greater in this simply-simply 
boundary condition than in the previous two cases. 

Figure 9 presents the behavior of dimensionless natural frequency concerning the parameter of the graded 
function, nx, for various axial velocities, this time under clamped-free boundary conditions. Similar to the previous 
figures (6, 7, and 8), Figure 9 shows that an increase in the nx parameter results in a reduction in the natural 
frequency for all velocities. This decrease occurs initially at a steep rate and intensifies further with greater 
increments of nx. Furthermore, as depicted in Figure 9, with an increase in axial velocity, the values of the natural 
frequency decrease. However, the effect of axial velocity on the reduction of natural frequency is relatively smaller 
compared to the impact of the nx parameter. In addition, a consistent observation similar to Figures 6-8 is that with 
increasing velocity at any specific value of nx, the natural frequency decreases. 
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Fig. 8 
The impacts of , and  on the dimensionless frequency of 
SS-supported bi-directionally graded moving beams. 

Fig. 9   
The impacts of , and  on the dimensionless frequency of 
CF-supported bi-directionally graded moving beams. 
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Fig. 10 
The impacts of , and  on the dimensionless frequency of 
CC-supported bi-directionally graded moving beams. 

Fig. 11   
The impacts of , and  on the dimensionless frequency of 
CS-supported bi-directionally graded moving beams. 

 
By comparing Figures 6 to 9, it is evident that the effect of the axial velocity parameter is also dependent on the 

type of boundary condition. Specifically, in the clamped-clamped boundary condition, the influence of changes in 
axial velocity on the natural frequency is less pronounced compared to the simply-simply boundary condition. This 
behavior can be attributed to the fact that, as depicted in the figures, the diagrams for the clamped-clamped 
boundary condition are much closer to each other, while in the simply-simply condition, they show greater 
separation. Additionally, it is evident that in all boundary conditions, the effect of nx and nz parameters is much more 
significant at the beginning of the range of variation than in the later part of the range. This indicates that the impact 
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of these parameters is more pronounced in the initial stages of their variations. Indeed, variations in these 
coefficients within the range from 0 to 0.5 can lead to changes in natural frequencies of up to approximately 100%. 
Notably, changes in the nx parameter from 0.5 to 3 can only cause variations of around 30% in natural frequencies. 
This behavior intensifies with increasing axial velocity. For example, in the case of a beam with simply-simply 
boundary conditions and an axial velocity of 3, increasing the nx coefficient from 0 to 0.5 results in a decrease in 
natural frequency from 8.5 to 4.5 (approximately 100% change). However, for an axial velocity of 1, the same 
change in nx leads to a decrease in natural frequency from 10 to 7 (approximately 35% change). Therefore, the 
effectiveness of the nx parameter, especially in smaller ranges of axial velocity, is dependent on the value of the 
axial velocity itself. The higher the axial velocity, the more significant the impact of changes in nx on the natural 
frequencies. 

Figure 10 illustrates the behavior of the dimensionless natural frequency with respect to the varying parameter of 
the gradation function, nz, for different axial velocities under the boundary conditions of simply-supported beams. 
Similar to Figures 9 and 8, it is evident that as the nz parameter increases, the natural frequency decreases for all 
velocities. This decrease occurs rapidly initially, and its intensity diminishes with further increments of nz. 
Additionally, increasing the axial velocity leads to a reduction in the natural frequency values, although the 
influence of velocity is significantly less pronounced compared to the effect of the nz parameter. 

Figure 11 presents the behavior of the dimensionless natural frequency concerning the parameter of the gradation 
function, nz, for various axial velocities under the boundary conditions of clamped-free beams. As depicted in Figure 
11, it can be deduced that the natural frequency decreases with an increase in the nz parameter for all velocities. This 
decrease exhibits a steep initial decline, and its intensity further diminishes with higher values of nz. Moreover, in 
accordance with Figure 11, the natural frequency values decrease with increasing axial velocity, although the 
influence of velocity on the reduction of the natural frequency is notably less significant compared to the effect of 
the nz parameter. Additionally, with an increase in the axial velocity for any given value of nz, the magnitude of the 
natural frequency also decreases. 

Figure 12 illustrates the behavior of the dimensionless natural frequency with respect to the parameter of the 
gradation function, nz, for various axial velocities under the boundary conditions of simply-supported beams. As 
observed in Figure 12, it is evident that the natural frequency decreases as the nz parameter increases for all 
velocities. This decrease exhibits a steep initial decline, and its intensity further diminishes with higher values of nz. 
A distinct feature of this figure, as compared to Figures 10 and 11, is the heightened impact of increasing axial 
velocity on the behavior of the natural frequency. In other words, for a specific value of nz, the discrepancy in 
natural frequency among different velocities is greater in these simply-supported boundary conditions than in the 
previous cases. 

To show the dimensionless frequency response of the SS-supported bi-directionally graded moving beam for 
different , , and boundary conditions Figs. 13-16 are appeared. As can be seen in Figs. 13-16, by increasing 

the FG power index in each direction, the dimensionless frequency decreases. In   equal to 0, decreasing the 
dimensionless frequency due to increasing  parameter is more obvious than other values of  parameter. By 
comparing the results of Figs. 13-16 can be concluded that by changing the boundary conditions of the presented 
composite structure from CC to CF, the stability and finally the dimensionless frequency decreases. This is because, 
by changing the boundary conditions from clamped to simply or free, the rigidity of the boundary conditions 
decreases and finally, the dimensionless frequency of the system decreases. 
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Fig. 12 
The impacts of , and  on the dimensionless frequency of SS-supported bi-directionally graded moving beams. 
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Fig. 13 
The impacts of , and  on the dimensionless frequency of 
SS-supported bi-directionally graded moving beams. 

Fig. 14   
The impacts of , and  on the dimensionless frequency 
of CS-supported bi-directionally graded moving beams. 

  
Fig. 15 
The impacts of , and  on the dimensionless frequency of 
CC-supported bi-directionally graded moving beams. 

Fig. 16   
The impacts of , and  on the dimensionless frequency 
of CF-supported bi-directionally graded moving beams. 

 

5    CONCLUSIONS    

This article gravitates toward analyzing the vibration response of a moving beam functionally graded in two 
orthogonal directions. In order to gain a high level of accuracy, higher-order shear deformation theory for beam 
structures is employed to define the displacement field and determine the system’s governing differential equations. 
Also, this study considers the effect of different sets of boundary conditions to find the oscillatory response of the 
system in a more comprehensive way. This matter leads the authors to utilize DQM as a numerical solution to solve 
the governing differential equations. The most significant scientific results of this study are briefly listed as follows: 

 In this study, the natural frequency of a moving beam with varying properties along both the axial and 
transverse directions was investigated. The study examined the influence of boundary conditions, 
gradational properties, axial velocity, and the parameter L/h on the natural frequency. 

 With an increase in the gradational property parameter (nx/nz), the average elastic coefficient of the system 
decreases. In other words, the highest elastic coefficient is obtained in the case of uniform properties, while 
the presence of gradational variations in both directions leads to the lowest elastic coefficient. 

 With an increase in the gradational property parameter (nx/nz), the average density of the system increases. 
In other words, the lowest density is present in the case of uniform properties, whereas the highest density 
is observed when gradational variations exist in both directions. This phenomenon can be attributed to the 
fact that the density of the gradational factor is higher than that of the base material. 

 With an increase in the gradational property parameter (nx/nz), the average Poisson's ratio of the system 
increases. In other words, the lowest Poisson's ratio is present in the case of uniform properties, whereas the 
highest Poisson's ratio is observed when gradational variations exist in both directions. This phenomenon 
can be attributed to the fact that the gradational factor has a higher density compared to the base material. 
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 In general, for a specific aspect ratio (L/h), an increase in axial velocity results in a decrease in the natural 
frequency and an increase in system instability. Although behaviors vary at different velocities, the natural 
frequency consistently decreases with increasing axial velocity. This phenomenon can be attributed to the 
similarity between the increase in velocity in moving axial beams and the increase in pressure in columns, 
leading to an escalation in system instability with higher velocities. 

 The effect of the aspect ratio (L/h) on the natural frequency is somewhat complex and is dependent on the 
axial velocity. Within the studied range and at lower velocities, the natural frequency increases with an 
increase in the l/h ratio. This increase is more pronounced at smaller l/h values and gradually diminishes, 
leading to a nearly constant natural frequency. On the other hand, at higher velocities, the natural frequency 
initially increases with an increase in l/h, but then decreases, resulting in a graph with an extremum point. 

 The decreasing behavior of the natural frequency in comparison to the increasing behavior exhibits a higher 
magnitude. As the L/h ratio changes, a significant reduction in the natural frequency occurs, showcasing a 
more pronounced effect on the system's behavior. 
The effect of boundary conditions on the natural frequency is clearly evident. Generally, with a change in 
the boundary conditions towards clamped-clamped, the natural frequency values consistently increase. The 
lowest natural frequency occurs for the clamped-free boundary conditions. The next in line is the simply-
simply boundary conditions, followed by the clamped-simply conditions. Lastly, the highest natural 
frequency corresponds to the clamped-clamped boundary conditions. 
In general, the introduction of gradient (nx/nz) properties results in a reduction of the natural frequency of 
the system, leading to increased system instability. Additionally, the results indicate that in all boundary 
conditions, the effect of nx and nz is much more significant at the beginning of the range of change 
compared to the rest of the range. Specifically, changes in nx from 0.5 to 3 can only induce approximately 
30% variation in the natural frequency. However, this behavior intensifies with increasing axial velocity. 
For instance, in the case of a beam with simple-simple boundary conditions and an axial velocity of 3, 
increasing the nx coefficient from 0 to 0.5 causes the natural frequency to decrease from 8.5 to 4.5 
(approximately 100% change). On the other hand, for an axial velocity of 1, the natural frequency 
decreases from 10 to 7 (approximately 35%) with the same change in the nx coefficient. Thus, the influence 
of nx, particularly in lower ranges, is strongly dependent on the axial velocity. 

 The effect of velocity on the real and imaginary parts of the natural frequencies is as follows: When the 
beam's velocity is zero, the natural frequencies of the system are entirely real. As the velocity increases, the 
real part of the natural frequencies gradually decreases while their imaginary part remains zero. At the 
critical velocity, the real part of the fundamental natural frequency becomes zero, indicating the loss of 
stability in the system. The induced instability, similar to buckling in classic compressed columns, is due to 
divergence in axially moving systems, where the increase in axial velocity is analogous to the interpretation 
of compressive force in columns. As expected, in columns, increasing the axial force and reaching a critical 
force leads to buckling. Similarly, in this scenario, with increasing axial velocity and reaching the critical 
velocity, the real part of the natural frequencies is diminished, leading to increased instability. With a 
further increase in velocity, the fundamental natural frequency becomes completely imaginary, while the 
third natural frequency decreases uniformly. In this case, due to gyroscopic effects, the system regains its 
stability. It can be stated that the initiation and termination points of the first mode divergence instability 
are associated with the disappearance of the real and imaginary parts of the fundamental natural frequency, 
respectively. 

 

6    APPENDIX 

The matrix , , and  in Eq. (23) can be written as follows: 
.   
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