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ABSTRACT
In this study, buckling and post-buckling analysis of circular porous 
plate with small initial deflection is investigated using the first-order 
shear deformation theory. Porosity is assumed variable in the 
thickness of the plate, and assumed to be symmetric with respect to 
the plate mid-plane. The first-order shear deformation theory and 
nonlinear von-Karman strain field has been used to derive the 
equilibrium equations in term of displacement field. The governing 
differential equations together with the boundary conditions are 
discretized by implementing the differential quadrature method 
(DQM). The set of nonlinear algebraic equations are then solved for 
displacement field components using an iterative method. The 
convergence of the numerical model is surveyed. Then the 
comparative and parametric studies are carried out. The results 
show that the present DQM model has fast convergence, and 
accurate results.  Moreover the porosity factor and initial deflection 
have significant influence on the plate deformation. 
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1    INTRODUCTION

ECENT advances in material science make progresses in different high technology industries such as
aerospace, military, nuclear, medicine, etc. Achievement to the knowledge of the advanced materials is become 

more and more important for the industries. For this reason, academic researches are conducted to produce and 
develop these materials, with their applications in structural design. Porous materials are advanced materials that 
have voids or pores in their structure, which may be empty or filled with a fluid. Porous materials have excellent 
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properties including lightness, flexibility, and resistance to hairline cracks, which impel the industries to make use of 
them in structural design [1].

Ma and Wang [2] investigated the nonlinear bending and post-buckling of a circular functionally graded plate 
under mechanical and thermal loads. They studied the effects of material constants and boundary conditions on the 
temperature distribution, nonlinear bending, critical buckling temperature and post-buckling thermal behavior of 
FGM plate. Magnucki and Stasiewicz [3] investigated the elastic buckling of a porous beam using classical theory 
and examined the effect of porosity on the beam buckling load.

Samsam Shariat and Eslami [4] investigated the thermal buckling of rectangular functionally graded plates with 
initial geometrical imperfections using first order shear deformation theory. The plate is assumed to be under three 
types of thermal loading, namely: uniform temperature rise, nonlinear temperature rise through the thickness, and 
axial temperature rise. Resulting equations are employed to obtain the closed-form solutions for the critical buckling 
temperature change of an imperfect functionally graded plate. Jalali and Naei [5] investigated the buckling response 
of homogeneous circular plates with variable thickness subjected to radial compression based on the first-order shear 
deformation plate theory in conjunction with von-Karman nonlinear strain-displacement relations. They examined
the influence of the boundary conditions, the thickness variation profile and aspect ratio on the buckling behavior. 
Alipour and Shariyat [6] studied the bending behavior and stress distribution of two-directional functionally graded 
FG circular plates resting on non-uniform two-parameter foundations using the first-order shear-deformation theory. 
They concluded that in contrast with the available constitutive-law-based solutions, their solution guarantees 
continuity of the transverse stresses at the interfaces between layers and may also be used for stress analysis of the 
sandwich panels. Magnucki et al. [7] on a study on the bending and buckling of a rectangular porous plate using 
classical theory, concluded that the non-linear symmetric distribution of porosity in the plate have better resistance.
Jabari et al. [8] investigated porous circular functionally graded plates using higher order shear deformation theory
and obtained the critical buckling loads. Kamranfard et al. [9] in their study of the buckling of porous annular sector 
plates investigated the influence of different geometrical parameters such as section angle, thickness, plate internal 
radius and also the amount of porosity of the plate on the critical load of buckling. Tu et al. [10] in their nonlinear 
buckling and post-buckling studies of porous plates with defects under mechanical loads extracted results which 
indicate that the critical buckling load in the porous plate decreases with increasing porosity, FGM plates with 
symmetrical porosity distribution have better resistance against mechanical loads and also the plates with defects
have more post-buckling deflections than perfect plates. Bagheri et al. [11] studied the asymmetric thermal buckling 
of temperature dependent annular FGM plates on a partial elastic foundation and presented their results proportional 
to the stiffness of the elastic foundation.  In another article, Jabbari et al. [12] in their investigation on the axially 
symmetric buckling of the saturated porous circular plate using the first-order shear deformation theory, have come 
to the conclusion that increase in the size of the pores, porosity and thickness of the plate leads to a decrease in 
stability. Moreover the plate with symmetric distribution of the pores shows a more stable behavior, besides the 
reduction of the fluid compressibility inside the pores increases the stability of the plate. A numerical solution 
formulation based on the DQM is developed by Ghomshei [13] for axisymmetric thermal buckling analysis of 
variable thickness FGM moderately thick circular plates resting on Pasternak foundation, based on FSDPT and von-
Karman strain field. The fast convergence, validation and high accuracy of the proposed DQ formulation are 
investigated. Parametric surveys are carried out with focus on the effect of thickness variations and bed parameters 
on the plate thermal buckling factor and the 1st mode shape of buckling. Khorshidvand and Kolahi [14] investigated 
the effects of porosity and radius ratio on the deflection of a buckled circular porous plate and concluded that the 
deflection increases with the increase of the porosity factor, while the deflection decreases with the increase of the 
radius ratio. Njim et al. [15] in an analytical and numerical investigation on the buckling load of functionally graded 
materials with porous metal sandwich plate, studied the effects of porosity index, elastic parameters, porosity ratio 
and length-to-thickness ratio on the buckling stresses by using classical theory. Zenkour and Aljadani [16] studied 
porous plates made of functionally graded materials, using the method of modified Quasi-3D refined theory. They
fully explained the effect of porosity on the critical load of buckling and post-buckling created in the plate. Sheplak 
and Dugundji [17] studied the large deflections of clamped circular plates under initial stress and the transition to
membrane behavior. They presented the results, values and trends in a general, dimensionless way and showed that 
the results are useful for the design of circular thin disks in micro sensor applications.
       In the current research, the axisymmetric post-buckling of porous circular plates with small initial deflection and 
variable porosity distribution through thickness is studied. The porosity distribution is so that the highest porosity is 
in the middle plane and the lowest porosity is in the upper and lower surfaces. The plate with a small initial 
deflection is subjected to a uniform in-plane radial load. The governing equations in terms of displacement field are 
derived based on the first-order shear deformation theory with von-Karman strain field. To solve the equations the 
differential quadrature method is used to discretize the equations. The obtained set of nonlinear algebraic equations 
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is then solved for displacement field components using an iterative method. The convergence of the numerical 
model is examined. Then the comparative and parametric studies are carried out. The results show that the present 
DQM model has fast convergence, and accurate results.  

2   BASIC EQUATIONS AND FORMULATION

2.1   Plate parameters

A porous plate with radius R and thickness h is considered, where the coordinate axis r is located in the mid-plane of 
the plate and the coordinate axis z is located along the thickness of the plate. The plate defected by a small initial 
deflection w0 . The porosity is assumed to be variable along the z axis, so the elastic modulus varies according to the 
porosity along the thickness of the plate. Geometric parameters of the porous circular plate are as shown in Fig. 1. 

The plate porosity distribution assumed to have symmetry with respect to mid-plane and has a non-linear with 
cosine distribution in thickness. So that the elastic and shear moduli of the plate material have symmetry with 
respect to mid-plane as defined by the following equations [12]:

,

and are respectively the shear modulus and elastic modulus of the material without porosity, respectively, is 
the porosity parameter related to the porosity factor β as [18]:

  

For the initial small deflection cosine functions is considered so that the maximum deflection exists in the middle 
of the plate and the deflection is zero at the outer edge of the plate. The functions for the simple and clamped
boundary conditions respectively are as follows:

2.2   Plate kinematic relations

According to the thick plate assumption, the first-order shear deformation theory is used here to estimate the 
displacement field in a circular plate. Based on the theory, the displacement components in cylindrical coordinates 
are stated as:

where u and w are the radial and lateral displacements, respectively, and φ is the total rotation around the peripheral 
axis, and represents the mid-plane radial displacement. Also, the strain components are written as [19]:
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(a)

                                        

                                       (b)                                                                     (c)

Fig. 1
Geometric parameters of the assumed porous circular plate,(a) Cross-section of plate with porosity, (b) In-plane loading on 
circular plate, (c) Small initial deflection of plate.

Based on von-Karman assumptions, which is suitable for relatively large deflections, the mid-plane strains , 
and the curvatures , in terms of displacements are given as follows [19]:

In Eqs (6), and from now on the derivative with respect to r is written as .
The stress-strain relations for porous plates assumed to follow Hook’s law [20]:

where and are the normal stresses in the r and θ directions, respectively, and is the shear stress, and is 
Poisson’s ratio which assumed to be constant through the plate thickness.

The force/moment resultants can be calculated by the following integrations over the thickness of the plate:
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By substituting Eq.(7) into Eq.(8) and integrating, we have:

                             (9)

where K is the shear correction factor and its value is equal to

We can rewrite Eq.(9) in matrix form as below:

where:

in that and are tensile and bending stiffness’s respectively, and and are obtained by the following 

integrals [13]:]

2.3   Equilibrium equations

The plate equilibrium equations are obtained using the energy method as mentioned in reference [21] for the shear 
deformable plate. These equations are written in terms of the resultant forces and moments as below:
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where   in the first of Eq. (13) is the effect of the initial small deflection which appears as an in-plane 
distributed radial load [22], and -P is an external circumferential load applied on the outer edge of the plate.

Substituting Eq.(10) into Eq.(13), then substituting from Eq.(6) into the resulting statements, the equilibrium
equations are obtained in terms of displacements as follows:

3   DISCRETIZATION OF THE EQUATIONS

A numerical method known as differential quadrature method (DQM) is used to simultaneously solve the governing 
ODE’s (Ordinary Differential Equations) of variable coefficients, in that the weighting coefficients are determined 
by the procedure introduced by Shu and Richards as cited in Ref. [23]. To ensure the convergence of DQ 
approximation, an unequally spaced grid point distribution so-called Chebyshev nodes is utilized. Applying the 
differential quadrature rule as mentioned in Ref. [23] to the equilibrium equations Eq. (14), the discretized forms 
of the equations are derived as



Post- Buckling Analysis of Porous Circular Plate with Small Initial ….                          174

Journal of Solid Mechanics Vol. 16, No. 2 (2024)  

where , are weighting coefficients of the second and first order derivatives respectively and N is the 

selected number of grid points.
Also, the discretized forms of the boundary conditions are as follows:

4   NUMERICAL RESULTS AND DISCUSSION

Based on the DQ formulation, a computer program written in MATLAB is prepared, and the numerical results are 
extracted. The numerical results are concerned with the values of the plate properties: elastic modulus of solid 
material 210 GPa, plate thickness 0.002 meter, porosity 10%, Poisson’ ratio 0.285, plate initial deflection at center 
point 0.005 meter and plate radius 0.5 meter, unless otherwise specified.

4.1   Convergence of the results

To study the convergence of the present numerical method, the computer program is implemented with a number of 
grid points including 5, 7, 9, 11, ... up to 31 points. Fig .2 shows the convergence diagram. Since the numerical 
method has enough accuracy with 15 grid points, the effects of various parameters of the plate have been 
investigated by using 15 grid points. The normalized error percent for simply support boundary condition is 0.066% 
and those of clamped boundary condition is 0.0756%. 
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Fig. 2
Dimensionless deflection vs. number of grid points for (a) clamped edge, (b) simply supported edge.

4.2   Validation

To check the accuracy of the present numerical method, we compare its numerical results with those of Ref. [2]. It 
should be noted that in Ref. [2] the results are obtained for the case without porosity and initial deflection. So, here 
by considering the zero porosity and zero initial deflection with the material and elastic modulus used same as in 
Ref. [2] which is for aluminum, the results are comparable. In Fig. 3 the results for dimensionless deflection vs. 
dimensionless radius, for both simple edge and clamped edge supporting, are compared with those of Ref. [2]. As 
may be seen in this figure, the results are in good agreement, so the present DQM is a valid numerical scheme for 
the problem. 

Fig. 3
Comparison of the results of present DQM, for dimensionless deflection variations vs. dimensionless radius, with those of Ref.[2]
for both simply supported and clamped edge.

(a) (b)
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4.3   Parametric study

Parametric study is carried out to investigate the effects of a number of parameters on the plate deflection and 
buckling behavior. The parametric survey includes both clamped and simply supported boundary conditions. These 
surveys are shown diagrammatically in Figs.(4–8).

Fig. 4 indicates the distribution of the dimensionless deflection vs. dimensionless radius for (a) clamped and (b) 
simply supported edge for 5 different values of in-plane radial compressive force, P. As it is expected, the figure 
shows that the deflection increases with increase in the compressive force, Also it may be seen that the boundary 
conditions are satisfied.  Dimensionless in-plane compressive radial Load vs. the dimensionless plate center 
deflection for five different values of the initial deflection is illustrated in Fig. 5. In this figure the rapid rise in the 
deflection at the beginning and then gradually decrease in the tangent of the curves indicates the pre-buckling zone, 
buckling zone as well as the post-buckling zone. Also, Fig. 5 indicates that the initial deflection has significant 
influence on the plate buckling and post buckling behavior. Fig. 6 shows the dimensionless deflection of plate center
point vs. porosity factor for five different values of the plate elastic modulus. As can be seen in this figure, by 
increasing porosity and/or reducing elastic modulus, the plate deflection increases significantly. This is as one 
expects, since by increasing the porosity or reducing elastic modulus, the plate stiffness reduces. Fig. 7 illustrates the 
dimensionless deflection vs. dimensionless thickness for five different elastic moduli, (a) for clamped edge, (b) for 
simply supported edge. The figure indicates that by reducing the plate thickness and/or plate elastic modulus, the 
deflection of the plate increases in both clamped and simply supported edge conditions. Fig. 8 represents 
dimensionless deflection vs. dimensionless radius for five different elastic moduli for both (a) clamped edge, (b) 
simply supported edge condition. The figure demonstrates that by raising the dimensionless radius of the plate only 
a small incline in deflection takes place. However by raising elastic modulus, the plate deflection rises significantly.
Fig. 9 illustrates the dimensionless deflection vs. dimensionless elastic modulus for (a) clamped edge, (b) simply 
supported edge condition. The figure indicates that reduction in elastic modulus causes an increase in the plate 
deflection. However the influence of the parameter scales down as it becomes larger and larger. Moreover the
increase in simply supported plate is more significant than that of clamped plate. 

Fig. 4
Dimensionless deflection diagram vs. dimensionless radius for 5 different values of the in-plane radial compressive force
(a) clamped edge, (b) simple support edge.

(b)(a)
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Fig. 5
Dimensionless in-plane compressive load vs. dimensionless center deflection for (a) clamped edge, (b) simply supported edge.

Fig. 6
Dimensionless deflection vs. porosity for 5 different young moduli for, (a) clamped edge, (b) simply supported edge.

5   CONCLUDING REMARKS

In this study, buckling and post-buckling analysis of circular porous plate with small initial deflection is investigated 
using the first-order shear deformation theory. Porosity is assumed non-linear in the thickness of the plate. The first-
order shear deformation theory and nonlinear von-Karman strain field has been used to derive the equilibrium 
equations in term of displacement field. The governing differential equations together with the boundary conditions 
are discretized by implementing the differential quadrature method (DQM). The set of nonlinear algebraic equations 
are then solved for displacement field components using an iterative method. The convergence of the numerical 

(b)(a)

(b)(a)
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model is investigated. Then the comparative and parametric studies are carried out. The results show that the present 
DQM model has fast convergence, and accurate results. The conclusions extracted from the parametric studies are as 
listed in the following:

 The plate deflection increases with increase in the compressive in-plane force.
 The porosity factor has significant influence on the plate deformation. 
 The illustrations indicate the pre-buckling zone, buckling zone as well as the post-buckling zone. 
 The initial deflection has significant influence on the buckling, pre/post-buckling zones of the plate.
 The dimensionless deflection reduces fast by incrementing the dimensionless plate thickness.
 The dimensionless radius has small influence in the dimensionless deflection of plate.
 The dimensionless deflection decreases with increase in the dimensionless elastic modulus. However the 
influence of the parameter scales down as it becomes larger and larger. 
 The plate boundary conditions have significant influence on the plate deflection.

Fig. 7
Dimensionless deflection vs. dimensionless thickness for 5 different elastic moduli for (a) clamped edge, (b) simply supported
edge.
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Fig. 8
Dimensionless deflection vs. dimensionless radius for 5 different young’s moduli for (a) clamped edge, (b) simply supported 
edge.

Fig. 9
Dimensionless deflection vs. dimensionless elastic modulus for (a) clamped edge, (b) simple supported edge.

(b)(a)

(b)(a)
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