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 ABSTRACT 

 This paper deals with the analysis of temperature, deflection and 

thermal stresses of a multilayered annular disk. The thermo-

mechanical properties of the disk are taken to be temperature 

dependent. Using Kirchhoff’s variable transformation, the non-

linear heat conduction equation is reduced to a linear form. Finite 

integral transform, Fourier series and Fourier transform 

techniques are used to solve the heat conduction equation and the 

desired solution is obtained in series form. Deflection, thermally 

induced resultant moments and the corresponding thermal 

stresses are determined. Numerical analysis is carried out for a 

three layered annular disk and the results are depicted 

graphically. Thermosensitivity plays a vital role in the thermal 

profile of the multilayered disk. In the temperature dependent 

case, the radial stress suddenly becomes compressive in the 

middle region, whereas it is tensile throughout all the regions in 

the temperature independent case. Due to the inhomogeneous 

thermal conductivity considered in the form of exponential 

function, the temperature and the corresponding thermoelastic 

quantities shows the lag along radial direction. 
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1    INTRODUCTION 

N thermo-mechanics, analysis of thermoelastic behavior in structural elements is important under manufacturing 

and operating conditions. Inhomogeneity in material structure in many cases occurs due to high and low level 

temperatures. Engineering application gives preference to the construction of solution of thermosensitive problems 

which is useful in production of stress bearing materials under the conditions of high temperature heating. Therefore 

the effect of thermosensitivity should be considered for investigation of heat conduction problems and the 

corresponding thermoelastic behavior. Thus to describe thermo-stressed state of the structure, a mathematical model 

is constructed by taking the dependency of the physiomechanical characteristics of the material on temperature.       
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Noda [1] discussed the effect of temperature dependent material properties on the thermal behavior of different 

solids. Olcer [2] discussed a complete analytical study for the distribution of temperature in a hollow right circular 

cylinder of finite length. Gorman [3] studied the effect of a radial parabolic temperature distribution upon the natural 

frequencies of small free transverse vibration (axi and non-axisymmetric) of polar orthotropic circular plates. 

Popovych et al. [4, 5] studied the heat conduction problems on various solids. Malzbender and Jülich [6] derived a 

general solution for elastic deformation of multilayered materials due to external loads and moments, mismatch in 

thermal expansion, and temperature gradients. Kayhani et al. [7] presented an exact general solution for steady-state 

conductive heat transfer in cylindrical composite laminates and obtained appropriate Fourier transformation using 

Sturm-Liouville theorem. Singh [8] discussed the methodology as well as possible application in nuclear reactors of 

analytical solutions of two-dimensional multilayer heat conduction in spherical and cylindrical coordinates. Singh et 

al. [9] used the finite integral transform method to determine the asymmetric heat conduction in a multilayer 

annulus. Kayhani et al. [10] presented a steady analytical solution for heat conduction in a cylindrical multilayer 

composite laminate and obtained the analytical solution for general linear boundary conditions that are suitable for 

various conditions including combinations of conduction, convection, and radiation both inside and outside the 

cylinder. Norouzi et al. [11] presented an exact analytical solution for steady conductive heat transfer in multilayer 

spherical fiber reinforced composite laminates. Dalir and Nourazar [12] presented an exact analytical solution of the 

problem on the three-dimensional transient heat conduction in a cylinder with multiple radial layers. Popovych and 

Kalynyak [13] developed a Mathematical model and analyzed the static thermoelastic behavior of multilayered 

thermally sensitive cylinder. Torabi and Zhang [14] determined the exact solution for asymmetric transient problem 

of heat conduction and accordingly thermal stresses within multilayer hollow or solid disks which lose heat by 

convection to the surrounding ambient. Manthena et al. [15, 16] obtained the thermal stresses of a nonhomogeneous 

hollow cylinder. Bhad et al. [17] studied the thermoelastic problem in multilayered elliptical composite plate with 

internal heat generation. Wang et al. [18] used asymptotic approach and studied the thermoelastic behavior of 

functionally graded (FG) thick hollow cylinder. Manthena et al. [19, 20, 21] studied thetemperature and stress 

profile of various solids subjected to temperature dependent material properties. Singh and Mukhopadhyay [22] 

studied thermoelastic interactions in an infinite homogeneous, isotropic elastic medium with a cylindrical cavity 

when the surface of the cavity is subjected to thermal shock. Zenkour [23] presented an exact solution of a thermal 

shock for a circular cylinder. Bhoyar et al. [24] investigated the transient thermoelastic reaction in a 

nonhomogeneous semielliptical elastic plate heated sectionally on the upper side of the semi-elliptic region. 

Bawankar and Kedar [25] developed a new model in magneto-thermoelasticity with modified Ohm’s law in the 

form of the heat conduction equation with memory-dependent-derivative. Gheisari et al. [26] investigated the 

thermal buckling analysis of a truncated conical shell made of porous materials on elastic foundation. Dehghanpour 

et al. [27] investigated the factors affecting the diffusion bonding between the patch and the piece. Adolfsson [28] 

studied closed-form expressions for temperatures and elastic thermal stresses in an infinite hollow two-material 

compound cylinder subject to steady-periodic sinusoidal ambient temperatures. Mahakalkar and Varghese [29] 

developed an analytical framework for the thermoelastic analysis of annular sector plate. Mirparizi et al. [30] 

presented a finite element nonlinear coupled thermoelasticity formulation for analysis of the wave propagation, 

reflection, and mixing phenomena in the finite length isotropic solids. Hosseini et al. [31] presented a numerical 

solution for static and dynamic stability analysis of carbon nanotube reinforced beams resting on Pasternak 

foundation. Keshavarzian et al. [32] used Exponential Shear Deformation Theory to investigate  the behavior of free 

vibrations of the thick sandwich panel with multi-layer face sheets and an electrorheological fluid core. Eslami et al. 

[33] analyzed  the exact elasticity solution for a functionally graded circular shaft with piezo layers. Arani et al. [34] 

carried out dynamic stability analysis of bi-directional functionally graded materials. During the past three decades, 

due to the use of structural materials at extremely high temperatures, a trend of investigation of thermoelasticity is 

created in which the influence of temperature and mechanical properties of the structure is taken into consideration. 

Hence the study of thermal stresses in different solids with temperature dependent material properties has become 

important. Unsteady heat-conduction problems for homogeneous thermosensitive bodies can be completely 

linearized using the Kirchhoff variable when the temperature or heat flux is prescribed on the boundaries. However, 

the Kirchhoff variable partially linearises the heat-conduction problem in the cases of radiative, convective, or 

mixed heat transfer. In all these cases an additional linearization of the heat exchange, contact, or both must be 

performed in order to find the solution of the problem. Numerical methods are used to study temperature fields with 

heat transfer in homogeneous bodies whose thermophysical characteristics depend on the temperature. However, 

analytic solutions of such problems are needed for qualitative analysis to solve the corresponding problems of 

thermoelasticity. 

In the present paper, the effect of thermosensitive material properties is studied on a multilayered annular 

circular disk occupying the space 1 , 0 2 , 0 ,i ir r r z h         in context with thermal deflection and 
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thermally induced resultant moments. The temperature distribution is determined using integral transform technique. 

The effect of stress resultants on thermal stresses is studied. As a special case, numerical computations are carried 

out for a three-layered annular disk in which copper is selected as the inner layer, zinc as the middle layer and 

aluminium as the outer layer.   

2    HEAT CONDUCTION EQUATION AND ITS SOLUTION 

Consider a multilayered thin annular disk occupying the space 1 , 0 2 , 0i ir r r z h        . The following 

Fig. 1. gives the geometrical representation of the multilayered annular disk.  

 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometrical representation of the multilayered annular 

circular disk. 

 

The three dimensional transient state heat conduction equation (HCE) without heat source of a multilayered 

annular circular disk with temperature dependent material properties as modified from [21] is: 
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where ( ), ( )i i i iT C T  are respectively, the temperature dependent thermal conductivity, specific heat capacity of the 

ith layer, i  is the density of the ith layer, and 1,2,3,............., .i k  
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Periodic boundary conditions ( 1,2,3,.............,i k ) 
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Boundary conditions along thickness  

 

0, at 0,iT z h     (7) 

 

where 0 , kh h  are the surface coefficients at 0 , kr r r r  . We use following dimensionless parameters. 
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where 0T  is the temperature of the surrounding environment, h  is the thickness of the disk, 1 1 1 1/( ),C    is the 

thermal diffusivity of the inner layer, 1 1 1, ,C   are the thermal conductivity, specific heat capacity, density of the 

inner layer, iE  is the Young’s modulus, , ja   are the frequency. 

The temperature dependent material properties ( ), ( )i i i iT C T , and heat flow ( , , )kf z t  are taken as [4, 5] 
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where 1 1, C  have dimensions, 0f  is the strength of the heat flow having relevant dimension, and *( *), *( *)i i i iT C T  

are the dimensionless quantities, which are functions that describe the dependence of these characteristics on 

dimensionless temperature, *( *, *, *)kf z t is the dimensionless function which describes the space distribution of 

the heat flow. Using Eqs. (8-9), Eqs. (1-7) reduces to the following dimensionless form (ignoring asterisks for 

convenience). 
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Initial condition: 
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Interface of the ith layer ( 2,3,.............,i k ) 
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Periodic boundary conditions ( 1,2,3,.............,i k ) 
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Boundary conditions along thickness  

 

0, at 0,iT z h     (16) 

 

where 0

1 0

f h
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T
  is the dimensionless Kirpichev reference number, 0
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 
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1 0 2( / ), ( / )kr h r h    . 

Introducing  Kirchhoff’s variable transformation [4, 5, 13] 
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and considering the material with simple thermal nonlinearity (that is [ ( ) / ( )] 1i i i iC T T  ), Eqs. (10) to (16) become 
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Initial condition: 

 

0, at 0i t      (19) 

 

Boundary conditions: 
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Outer surface of the kth layer ( i k ) 
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Interface of the ith layer ( 2,3,.............,i k ) 
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Periodic boundary conditions ( 1,2,3,.............,i k ) 
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Boundary conditions along thickness  

 

0, at 0,i z h      (24) 

 

For the sake of brevity, we take 0 0( , , ) ( ) ( ) exp( ).kf z t z z at       Here ( , , )kf z t  represents an 

exponentially varying point heat, 0 0, z  being dimensionless constants. Using finite Fourier Sine transform on Eqs. 

(18) and (24) over the variable ,z  yields 
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The conditions (19-23) become 
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Outer surface of the kth layer ( i k )  
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Interface of the ith layer ( 2,3,.............,i k ) 
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Periodic boundary conditions ( 1,2,3,.............,i k ) 
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where 0 0 0/ , ( , , ) sin( / ) ( )exp( ).n k nn h f t Ki z n z h at          The kernel of the transform is sin( / ).n z h  

 

2.1 Eigen function expansion in   direction  

         

Because of periodic boundary conditions in   direction, we expand ( , , )i r t  into angular eigen functions 

cos( ), sin( )m m   and a constant as follows [9] 
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Similarly, the expression for heat supply is taken as: 
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Using the orthogonality conditions along   direction, the coefficients in Eq. (32) are obtained as: 
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Using Eqs. (31) and (32) in Eqs. (25) and (30), we obtain [omitting the subscripts sc,,0 ] 
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The conditions (26-29) become 
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Interface between the ith and (i-1)th layer ( 2,3,.............,i k ) 
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where 1 1 0 0 0 0( ) exp( ), sin( / 2)sin( / ).kmf t A at A Ki z m n z h     

 

 

2.2 Finite integral transform in the r-direction 
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( )imS r  in Eq. (39) is chosen so that it satisfies the following differential equation 
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Boundary conditions: 
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2 0km
km

dS
Bi S

d r
     (42) 

 

Interface between the ith and (i-1)th layer ( 2,3,.............,i k ) 

 

1 1

1 1, 1

1,

( ) ( )

i i

im i i m i

i mim

r r r r

S r S r

dSdS

d r d r
 

  



 




   (43) 

 

The solutions of above equations are the eigen functions ( )impS r  corresponding to the eigen values imp  and are 

given by 0 0( ) ( ) ( )imp imp imp imp imp impS r a J r b Y r    , where 0J  and 0Y  are Bessel’s function of first kind and 

second kind respectively, and ,imp impa b  are arbitrary constants. The eigen function imp  satisfies the following 

orthogonality condition (44) subject to (45) 
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1
1

0 ;
( ) ( )

( ) ;

i

i

rk

imp imp imp imq

imp impi r

p q
r S r S r dr

S p q
 









     (44) 

 
2 2

1 1i imp mp       (45) 

 

Using Eq. (40), Eq. (39) becomes 

 

11

2
( )

( ) ( )

i i

ii

r r

impim im
imp im i imp im imp

rr

S r
r S r r r S r dr

r r t
 



    
      

       


   
(46) 

 

Using Eq. (45), Eq. (46) becomes 

 

11

2

1 1

( )
( ) ( / ) ( )

i i

ii

r r

impim im
imp im i i mp im imp

rr

S r
r S r r r S r dr

r r t
   



    
      

       


   
(47) 

 

Multiplying the above equation by i  and summing over all the k layers, we obtain 

 

11

2

1 1

1 1

( )
( ) ( / ) ( )

i i

ii

r rk k
impim im

i imp im i i i mp im imp

i i rr

S r
r S r r r S r dr

r r t
     


 

    
      

       
      (48) 

 

We define 

 

1
1

( )

i

i

rk

mp i imp im

i r

r S r dr 




       (49) 

 

Hence Eq.(48) becomes 

 

1

2

1 1

1

( )
( / ) ( )

i

i

r
k

mp impim
i i mp mp i imp im

i r

d S r
r S r r

d t r r



    




  
     

   
    (50) 

 

Applying the interface conditions (38) and (43), yields 

 

2 3 exp( )
mp

mp

d
A A at

d t






      (51) 

 

where 2

2 1 1 3 1( / ) , ( / ).i i mp k k kA A A r       The initial condition is 

 

0, at 0mp t      (52) 

 

Applying Laplace transform and its inverse on Eqs. (51) and (52), yields 

 

1 2[exp( ) exp( )]mp E at A t       (53) 

 

where 1 3 2( / ).E A A a   
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2.3 Inversion formula 

 

The generalized Fourier series expansion of  ( , )im r t  is as follows: 

 

1

( , ) ( ) ( )im mp imp

p

r t c t S r





     (54) 

where 

1
1

( ) [ ( ) ] /[ ( )]

i

i

rk

mp i imp im imp imp

i r

c t r S r dr S 




   . Now using Eq. (49), we get ( ) [ ]/[ ( )]mp mp imp impc t S   . 

This formulation and solution is valid only for 0 ( , ), ( , ), ( , )i i mc i msr t r t r t    in Eq. (31). Using Eq. (54) in Eq. 

(31), we get 

 

2 0 3 4

1 1 1 1 1

( , , ) ( ) ( )cos( ) ( )sin( )i i p imp imp

p m p m p

r t S r S r m S r m  
    

    

              (55) 

 

where 2 0 0 0 3 4[ ]/[ ( )], [ ]/[ ( )], [ ]/[ ( )].p i p i p mpc imp imp mps imp impS S S              

 

Applying inverse Fourier Sine transform on the above Eq. (55), yields 

 

2 0 3

1 1 1 1

4

1 1

( , , , ) { ( ) ( )cos( )

( )sin( )}sin( / )

i i p imp

n p m p

imp

m p

r z t S r S r m

S r m n z h

 

 

   

   

 

 

    

 

   

 
   (56) 

 

Following Noda [1], the temperature dependent thermal conductivity is expressed as an exponential function of 

temperature as: 

 

0 1 1( ) exp( ), 0i i i iT T        (57) 

 

Here 0i  is the dimensionless reference value of thermal conductivity defined by, 0
0

( 1)0

 * i
i

i




 

 .  Substituting 

Eq.(57) in Eq.(17), yields 

 

0 1 1( / )[exp( ) 1]i i iT        (58) 

 

Using Eq. (58) in Eq. (56), yields 

 

1( , , , ) (1/ ) log [ ( , , , ) 1]i eT r z t g r z t       (59) 

 

where  

 

1 0 2 0 3

1 1 1 1

4

1 1

( , , , ) ( / ){ ( ) ( )cos( )

( )sin( )}sin( / )

i i p imp

n p m p

imp

m p

g r z t S r S r m

S r m n z h

   

 

   

   

 

 

   

 

   

 
    

                     

We use the following logarithmic expansion 
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2 3log [ ( , , , ) 1] [ ( , , , )] (1/ 2) [ ( , , , )] (1/3) [ ( , , , )] .........e g r z t g r z t g r z t g r z t           (60) 

 

We observe that [ ( , , , )]Lg r z t given in Eq. (60) converges to zero as L tends to infinity. Also the truncation 

error in Eq. (60) is observed as 62.127 10 .  Hence, for the sake of brevity, neglecting the terms with order more 

than one, yields log [ ( , , , ) 1] ( , , , )e g r z t g r z t   . Hence Eq. (59) becomes 

 

0 2 0 3

1 1 1 1

4

1 1

( , , , ) (1/ ){ ( ) ( )cos( )

( )sin( )}sin( / )

i i i p imp

n p m p

imp

m p

T r z t S r S r m

S r m n z h

  

 

   

   

 

 

   

 

   

 
   (61) 

3    THERMOELASTIC ANALYSIS 

In the cylindrical coordinate system, the fundamental equation and the boundary conditions for a simply supported 

thin annular disk under thermal load are [31] 

 

2 2 ( ) 2 ( )1

(1 )

i i

T

i i

w M
D


   


   (62) 

 

where  

 

  
32 2

2

2 2 2 2

1 1
,

12(1 )

i
i

i

E h
D

r rr r  

  
    

  
 (63) 

 

Here ( )iw  is the deflection of the ith layer, ( )i

TM  is the thermally induced resultant moment of the ith layer, 

,iD iE and i are respectively, the bending rigidity, Young’s modulus and Poisson’s ratio of the plate, which are 

assumed to be constant.  

We restrict the problem to the case of symmetrical deflection so that the deflection depends only on radius and 

time. The initial and boundary conditions are 

 
( )

( ) 0, at 0
i

i w
w t

t


  


   (64) 

 

The problem is restricted under thermal load by an elastic reaction along the boundaries 0 , ,kr r r r    so that 

the deflection satisfies the following continuity and boundary conditions [17, 21] 

 
( )

( )

0

( )
( )

( ) ( 1)

1

( ) ( 1)

1

0, at ,

0, at ,

at ,

at .

i
i

k
k

k

i i

i

i i

i

w
w r r

r

w
w r r

r

w w r r

w w
r r

r r










  




  



 

 
 

 

   (65) 

 

The proportionality constants given by Hooke’s law are assumed to be unity. The components of resultant 

forces, shearing forces and resultant moments are [31] 
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( ) ( ) ( ) 0i i i

rr rN N N       (66) 
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( ) 2 ( )

1
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1

1 1 1
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i i T
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i
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

  


   

  


   

  

   (67) 
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( ) ( )

2

2 ( ) ( )
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1

1

1 1

1

i i
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rr i T

i

i i
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i i T

i

w w
M D M

r rr

w w
M D M

r rr









  
    

  

  
    

  

   
(68) 

 

Here ( )i

rrM   satisfies the condition 

 

0

( ) 0i

rr
r r

M


   , 0 1   (69) 

 

The stress components in terms of resultant moments are 

 

( ) ( ) ( ) ( ) ( )

3 3

( ) ( ) ( ) ( ) ( )

3 3

1 12 1 1 12
( )

1

1 12 1 1 12
( )

1

i i i i i

rr rr rr T T i i i i

i

i i i i i

T T i i i i

i

z z
N M N M T E T

h hh h

z z
N M N M T E T

h hh h
  

 


 


 
     

  

 
     

  

  (70) 

 

( ) ( )

0 0

( ) , ( )

h h

i i

T i i i i T i i i iM E T T z dz N E T T dz     (71) 

 

Here ( )i iT  is the temperature dependent coefficient of linear thermal expansion assumed as: 

 

0 2 2( ) exp( ), 0i i i iT T      (72) 

 

Here 0i  is the dimensionless reference value of coefficient of linear thermal expansion defined by, 

0
0

( 1)0

* i
i

i




 

 .  Using Eqs. (61) and (72), in Eq. (71), the thermally induced resultant moments ( )i

TM  and ( )i

TN  of 

the ith layer, are obtained as: 

 

( )

0 5 2 0 3 4

1 1 1 1 1 1

( / ) { ( ) ( )cos( ) ( )sin( )}i

T i i i i p imp imp

n p m p m p

M E S r S r m S r m   
     

     

             (73) 

 

( )

0 6 2 0 3 4

1 1 1 1 1 1

( / ) { ( ) ( )cos( ) ( )sin( )}i

T i i i i p imp imp

n p m p m p

N E S r S r m S r m   
     

     

             (74) 

 

where 

 
2 2 2 2 2 2

5 2 2 2

2 2 2

6 2 2 2 2

[( / 24 )][( 3 (8 3 )cos( ) (3 6 3cos(2 ) cos(3 )) ],

[( / 24 )][24 12 8 3(8 3 )cos( ) cos(3 )]

h n n n n n n n

h n n n n

        

      

       

      
  

 

Using Eq. (73), the deflection 
( )iw  of the ith layer from Eq. (62) is obtained as: 
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Using Eqs. (73) and (75), the components of resultant moments from Eq. (68) and stress components from Eq. 

(70) are determined using Mathematica software. 

 

 

4     NUMERICAL RESULTS AND DISCUSSION 

 

For numerical computations are carried out for a three-layered annular disk by choosing copper as the inner layer, 

zinc as the middle layer and aluminium as the outer layer. The material properties of Copper, Zinc and Aluminium 

are taken as given below in Table 1. 
 

Table 1 

Thermo-mechanical properties of Copper, Zinc and Aluminium at room temperature. 

Property Copper (Cu) Zinc (Zn) Aluminium (Al)  

Thermal conductivity i [ /( )]W cmC  3.86 1.13 2.04 

Thermal diffusivity  i
2[ / ]cm s  1.11 1.12 0.97 

Thermal expansion coefficient i
6[ 10 / ]C  16.6 29.7 22.2 

Young’s modulus iE
2[ / ]N cm  611.7 10  68.27 10  66.9 10  

Poisson’s ratio i  0.36 0.25 0.33 

 

For numerical computations, we take surrounding temperature 0 20T  , 0 1 2 31, 2, 3, 4,r r r r    inner layer 

0 1r r r   , middle layer 1 2r r r   , outer layer 2 3.r r r   

Figs. 2(a), 2(b), 2(c) show the variation of dimensionless temperature along rz,,  respectively in three different 

layers viz. inner layer (Copper), middle layer (Zinc) and outer layer (Aluminium). It is seen that the temperature is 

higher in the outer layer due to the application of heat, moderate in the middle layer and is decreasing slowly 

towards the inner layer. 

 

 
(a)             (b)          (c) 

Fig.2 

a) Plot of temperature along  , b) Plot of temperature along z, c) Plot of temperature along r. 
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The following Figs. (3 to 7) show the variations of dimensionless deflection, resultant moments and thermal 

stresses. The figures on the left are plotted for the homogeneous case (i.e. taking 1 2 0   , so that the material 

properties become independent of temperature), whereas that on the right are plotted for the nonhomogeneous case 

(i.e. taking 1 20, 0   , so that the material properties become dependent temperature). 

Figs. 3(a), 3(b) show the sinusoidal nature of dimensionless deflection along r,  respectively. The magnitude of 

deflection is slowly increasing with increase in   and decreases towards the end after attaining peak. Along radial 

direction deflection becomes peak in the outer layer and gradually decreases towards the inner layer.  

Figs. 4(a), 4(b), 5(a), 5(b) represent the graphs of dimensionless resultant moments along r, . Along   the 

moments are compressive in nature, while along radial direction they are seen to be tensile in the outer layer and 

become compressive towards the inner layer. 

Figs. 6(a), 6(b), 6(c) gives the variation of dimensionless tangential stress   , while Figs. 7(a), 7(b), 7(c) gives 

the variation of dimensionless radial stress rr  along , ,z r . The nature is observed to be sinusoidal along  , while 

linear along z. The magnitude increases with increase in   and z and the stress is tensile in nature. Along radial 

direction the stress is tensile in the outer and middle layers while becomes compressive in the inner core. The radial 

stress becomes compressive in the inhomogeneous case in the middle region and attains tensile nature towards the 

inner layer. 

 

 
   (a) 

 

 
 (b) 

Fig.3 

a) Plot of deflection along  . b) Plot of deflection along r. 

 

 
(a) 
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(b) 

Fig.4 

a) Plot of M   along  . b) Plot of M   along r. 

 

 
(a) 

 

 
(b) 

Fig.5 

a) Plot of rrM  along  . b) Plot of rrM  along r. 

 

 
(a) 
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(b) 

 

 
(c) 

Fig.6 

a) Plot of   along  . b) Plot of   along z. c) Plot of   along r. 

 

 
(a) 

 

 
(b) 
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(c) 

Fig.7 

a) Plot of rr  along  . b) Plot of rr  along z. c): Plot of rr  along r. 

5     VALIDATION OF THE RESULTS 

In this paper, a mathematical model has been prepared for a multilayered thin annular circular disk by taking 

temperature dependent material properties. The temperature profile and its corresponding deflection, resultant 

moments thermal stress distributions are obtained. As a limiting case, if we consider homogeneous material 

properties with internal heat generation, the results agree with [21]. 

6    CONCLUSION 

In this paper, the temperature profile of a nonhomogeneous multilayered annular disk with convective heating on the 

outer layer is investigated. The material properties are taken to be temperature dependent. The nonlinear heat 

conduction equation is solved using Kirchhoff’s variable transformation, finite Hankel transform and Fourier series 

with time dependent boundary conditions. Thermal behavior is studied for a simply supported multilayered annular 

disk using resultant forces, shearing forces and resultant moments. Numerical computations are carried out for a 

three-layered annular disk in which copper is selected as the inner layer, zinc as the middle layer and aluminium as 

the outer layer. It is observed that, due to the application of convective heating at the outer layer, the temperature 

rises and gradually decreases towards the inner layer. The resultant moments are compressive along  , while along 

radial direction they are seen to be tensile in the outer and middle layers and become compressive in the inner layer. 

The application of third kind boundary condition at the outer layer produces heat which is transferred from the outer 

layer towards the inner layer. Thermal energy is accumulated in and around the outer and middle layers which 

slowly reduces towards the inner layer causing the nature to change from tensile to compressive. The magnitude of 

tangential and radial stresses is increasing with increase in rz,, . Thermally sensitive material properties play a 

vital role in the thermal profile of the considered multilayered disk. The magnitude is more in the nonhomogeneous 

case as compared to that of the homogeneous case. In the temperature dependent case, the radial stress suddenly 

becomes compressive in the middle region, whereas it is tensile throughout all the regions in the temperature 

independent case. Due to the inhomogeneous thermal conductivity considered in the form of exponential function, 

the temperature and the corresponding thermoelastic quantities shows the lag along radial direction. 
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