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ABSTRACT
The nonlocal quasi-3D static stability analysis of the sandwich simply 
 supported nanoplates embedded in an orthotropic Pasternak foundation 
placed in an electrical environment by considering the surface effects based 
on a five-variable refined plate theory by taking into account the stretching 
effects is investigated in the current study. The core of the structure is 
functionally graded along its thickness using a power law model. The 
concept of neutral surface position is applied to achieve symmetry in the 
distribution of material properties across the thickness. The piezoelectric 
face sheets are actuators and sensors for the functionally graded layer based 
on the surface piezoelasticity theory. According to the nonlocal strain 
 gradient theory, the higher-order shear deformation theory is utilized to 
develop the linear equilibrium equations of  motion based on the principle of 
minimum potential energy. Eventually,  a Navier-type solution is applied to 
obtain the analytical results of a three-layered nano-plate  subjected to 
the electric field.  Evaluation of the accuracy and efficiency of the current 
approach demonstrates a good agreement between the obtained results from 
this model and those published in the reviewed literature. Eventually, a 
comprehensive study is conducted to examine the influences of various 
parameters on the critical buckling load of the functionally graded sandwich 
structure in detail. Numerical results indicate significant influences of 
residual surface stress and neutral surface position on the critical buckling 
load, particularly in thick nanoplates. These findings are expected to aid in 
designing micro/nano-electro-mechanical system components based on 
smart nanostructures.                               
Keywords: Critical Buckling Load; Neutral Surface Concept; Nonlocal 
Strain Gradient Theory; Surface Effect, Refined Plate Theory.
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1    INTRODUCTION

EVELOPMENT and advancement in various industries including aerospace and thermal power plants 
 caused by the requirement for materials with high thermal and mechanical strength is more taken into 

 consideration than ever before. Functionally graded materials (FGM) are inhomogeneous materials including  two or 
more various materials by varying the microstructure from one material to another material with a  specific gradient. 
Their dating as an engineering concept reaches the last quarter of the 20th century. The  aircraft and aerospace 
industry, the computer circuit industry, and the fabrication of electrical,  electrochemical as well as biomaterials 
devices are examples of the use of these materials. FGMs as materials  with improved properties have attracted the 
attention of many researchers     [1-7]. Piezoelectric materials are  materials that can generate internal electrical charge 
from applied mechanical stress. As well as  in the reverse direction, they can create a strain when subjected to an 
electric field. These technologies are used  as actuators and sensors due to the excellent mechanical properties and 
tunable electric properties in a wide  range of applied devices and products in modern societies especially. Thus far, 
many researchers have  focused their research on studying and investigating the behavior of piezoelectric materials   
  [8-13]. 

A multi-layered plate is a special form of a sandwich structure comprising a combination of different laminates 
that are bonded to each other so that its properties are considered as the properties of an integrated structure. The 
primary advantage of multi-layered plates is very high stiffness-to-weight and high bending strength-to-weight ratio. 
Lightweight and stiff laminated panels are vital elements of many modern civil, aircraft, and spacecraft designs. 
Subsequently, researchers started to investigate the behavior of the multi-layered structures in the last few years.  

Cao et al. [14] studied dynamic analysis of viscoelastically subjected to moving loads using the multi-layer 
 moving plate method. They extracted the governing equations of the connected double-plate system by using  the 
Reissner-Mindlin plate theory. Ragb and Matbuly [15] introduced different numerical schemes to formulate  and 
solve nonlinear vibration analysis of elastically supported multilayer composite plates resting on the Winkler-
Pasternak foundation by a first-order shear deformation theory (FSDT). The obtained results show that the  used 
method is an accurate efficient model in the dynamic analysis of discontinuity structure resting on  a nonlinear elastic 
foundation. Taghizadeh et al. [16] investigated the mechanical behavior of novel multi-layer  sandwich panels 
subjected to indentation of a spherical indenter load experimentally and numerically.  Amoozgar et al. [17] employed 
a combining a two-dimensional a one-dimensional nonlinear beam analysis to  study the influences of initial 
curvature and lattice core shape on the vibration of sandwich beams. They used  a time-space scheme to obtain 
nonlinear governing equations of the sandwich beam. Their results show that  the lattice unit cell shape affects both 
in-plane and out-of-plane stiffness and results in changes in the dynamic  behavior of the beam. Sahoo et al. [18] 
predicted nonlinear vibration analysis of FGM sandwich structure  under linear and nonlinear temperature 
distributions numerically using the higher-order shear deformation  theory (HSDT). A parametric study on the 
buckling behavior of a sandwich beam consisting of a porous ceramic  core including the effects of length-to-
thickness ratio, the volume fraction of FGM, and various porosity patterns  based on third-order shear deformation 
theory (TSDT) was presented by Derikvand et al. [19]. The governing  equilibrium equations were solved for 
different end conditions using the differential transform method and  the physical neutral axis of the beam. Li et al. 
[20] used hyperbolic tangent shear deformation theory for the analysis  of free vibration of FG honeycomb sandwich 
plates with negative Poisson’s ratio. They solved the derived  governing dynamic equations by applying Navier’s 
method and fluid-solid interface conditions. The  corresponding results display that the FG honeycomb core with 
negative Poisson’s ratio can yield much lower  frequencies. Instability analysis of axially moving sandwich plates 
with magnetorheological core and  polymeric face sheets reinforced with graphene nanoplatelets by using FSDT was 
studied by Ghorbanpour  Arani et al. [21]. The Halpin–Tsai model and the rule of mixture are utilized to estimate the 
effective  mechanical properties. A novel unified model for vibration analysis of a thick-section sandwich structure 
was  presented based on the variational asymptotic method by Li et al. [22]. They studied the effects of  temperature 
gradients in the thickness direction, core thickness, and boundary conditions by a detailed  parametric study. Liu et 
al. [23] analyzed the buckling and vibration studies of the sandwich plates based on  the isogeometric analysis in 
conjunction with the refined shear deformation theory. 

Many researchers have studied the mechanical behavior of structures over the past centuries. Today, with the 
advancement of technology and the development of industries, achieving the exact results requires the use of new 
models and methods. Laminated structures are used in many engineering industries. The different theories are used 
to simulate and obtain analytical results the most common of these theories are Classical plate theory (CPT), FSDT,
and HSDT. As the thickness of the sheet increases, the accuracy of these theories decreases. Size effects play a 
significant role in predicting mechanical behavior when the structure is being studied on a small scale. The best 
alternative approach to studying the mechanical behavior of materials is the use of the continuum mechanics 
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relationships. The effect of size is not taken into account in classical continuum mechanics theory. For this reason, 
this theory cannot predict the mechanical behavior of nanostructures and microstructures well. Various theories 
including Strain gradient theory (SGT), Modified strain gradient theory (MSGT), Couple stress theory (CST), and 
Modified couple stress theory (MCST), are proposed to eliminate this defect. Layer-wise (LW) and zig-zag (ZZ) 
theories provide sufficiently accurate responses for relatively thick laminated structures. These theories can capture 
the inter-laminar stress fields near the edges. Refined plate theories (RPT) are theories that assume the uniaxial and 
lateral displacements have bending and shear components. In them, the bending and shear components do not 
contribute toward shear forces and bending moments, respectively. The most interesting feature of these theories is 
that they have high accuracy for a quadratic variation of the transverse shear strains across the thickness and also 
satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear 
correction factors. Several models of RPT with different form functions by dividing the transverse displacement into 
bending and shear parts for plate structures are proposed. Quasi-three-dimensional and Three-dimensional (3D) are 
the new contributions of the proposed theories which are compatible with the numerical method and naturally taken 
into account in the thickness direction. Examples of the use of these theories in the published articles are expressed 
as follows. 

Ren et al. [24] derived the nonlocal strong forms for various physical models in traditional methods. They 
derived the nonlocal forms of electro-magneto-elasticity thin plate and phase-field fracture method based on 
the nonlocal operator method by using the variational principle/weighted residual method. Pham et al. [25] studied 
the nonlocal dynamic response of sandwich nanoplates with a porous FG core using higher-order isogeometric 
theory. They extracted the governing equations of motion of sandwich nanoplates by the Hamilton principle and 
solved them by the Newmark method. Dynamic instability behavior of graphene nanoplatelets-reinforced porous 
sandwich plates subjected to periodic in-plane compressive loads based on a four-variable refined quasi-3D plate 
theory was investigated by Nguyen and Phan [26]. They used Bolotin's method to solve the Mathieu–Hill equation. 
Their results show that the thickness stretching effect should be carefully evaluated for moderate to thick plate 
structures, such as sandwich plates. Free vibration and buckling analyses of piezoelectric–piezomagnetic FG 
microplates in the thermal environment using MSGT were investigated by Hung et al. [27]. They derived the 
equilibrium equations by using Hamilton’s principle. They reported the effect of the electric voltage, power index, 
magnetic potential, length scale parameters, and geometrical parameters on the dimensionless frequencies and 
critical buckling loads of microplates. Jin [28] used a refined plate theory to examine the Interlaminar stress analysis 
of composite laminated plates reinforced with FG graphene particles. Tharwan et al. [29] utilized a novel refined 
three-variable quasi-3D shear deformation theory to study the buckling behavior of multi-directional FG curved 
nanobeam rested on an elastic foundation. They used a novel solution to effectively address a range of boundary 
conditions. Quasi 3D free vibration and buckling analysis of non-uniform thickness sandwich porous plates in a 
hygro-thermal environment utilizing a refined plate theory and novel finite element model were provided by Hai 
Van and Hong [30]. They considered the non-uniform thickness sandwich porous plates as bi-directional FGM. 
Their results reveal that the novel porosity patterns and the boundary conditions have a substantial impact on the 
mechanical behaviors of sandwich porous plates. Shahmohammadi et al. [31] extended the modified nonlocal FSDT 
to study buckling analysis of multilayered composite plates reinforced with FG carbon nanotube or FG graphene 
platelets resting on elastic foundations. A novel quasi-3D hyperbolic HSDT in association with nonlocal MSGD was 
considered by Ghandourah et al. [32] to analyze the bending and buckling behaviors of FG graphene-reinforced 
nanocomposite plates. The modified model of Halpin–Tsai and the rule of mixture were employed to compute the 
effective Young’s modulus, Poisson’s ratio, and mass density of FG graphene-reinforced nanocomposite plates. The 
inclusion of thickness stretching, nonlocal parameters, and length-scale parameters has a significant effect on the 
response of the GRNC plate. Hung et al. [33] employed a quasi-3D HSDT to study the bending response of FG-
saturated porous nanoplate resting on an elastic foundation. According to their findings, the deflection and stresses 
increase by increasing the values of the nonlocal parameter. Daikh et al. [34] proposed a Quasi-3D HSDT to 
examine the buckling behavior of bilayer FG porous plates based on nonlocal strain gradient theory (NSGT). They 
developed the equilibrium equations using the virtual work principle and solved them utilizing the Galerkin method 
to cover various boundary conditions. Shahzad et al. [35] analyzed the size-dependent nonlinear dynamic of 
piezoelectric nanobeam subjected to a time-dependent mechanical uniform load. They formulated the NSGT based 
on a quasi-3D beam theory to take into account the size dependency.

Sandwich structures are one of the most advanced and modern structures that are utilized for  strengthening based 
on the materials used in their construction. Fixed and mobile refrigerated warehouses,  metal industries, spatial 
structures, and industrial and  semi-industrial cold stores are examples of the use of sandwich structures in different 
industries. Piezoelectric materials have been widely employed as sensors and actuators in  microelectromechanical 
systems (MEMS) and nanoelectromechanical systems (NEMS). In addition, various piezoelectric materials have 
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been considered for  applications in energy harvesting, biomedical engineering, and additive  manufacturing. 
Therefore, due to the existence of piezoelectric layers, piezoelectric nano-sandwiches  have many applications in the 
medical industries including drug delivery, cartilage, nerve, skin,  tendon, and muscle regeneration as well as 
military industries.

Many researchers have investigated the behavior of structures over the past   centuries. Today, based on the 
growth and development of industries and the increasing progress of technology, it is necessary to achieve accurate 
and reliable results using new models and methods. The use of piezoelectric face sheets as sensors and actuators as 
well as protection and prevention of damage to FGMs is of great importance considering the cost of construction 
and the production process of these materials. According to the comprehensive literature survey and the best of the 
authors’  knowledge, there has been no attempt concerning the study of the bi-axial buckling analysis of FG nano-
plate covered with  piezoelectric face-sheets by considering elastic foundations.  Motivated by these considerations, 
the current paper is the first attempt to present the exact  solution for size-dependent quasi-3D buckling analysis of a 
three-layer FG nanoplate  integrated with piezoelectric layers supported by orthotropic Pasternak medium subjected 
to electric field and in-plane forces. The surface effect responsible for size-dependent characteristics can become 
distinctly  important for piezoelectric nanomaterials in which large surface-to-volume ratio. Also,  understanding the 
buckling behavior of sandwich nano-systems could be a key point for the  application in electromechanical 
resonators, hence, for the first time surface effect, neutral surface position of FGMs and  thickness stretching effects 
together with NSGT are applied to sandwich  piezoelectric nanoplate. Eventually, one of the  innovations of the 
presented research is the presentation of comparative results in different  models for the critical buckling load of the 
nano-plate.

2    THEORETICAL FORMULATIONS

2.1 Basic Assumptions

The following assumptions based on the equations of the quasi-three-dimensional theory are presented in this 
paper to accurately simulate the behavior of the desired sandwich structure with a close approximation of the actual 
material properties. This theory reliably approximates the actual behavior of thick plates in the thickness direction, 
considering that 3 is significantly smaller compared to 13 and 23 , except at the edges of the structure. The 

assumptions underlying the current theory and the used materials are outlined as follows:
 It is assumed that there are no slip conditions between the core and the face sheets, ensuring complete 

continuity and integration between all layers.
 The FGM is modeled as a linear elastic material in the pre-yield condition.
 The origin of the Cartesian coordinate system is placed at the neutral surface of the FG plate.
 The displacements are relatively small compared to the plate thickness, leading to infinitesimal strains.
 The displacements U in the x -direction and V in the y -direction are composed of extension, bending, and 

shear components. 
 The transverse displacement w comprises three parts: bending ( bw ) and shear ( sw ) and normal stress ( ) 

(stretching effect). These components are solely functions of the coordinates x,y,z and time ( t ).

2.2 Theoretical Formulations 

Consider a rectangular sandwich nanoplate with FGM core and piezoelectric face-sheets at the top and bottom of 
the core via length a, width b, and total thickness h according to Fig. 1. The thickness of the core and bonded layers 
are ch and ph , respectively. The displacement field of the current formulation is obtained based on the above 

assumptions. In this research, a higher-order quasi-3D theory according to the four-variable plate theory is 
developed by considering the thickness stretching parameter.  Based on the given assumptions, the considered 
displacement field is capable of satisfying the transverse shear stresses related to shear strains at the uppermost and 
lowermost surfaces of the sandwich structure. Hence, the displacement field at any point of the three-layered 
nanoplate can be expressed as below [35,36];
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0( , , , )ns b sU x y z t u u u  
(1)

0( , , , )ns b sV x y z t v v v  
(2)

( , , , ) ( ) ( , , )ns b s nsW x y z t w w g z x y t  
(3)

The bending components bu and bv are considered analogous to the displacements described by classical plate 

theory. Hence, the expressions for bu and bv can be formulated as follows [25,37]:

b b
b ns b ns

w w
u z v z

x y

 
   

  (4)

Fig. 1
Geometry of three-layered FG nano-plate integrated with piezoelectric face-sheets.

The shear components su and sv together with sw create parabolic variations in shear strains xz and yz . This, in 

turn, affects the shear stresses xz and yz throughout the plate's thickness, ensuring that xz and yz are zero at the 

top and bottom faces of the plate. As a result, the expressions for su and sv can be defined as follows [26,37,38]:

( ) ( )s s
s ns s ns

w w
u f z v f z

x y

 
   

  (5)

On the other hand, 0u and 0v represent the displacements in the x and y directions at a corresponding point on 

the reference surface and also bw and sw are the bending and shear components of the transverse displacement, 

respectively. ( )nsf z represents a shape function that estimates the distribution of shear stress across the plate's 

thickness, eliminating the need for any shear correction factor. This shape function can originate from different 
types of functions, including trigonometric, polynomial, and hyperbolic forms. A polynomial function is selected in 
this study, similar to the utilized methodology in the hybrid-type quasi-3D shear deformation theory. The shape 
functions ( )nsf z and ( )nsg z can be expressed as [26,39];
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01 5

( )
4 3

ns
ns ns

z z
f z z

h

      
    (6)

( ) 1 ( )ns nsg z f z 
(7)

The linear strain-displacement relations based on the quasi-3D displacement field can be written as:

 
   

0 0

0

( ) , ( ) ,
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(9)

2.3 Piezoelectric Materials

Piezoelectric materials have the unique capacity to regulate electrical phases. These materials can produce 
various physical and chemical responses to electrical phase changes, such as pressure or electric fields. Their key 
features include high precision and sensitivity, stability and durability, and rapid response times. These distinctive 
capabilities play an essential role in advancing modern technologies. With the advancement of nanotechnology and 
composite materials, the applications of piezoelectric materials are expected to expand into new domains, driving 
the development of more intelligent devices and systems. The constitutive piezo-elasticity relations for a 
piezoelectric material based on the continuum mechanics approach can be formulated using stress and strain 
components, electric displacement relations, and the field strength matrix as follows [40]:
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in which p
ijC are stiffness matrix components, p

ije are piezo-electric coefficients, and p
ii are dielectric permeability 

coefficients. iD represent electric displacements and iE are electric field components. The electric fields must be 

chosen to satisfy Maxwell’s relation and can be represented as follows [40-41]:
( , , , )i x zE y t 

(12)

 0 )( , , , ) 2 cos(( ) , ,
p p

zV z
x y z t x y t

h h


  

 

(13)

where 0V  represents the externally applied electric voltage between the top and bottom of the piezoelectric layers.

Additionally,  , ,x y t denotes the spatial variation of the electric potential in two-dimensional directions. 

Consequently, the electric components in the three spatial directions are as follow [38,41]:

 ( , , , ) cos( ) , ,x px y z t z h x y tE
x x

 
 
 

 
  

(14)

 ( , , , ) cos( ) , ,y px y z t z h x y tE
y y

 
 
 

 
  

(15)

 0( , , , ) 2 ( )sin( ,( )) ,
p

z
p p

V z
x y z t x y t

z h
E

h h

  
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
 



 (16)

The transformed coordinates for the upper and lower layers, relative to the mid-plane of the piezoelectric face-
sheets can be expressed as follows.

2 2
pc

hh
z z  

(17)

2 2
pc

hh
z z  

(18)

2.4 FGM Properties

FGMs are smart materials typically composed of ceramic and metal and the effective properties of these 
materials continuously vary along the thickness direction according to the specific relationship. In this paper, the 
material properties of the FG plate change based on the power-law distribution. Hence, the effective non-
homogeneous properties of FG nanoplate utilizing the rule of mixture can be expressed by [40-44]:

1
( ) ( )

2

k

M C M
z

P z P P P
h

     
 

(19)

In this Eq., subscripts C and M represent the properties of ceramic and metallic materials, respectively. 
Additionally, the parameter k indicates the gradient index distribution of properties along the thickness direction of 
the plate. Due to the asymmetric distribution of properties along the functional grading of these materials, the 
position of the neutral surface does not coincide with the mid-plane in the graded direction. The inherent asymmetry 
in material properties of FG plates relative to the mid-plane causes the stretching and bending equations to be 
coupled. Thus, by appropriately selecting the origin of the coordinates in the direction of property variations, the 
coupling between stretching and bending can be neglected. The symmetry of properties along the direction of 
variation significantly simplifies the analysis of these materials. Hence, two different planes msz and nsz are 

considered for the measurement of z from the middle surface and the neutral surface of the plate, respectively, to 
specify the position of the neutral surface of FG plates, as shown in Fig. 2.
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(21)
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(22)

Notably, the material properties at the top and bottom surfaces of the FG plate are pure ceramic and pure metal, 
respectively. ,E  are Young’s modulus and mass density of FG nanoplate that are assumed to vary according to a 
power law distribution in terms of the volume fractions of the constituents.

Fig. 2
Neutral surface position of FG nano-plate.

The distance of the neutral surface from the mid-plane is represented by 0z in Eq. (2) and this distance can be 

defined as follows [42]:
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The linear constitutive relations of a FG plate can be written as [40]:
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(24)

Using the material properties defined in Eq. (3), stiffness coefficients, cijQ can be expressed as [40]:
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2.٥ Non-local Strain Gradient Theory

In this paper, the NSGT is employed to analyze the size-dependent behavior of sandwich nanoplate. A new non-
conventional continuum theory of elasticity called NSGT is introduced to simultaneously consider the opposite 
characteristics of small-scale effects. In this theory, the coupled physical influences of nonlocal and strain gradient 
size effects are simultaneously considered. By ignoring the effect of body force, the general constitutive relations 
with the framework of NSGT are written as [45-51]:

   2 2 2 2(1 ) (1 )ij ijkl kl kij kC e E       
(26)

   2 2 2 2(1 ) (1 )i ikl kl kij kD e E       
(27)

2 2 2 22 x y     
(28)

in which  represents the internal material length scale parameter,  denotes the nonlocal parameter, and 2 is the 
Laplacian operator.

2.6 Surface Piezoelectricity Effects

In nano-scale structures, the energy fraction stored in the surface layers is considerably higher than that in the 
bulk material, and surface or near-surface atoms are typically subject to a range of environmental influences distinct 
from those affecting bulk atoms. Indeed , a key characteristic of nanostructures is their high surface-to-volume ratio. 
Consequently, surface elasticity theory is combined with non-classical continuum theory to examine these 
significant effects. The primary equations for stresses and electric displacements on the surface of piezoelectric 
materials based on NSGT can be formulated as [49-51]:

   2 2 2 2(1 ) (1 )sij sijkl kl skij k sC e E          
(29)

   2 2 2 2(1 ) (1 )i sikl kl skij kD e E       
(30)

where , ,sij sij sijC e  and s are the surface elastic constants, surface piezoelectric constants, surface dielectric 

constants, and the residual surface stress tensor. Also,  s b s b(w w ) y , (w w ) x       .

2.٦ Equations of motion

The equilibrium governing equations for the nonlocal sandwich FG nanoplate are formulated using Hamilton’s 
principle. According to the Hamilton’s principle, one can get that [52-56];  

 
0

0
t

U W dt   (31)

where U and W are the first variation of strain energy and work done by external forces leading foundation and 
applied electrical field, respectively. The total potential energy of sandwich nanoplate with FG core and 
piezoelectric face sheets including both the bulk part and two surface layers can be expressed as [54]: 
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where S  and S  relates to upper surface layers and lower surface layers, respectively.
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The converted coordinate based on the neutral axis is ns ns c p 0z z ( h 2 ) ( h 2 ) z    . The above equation, 

,N M and Q implies the force, moment and transverse shear stress resultants that can be described as: 
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The external works can be extracted into two parts. One part is an orthotropic Pasternak medium and the other 
part is a two-dimensional electric field applied to the piezoelectric face sheets [53, 57-60]. 

 W N F wdA  (39)

In contrast to other models, this foundation can simulate both normal and shear loads in any given direction. The 
applied force induced by the orthotropic Pasternak foundation can be defined as [57,58]:
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in which , ,w gx gyK K K describes linear spring coefficient and shear layers in two arbitrary directions, respectively. 

Also, the angle  specifies the orientation of the local x -direction of the orthotropic foundation with respect to the 
global x -axis of the system. The applied forces from the electric field can be calculated as [45,51,60-61]:
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In above Eq., longitudinal ( xxN ) and transverse ( yyN ) resultant are xx exN N and yy eyN N , respectively. In 

this regard xxN and indicates in-plane applied forces exerting on the sandwich nanoplate. On the other hand, 

,ex eyN N are the electric loading in x -direction and y -direction, respectively. These parameters can be expressed as

[52]:
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Finally, based on Hamilton’s principles, integrating by parts, separating the unknown coefficients, and setting the 
coefficient of mechanical and electrical  , , , , ,b su v w w      to zero, separately, the nonlocal governing equations 

of sandwich nanoplate resting on elastic foundation under an electrical field in terms of the displacement can be 
derived as follows:
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3    SOLUTION PROCEDURE OF SIMPLY-SUPPORTED NANO-PLATE   

It is necessary to define the electrical field and five mechanical displacements, before detailing the solution 
procedure. Hence, according to Navier's solution procedure, an analytical method is used to solve the motion 
equations. To achieve this, six unknown functions can be assumed employing trigonometric functions in terms of 
the double-Fourier series as follows [14,63]:
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(61)

In this Eq., the unknown coefficients are defined as  , , ,, ,mn mn bmn smn mn mnU V W W   . Also m a  and 

n b  are constant coefficients related to the mode numbers ( , )m n in x and y directions, respectively. 

Substituting the admissible displacement functions of Eq. (61) into the equation of motion, one obtains the analytical 
solution for buckling analysis of sandwich nano-plate with FG core and piezoelectric face-sheets in the following 
matrix form:

      0mnK S  
(62)

It should be noted that the  mn describes unknown coefficients and also  K and  S represents the stiffness 

and in-plane forces matrixes. To determine the critical buckling load versus different changing parameters, it is 
necessary to analyze the behavior of the structure under different conditions. Hence, one must calculate the 
determinant of the coefficient matrix in Eq. (62) and set it to zero. Finally, the critical buckling load is identified as 
the smallest eigenvalue obtained from this calculation.

    det 0K S 
(63)

4   NUMERICAL RESULTS AND DISCUSSION

The numerical results highlight the bi-axial buckling behavior of an FG nano-plate integrated with piezoelectric 
face sheets, utilizing surface piezoelasticity theory. In the subsequent examples, the FG nano-plate is assumed to 
consist of aluminum and alumina [52,64]. Conversely, the piezoelectric face sheets are considered to be composed 
of materials whose bulk and surface properties [60]. The following analyses use common values for consistency.
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Table 1
Comparison of the buckling load of FG plate for various power-law index

k Model
Axial/Bi-

axial

Non-dimensional critical buckling load

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0

Ref. [52]
Axial

13.00552 13.00552 13.00552 13.00552 13.00552 13.00552

Present Model 13.00552 13.00552 13.12398 13.00552 13.07977 13.00552

Ref. [52]
Bi-axial

6.50276 6.50276 6.50276 6.50276 6.50276 6.50276

Present Model 6.50326 6.50425 6.56199 6.50276 6.53988 6.50280

1

Ref. [52]
Axial

5.16629 5.83941 6.19371 6.46450 6.94952 7.50719

Present Model 5.16712 5.84012 6.21936 6.46750 6.96728 7.50991

Ref. [52]
Bi-axial

2.58315 2.91970 3.09686 3.23225 3.47476 3.75359

Present Model 2.58317 2.92010 3.10968 3.23245 3.48364 3.75652

5

Ref. [52]
Axial

2.65679 3.04141 3.40280 3.57873 4.11157 4.73463

Present Model 2.65600 3.04527 3.41752 3.57900 4.12120 4.73785

Ref. [52]
Bi-axial

1.32839 1.52071 1.70140 1.78937 2.05578 2.36731

Present Model 1.32840 1.52070 1.70876 1.79136 2.06060 2.37011

10

Ref. [52]
Axial

2.48574 2.74498 3.09111 3.19373 3.70686 4.27964

Present Model 2.48998 2.74652 3.10632 3.19993 3.71037 4.28215

Ref. [52]
Bi-axial

1.24287 1.37249 1.54556 1.59687 1.85343 2.13982

Present Model 1.24381 1.37989 1.55316 1.60120 1.85915 2.14001

To ensure the validity and accuracy of the model used, a comprehensive comparison is essential. Consequently, 
the accuracy of the presented plate theory and appropriateness of  the solution approach are assessed by simulating 
the response of the dimensionless buckling load of the sandwich plate  with different thickness ratios as presented in 
Table 1 [50]. In addition, Fig. 3 presents a comparison study of bi-axial normalized buckling load of the FG  simply 
supported square plate according to the ratio of the length to the thickness of structure. It can be seen that the critical 
buckling loads decrease as the material index increases. Conversely, the length-to-thickness ratio positively impacts 
the critical buckling loads, enhancing the structure's stability. It is evident from Table 1 and Fig. 3 that the  numerical 
results have excellent agreements with the obtained results in available references [50]. On the  other hand, a 
comparison of nondimensional critical buckling load for square plate under different the material index and length-
to-thickness ratio is presented in Table 2. In this Table, the results based on the various  theories with the present 
model have been examined according to length-to-thickness ratio and power low index.  Table 2 shows that there is a 
good agreement between the existing  results and the proposed model under various loading conditions.
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Fig. 3
Effects of material index on the critical buckling loads of simply supported square plate versus length-to-thickness ratio
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Table 2
Comparison of the buckling load of FG plate for various power-law index

k a H
Model

Ref. [65] Ref. [37] Ref. [38] Ref. [55] Ref. [63] Ref. [64]
Present 
Model

0.1

5 2.8905 2.8949 2.9028 2.9287 2.9003 2.8946 2.9910

10 3.3470 3.3484 3.3513 3.3682 3.3502 3.3515 3.4591

20 3.4983 3.4986 3.4991 3.5068 3.4990 3.5010 3.6002

50 3.5502 3.5502 3.5502 3.5518 3.5503 3.5508 3.6419

0.5

5 2.4143 2.4180 2.4246 2.4459 2.4225 2.4176 2.5157

10 2.7949 2.7961 2.7985 2.8123 2.7976 2.7985 2.8956

20 2.9207 2.9209 2.9214 2.9276 2.9213 2.9229 3.0095

50 2.9638 2.9638 2.9638 2.9651 2.9638 2.9643 3.0430

2

5 2.0003 2.0024 2.0077 2.0249 2.0059 2.0031 2.0300

10 2.3518 2.3525 2.3546 2.3660 2.3538 2.3549 2.3621

20 2.4694 2.4695 2.4699 2.4752 2.4698 2.4713 2.4631

50 2.5097 2.5097 2.5097 2.5109 2.5097 2.5102 2.4930

10

5 1.6878 1.6910 1.6966 1.7125 1.3949 1.6898 1.7334

10 1.9929 1.9940 1.9962 2.0064 1.9954 1.9954 2.0474

20 2.0956 2.0958 2.0963 2.1011 2.0962 2.0972 2.1449

50 2.1310 2.1310 2.1310 2.1321 2.1311 2.1314 2.1739

The size-dependent behavior of FG nano-plate based on the thickness-to-length ratio and the  material 
characteristic parameter is  shown in Fig. 4.  As the thickness-to-length ratio increases, the critical buckling load 
generally increases for all values of length scale parameters. On the other hand, the curves for different values of 
length scale parameters appear to diverge, indicating that higher values of length scale parameters led to greater 
critical buckling loads. The length scale parameter is vital in estimating the critical load values of nanostructures. As 
discussed in the mathematical modeling section, this study applies the parameter using NSGT. Increasing the length 
scale parameter enhances the structure's stiffness and raises the critical load, thus improving the structure's static 
stability. The inclusion of the length scale parameter leads to an increase in  the critical buckling load of the FG 
nano-plate, especially in the higher thickness-to-length ratios. Increasing the thickness-to-length ratio in structures 
generally enhances their stiffness and strength. This increase in thickness relative to length raises the structure's 
resistance to bending forces and compressive loads, which in turn reduces the likelihood of buckling in the system. 
As a result, structures can withstand higher loads without undergoing unstable deformations. Essentially, this change 
boosts the overall stability and resistance of the structure against sudden and variable loads.

The relationship between the critical buckling load and the ratio of thickness to length for different values of 
nonlocal parameters are shown in Fig. 5. The nonlocal parameters exhibit a stiffness-softening influence on FG 
nano-plate structures. Applying non-local theory reduces the critical buckling load of FG nano-plates. Increasing the 
nonlocal parameter decreases the stiffness of the sandwich nano-plate, thereby lowering its critical buckling load. 
This trend suggests that increasing the thickness-to-length ratio enhances the load-bearing capacity of the structure, 
which is crucial for design considerations in engineering applications. This graph indicates that the critical buckling 
load is positively correlated with the nonlocal parameter, meaning that as nonlocality increases, the structural 
resistance to buckling also increases. This type of analysis is important in fields such as structural engineering and 
materials science, where understanding the stability and load-bearing capacity of structures is crucial. As can be 
seen from Figs. 4 and 5, the influence of the nonlocal parameter and the length scale coefficient due to the 
consideration of the NSGT is more prominent in higher ratios of the thickness to the length of the nanostructure.
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Fig. 4
Effects of thickness-to-length ratio on the buckling load for various length scale parameters.
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Fig. 5
Effects of the thickness-to-length ratio on the critical buckling load concerning different nonlocal parameters.

Fig. 6 shows the buckling results of FG nano-plate various length-to-width ratios and the core-to-face-sheets 
thickness, simultaneously. It is evident that maintaining a constant total thickness alongside the core's 
nonhomogeneous parameter results in a thicker core, which inevitably reduces the thickness of the piezoelectric 
layer. Since the stiffness of the core is significantly greater than that of the piezoelectric face sheets, an increase in 
core thickness enhances the overall structural stiffness, thereby elevating the critical load capacity. Conversely, an 
increase in the length-to-width ratio of the nano-plate exerts a profound influence on the reduction of the nano-
plate's stiffness, which subsequently diminishes the buckling load. Generally, elongating the structure about its 
width alters its geometric configuration and ultimately modifies the behavior of the nano-sandwich plate. As the 
length-to-width ratio of the nano-plate increases, the structural response increasingly resembles that of a beam 
model, leading to a reduction in the variability of buckling behavior in this state. Increasing the length-to-width ratio 
of a structure significantly reduces its stiffness. This reduction in stiffness makes the structure less resistant to 
compressive loads, leading to a decrease in buckling load. Essentially, as the length increases relative to the width, 
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the overall shape of the structure changes, and its behavior tends to resemble that of a beam. In this state, the 
changes in buckling behavior also diminish. Greater length compared to width makes the structure generally more 
flexible and sensitive to compressive forces. 
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Fig. 6
Critical buckling load of FG sandwich nanoplate versus aspect ratio for various core-to-face-sheet thicknesses ratio.

Fig. 7 examines the influences of the thickness ratio on size-dependent critical buckling  load of non-local 
sandwich nano-plate via versus gradient index parameter according to the refined plate theory. The essential load 
increases with the increasing value of the  thicknesses of face sheets.    According to this figure, an increase in the 
power-law index leads to an increase/decrease in metallic/ceramic properties along the thickness of the  structure. 
Due to the lower elastic modulus and as a result the stiffness of the metal material compared to the  ceramic material, 
the rigidity of the core is reduced and as a result, the critical load of the structure is reduced. According to the 
material considered for the FG core, decreasing the thickness of  the core compared to the total thickness leads to    an 
increase in the stiffness of the structure and an improvement in  the critical load. The results indicate that increasing 
the power index has minimal impact on essential changes of load, despite the increase in the ratio of thicknesses.
The simultaneous investigation of the influences of the length-to-width ratio of the nanoplate as well as the core-to-
total thickness ratio on the static stability behavior of the three-layer FG nanoplate considering different gradient 
index is presented in Table 3. As the value of the gradient index increases, the critical buckling load tends to 
increase for most configurations and parameter values. Different configurations (e.g., (1,1), (1,2), (2,2)) show 
varying responses to changes in the gradient index and the other parameters, indicating that the structural 
characteristics are sensitive to these variables. This table provides valuable insights into how different configurations 
and parameters affect the critical buckling load, which is essential for designing stable structures. Understanding 
these relationships can help in optimizing materials and geometries for better performance under load.
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Fig. 7
Influence of the face sheet-to-core thickness ratio on critical buckling load of nanoplate with respect gradient index.

Table 3
Buckling critical load of FG nanoplate based on aspect ratio considering power index and different wave numbers 

nondimensional-dimensional

( , )m n a b ch H
k

1 2 5 10

(1,1)

2

0.5 15.64350634 15.60132555 15.54776962 15.51090450

0.6 17.25490354 17.12981230 16.97903363 16.87645336

0.75 25.82962251 24.90650709 23.87214729 23.23813339

5

0.5 15.49193132 15.45859392 15.41691875 15.38797133

0.6 16.87143167 16.77151698 16.65318329 16.57176205

0.75 24.22568562 23.47844273 22.65552815 22.14196354

10

0.5 15.47779502 15.44563243 15.40550753 15.37760413

0.6 16.82504462 16.72852869 16.61447763 16.53588029

0.75 24.00634458 23.28334972 22.48888969 21.99178808

(1,2)

2

0.5 20.08414769 19.81139008 19.42623867 19.18583476

0.6 25.01041060 24.30725170 23.34285931 22.76068580

0.75 48.42747023 44.33706612 39.20202250 36.55772686

5

0.5 19.83400568 19.57862913 19.21808933 18.99232956

0.6 24.58392001 23.92337575 23.01741112 22.46804026

0.75 47.23690701 43.35998972 38.48410476 35.95672702

10

0.5 19.79878747 19.54583360 19.18872395 18.96501308

0.6 24.52356958 23.86899872 22.97121827 22.42646336

0.75 47.06631604 43.21973897 38.38065813 35.86998848

(2,2)

2

0.5 21.01428752 20.67387514 20.19304902 19.89652875

0.6 26.57009320 25.70441803 24.51717843 23.81205051

0.75 52.59241212 47.72970942 41.65767444 38.60047000

5

0.5 19.97621015 19.71099092 19.33651401 19.10244957

0.6 24.8268220 24.14209532 23.20298211 22.63496900

0.75 47.9180978 43.91940982 38.89573475 36.30152732
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10

0.5 19.83400568 19.57862913 19.21808933 18.99232956

0.6 24.58392001 23.92337575 23.01741112 22.46804026

0.75 47.23690701 43.35998972 38.48410476 35.95672702

Fig. 8 illustrates the size-dependent behavior of sandwich FG nanoplate with piezoelectric face sheets based on 
the  surface elasticity theory and quasi-3D theory according to the ratio of the width to the length of the structure. As 
the results show, considering the effects of the surface increases the stiffness of the structure and  thus increases the 
criticality of the structure. The results indicate that the decreasing trend is more pronounced at lower width-to-length 
ratios. This is because the presence of surface elasticity enhances flexural rigidity. In other words, considering 
surface piezoelectricity makes the nano-plate stiffer, which increases the critical load. The findings highlight that 
surface effects significantly impact the critical buckling load and should not be overlooked. This information is 
crucial for understanding the stability of structures under various loading conditions and geometric configurations.
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Fig. 8
Variation of critical buckling load FG sandwich piezoelectric nanoplate based on surface effect parameters.

The impact of the stretching effect alongside the effect of the thickness-to-length ratio on the critical  buckling 
load of non-local FG nano-plates resting on an elastic foundation is illustrated in Fig. 9. It’s evident  from the figure 
that accounting for the stretching effect decreases the critical buckling load. It can be seen from the comparison of 
the two presented models that at low thickness-to-length ratios, both models predict similar outcomes. However, as 
this ratio increases, their predictions diverge significantly. This indicates that the quasi-3D model, which includes 
more detailed parameters, provides more realistic results compared to the simplified 2D model. This means that 
when the stretching effect is considered, the structure becomes less capable of withstanding buckling under pressure. 
The stretching effect is directly related to the thickness of the nano-plate. As the thickness increases, the influence of 
the stretching effect becomes more pronounced, affecting the overall stiffness and critical load. In essence, the 
adjustments made in the quasi-3D model incorporate more complex factors, leading to more accurate predictions of 
the structure's behavior under stress, particularly as the thickness-to-length ratio changes. This improved modeling 
accounts for the real-world influences of surface elasticity and stretching, providing a deeper understanding of how 
these factors affect the nano-plate's stability.

Fig. 10 depicts the relationship between the critical buckling load, boundary conditions, and the ratio of 
thickness to the width of the sandwich nanoplate. The CCCC condition exhibits the highest critical buckling load at 
any given thickness�to�width ratio  value, followed by CSCS and then SSSS, indicating that the boundary 
conditions significantly influence the stability of the structure. Fully Supported condition shows the highest critical 
buckling load because all edges are fully supported, which increases resistance to buckling. CSCS and SSSS 
boundary conditions bear lower loads, as some edges are free, reducing stiffness and increasing the likelihood of 
buckling. As the ratio thickness�to�width ratio changes, the stress distribution in the member also varies. In cases 
with greater height, compressive stresses are distributed more uniformly, leading to higher critical loads. On the 
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other hand, the overall stiffness of a member depends on its dimensions and boundary conditions. An increase in the 
thickness�to�width ratio usually leads to increased stiffness and, consequently, higher critical loads. With higher 
critical loads, the likelihood of buckling decreases, indicating enhanced stability of the structure.

C
ri

tit
ic

al
 B

u
ck

lin
g 

L
oa

d 
(N

/m
)

Fig. 9
Response of buckling load versus thickness-to-length ratio with and without stretching effect.

The behavior of critical load of non-local FG nano-plate with piezoelectric face-sheets based on quasi-3D theory 
according to the versus boundary conditions, face sheet-to-total thickness ratio, and applied initial voltage is 
presented in Table 4. The results show that the fully clamped boundary condition consistently shows the highest 
critical buckling loads across all configurations and loading conditions. The clamping provides maximum resistance 
to buckling, leading to higher loads before failure. As the face sheet-to-total thickness ratio increases from 0.1 to 
0.25, the critical buckling loads generally increase across all boundary conditions. This trend indicates that the 
structural capacity before buckling occurs is enhanced at the higher face sheet-to-total thickness. The data indicates 
that as the initial voltage increases from -20 to 20, the critical buckling loads tend to increase.  Applying an initial 
electric load to a structure can significantly affect its behavior, particularly in nanostructures. An initial electric load 
can enhance the stiffness of structures like piezoelectric nanoplates. This increased stiffness is due to the internal 
stresses generated by the electric load, which improves the structure's resistance to deformation. The initial electric 
load can significantly influence the stability of the structure. It may either enhance or diminish the stability against 
external loads. In some cases, a higher initial electric load can reduce the critical buckling load, thereby decreasing 
stability.
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Fig. 10
The effect of boundary conditions and also thickness�to�width ratio on the buckling critical load of FG nanostructure

Table 4
The effect of boundary conditions, the thickness of face sheets, and the applied initial voltage on the critical buckling load

B.C. ( , )m n ph H
0V

-20 -10 0 10 20

SSSS

(1,1)

0.1 65.90192 55.70192 45.50192 35.30192 25.10192

0.15 78.79441 68.59441 58.39441 48.19441 37.99441

0.25 132.95641 122.75641 112.55641 102.35641 92.15641

(1,2)

0.1 117.17352 106.97352 96.77352 86.57352 76.37352

0.15 143.06258 132.86258 122.66258 112.46258 102.26258

0.25 221.48013 211.28013 201.08013 190.88013 180.68013

(2,2)

0.1 125.27303 115.07303 104.87303 94.67303 84.47303

0.15 152.04917 141.84917 131.64917 121.44917 111.24917

0.25 228.11377 217.91377 207.71377 197.51377 187.31377

CSCS

(1,1)

0.1 101.54946 91.34946 81.14946 70.94946 60.74946

0.15 123.89589 113.69589 103.49589 93.29589 83.09589

0.25 200.28946 190.08946 179.88946 169.68946 159.48946

(1,2)

0.1 162.06379 151.86379 141.66379 131.46379 121.26379

0.15 189.95935 179.75935 169.55935 159.35935 149.15935

0.25 249.14204 238.94204 228.74204 218.54204 208.34204

(2,2)

0.1 164.35334 154.15334 143.95334 133.75334 123.55334

0.15 191.22004 181.02004 170.82004 160.62004 150.42004

0.25 255.72407 245.52407 235.32407 225.12407 214.92407

CCCC

(1,1)

0.1 116.06930 105.86930 95.66930 85.46930 75.26930

0.15 141.02614 130.82614 120.62614 110.42614 100.22614

0.25 219.95131 209.75131 199.55131 189.35131 179.15131

(1,2)

0.1 170.98038 160.78038 150.58038 140.38038 130.18038

0.15 198.54340 188.34340 178.14340 167.94340 157.74340

0.25 255.40453 245.20453 235.00453 224.80453 214.60453

(2,2) 0.1 172.09450 161.89450 151.69450 141.49450 131.29450
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0.15 198.60430 188.40430 178.20430 168.00430 157.80430

0.25 261.67325 251.47325 241.27325 231.07325 220.87325

Fig. 11 illustrates the influence of surface effect on the size-dependent behavior of nano-sized plates based on 
refined plate theory. This Fig. indicates that surface effects play a significant role in improving the structural 
stability against buckling. As the ratio of thickness to the length increases, the impact of these surface effects 
becomes more pronounced, leading to higher critical loads. The presence of surface elasticity often leads to higher 
flexural rigidity in nano-sized sandwich structures. This means the structure becomes stiffer, which can increase its 
resistance to buckling. At the nanoscale, the surface area to volume ratio is much higher compared to macroscale 
structures. This results in surface effects becoming more pronounced. These effects can alter the mechanical 
properties of the materials involved, such as increasing the effective modulus of elasticity, which impacts the critical 
buckling load. The surface effects generally enhance the stiffness of the nano-sandwich structures, which in turn 
increases their stability. This means that the structures can sustain higher loads before buckling occurs. In general, 
surface effects are crucial in determining the buckling behavior of nano-sized sandwich structures, significantly 
impacting their stiffness, stability, and overall mechanical performance. Understanding and accurately modeling 
these effects are essential for the design and analysis of reliable nanoscale structures.
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Fig. 11
Critical buckling load of the sandwich structure considering surface effects for various thickness�to�length ratios.

The non-local buckling behavior of the three-layer sandwich structure with FG core and piezoelectric layers 
based on the ratio of core thickness to length is presented in Fig. 12 to investigate the influence of the position of the 
neutral plane. The graph indicates that considering the neutral plane enhances the structural stability against 
buckling. As the core thickness-to-length ratio increases, the impact of this condition becomes more pronounced, 
leading to higher critical loads. This is because the core contributes to the load-bearing capacity and distributes 
stress more effectively across the structure. Overall, a thicker core improves the stability of FGMs. It helps in 
maintaining structural integrity under various load conditions, thus increasing the safety and reliability of the 
material in practical applications. The neutral plane acts as the axis where the compressive and tensile stresses are 
balanced. By balancing the internal stresses, the neutral plane increases the stability of the structure, making it more 
resistant to buckling and other forms of structural failure.
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Fig. 12
The influence of neutral plate location and core thickness on buckling of sandwich nanoplate.
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Fig. 13
Variation of buckling response concerning various thickness ratios and applied primary voltage.

The variations of buckling response sandwich nanoplate via piezoelectric face sheets subjected to an  electric 
potential are investigated in Fig. 13 versus the electrical preload and thickness ratio. This Fig. shows that increasing 
the ratio of the thickness of the piezoelectric layers to the thickness of the FG core in a sandwich structure affects its 
buckling behavior significantly. A thicker piezoelectric face sheet compared to the FG core enhances the overall 
stiffness of the structure. This is because the face sheets, being more rigid, bear a larger portion of the load, thus 
increasing the structure's resistance to deformation. Based on Fig., electrical preloads can be categorized as tensile 
and compressive forces. The introduction of these preloads, influenced by external voltage, generates prestresses 
within the structure. When a negative voltage is applied, the stiffness of the structure increases, enhancing its static 
stability. Conversely, with a positive initial voltage, the stiffness diminishes, leading to a reduction in the structure's 
critical load. 

The influence of the gradient index and the position of the neutral plane in the sandwich structure with a FG core 
is presented in Figure 14. In FGMs, the neutral surface shifts due to this non-uniform distribution, which can affect 
the mechanical performance of the material. The position of the neutral axis influences the overall strength and 
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stability of the material. If the neutral axis shifts toward a layer with a lower elastic modulus, it may lead to a 
decrease in strength and an increased risk of failure. In the design of structures such as composites, ceramics, and 
metals, understanding the impact of the neutral axis can help optimize performance and increase their lifespan. 
Additionally, Fig. 14 illustrates an increase in the power-law index, which affects the metallic and ceramic 
properties across the thickness of the structure. The lower elastic modulus of the metal compared to the ceramic 
results in reduced stiffness in the core, consequently lowering the critical load that the structure can withstand.
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Fig. 14
Effects of gradient index and position of the neutral surface on the buckling load of nanoplate.

The effect of simultaneous initial voltage and gradient index on the buckling of a three-layer nanostructure 
consisting of a FG core and piezoelectric face sheets under an electric field is shown in Figure 15. The combined 
effects of initial voltage and gradient index can significantly influence the behavior of a structure, particularly in 
nanoscale and smart materials like FG and piezoelectric materials. Applying an initial voltage creates an electric 
field within the piezoelectric material. This field interacts with the mechanical properties, affecting the overall 
stiffness and stability of the structure. The presence of an initial voltage can either increase or decrease the critical 
buckling load, depending on the polarity and magnitude of the voltage. A higher gradient index typically means 
more significant variations in material properties, leading to more pronounced changes in stiffness and deformation 
behavior under the applied voltage.

Table 5 shows the numerical results of the buckling of the FG nanoplate by considering the surface effects 
according to the parameters related to the NSGT. In this table, the simultaneous effect of length scale parameters, 
non-local parameters, location of the neutral surface for the FG core, and surface effects are investigated. The 
combination of these factors creates a complex interplay that influences the overall mechanical behavior of the 
structure. Each parameter contributes to the stability, stiffness, and critical load capacity in different ways.
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Fig. 15
The variations of buckling response versus power low index and primary applied voltage.

Table 5
Comparison of the critical buckling load of the nanoplate versus surface and NSGT effects

( )nm Surface Effect 0z
( )nm

1 2 3 4

1

With Surface Effect
0 0z  35.1041499 29.7281064 24.9584852 21.6051111

0 0z  35.0418850 29.6812718 24.9253403 21.5815912

Without Surface Effect
0 0z  27.6381538 24.1123129 20.9841899 18.7849028

0 0z  27.5938679 24.0790018 20.9606156 18.7681742

2

With Surface Effect
0 0z  42.2527191 35.1051368 28.7638079 24.3054145

0 0z  42.1686281 35.0418850 28.7190446 24.2736499

Without Surface Effect
0 0z  32.3256329 27.6381538 23.4794264 20.5555530

0 0z  32.2667563 27.5938679 23.4480852 20.5333129

3

With Surface Effect
0 0z  54.1670011 44.0668542 35.1060124 28.8059201

0 0z  54.0465332 43.9762403 35.0418850 28.7604145

Without Surface Effect
0 0z  40.1380979 33.5145553 27.6381538 23.5066367

0 0z  40.0549037 33.451978 27.5938679 23.4752108

4

With Surface Effect
0 0z  70.8469959 56.6132585 43.9850987 35.1066280

0 0z  70.6756005 56.4843378 43.8938616 35.0418850

Without Surface Effect
0 0z  51.0755491 41.7415173 33.4603722 27.6381538

0 0z  50.9583100 41.6533321 33.3979636 27.5938679

Fig. 16 depicts the critical buckling load of a square FG nano-plate for various elastic foundations according to 
the nonlocal refined plate theory. The results presented in this Fig. are extracted in the case that the surface area of 
the sandwich nanoplate is assumed to be constant. The ratio of the length to the width of the structure is considered a 
fixed value. As the results show, the lowest critical buckling load corresponds to the case where the structure is 
considered square. An elastic foundation provides additional support to the sandwich structure, which enhances its 
overall stability. The elastic foundation acts as a cushion that absorbs and redistributes applied loads, leading to 
better stress distribution within the structure. This can help mitigate the concentration of stresses in particular areas, 
which are common precursors to buckling. The figure illustrates that the buckling load of the rectangular nano-plate 
increases when an elastic medium is considered. It indicates that the highest critical buckling load is associated with 
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the orthotropic medium. This is because the Orthotropic Pasternak model effectively accounts for both transverse 
shear and normal loads of the elastic medium, while also accommodating an arbitrarily oriented foundation. It is 
evident that choosing the appropriate elastic medium is crucial for system stability, as it enhances the stiffness and 
overall stability of the system.

The influence of the shear layer coefficient of the Pasternak foundation on the buckling behavior of nanoplate 
based on refined NSGT is shown in Fig. 17. The results illustrate that this parameter significantly affects the 
buckling behavior and overall stability of structures. The shear layer in the Pasternak foundation provides additional 
shear resistance to the structure, which helps in distributing shear stresses more effectively. With higher shear layer 
coefficients, the structure can support higher critical buckling loads. The shear layer also contributes to damping out 
vibrations, which can further stabilize the structure under dynamic loading conditions.

Fig. 16
The effect of different foundations on the critical buckling load of FG sandwich nanoplate
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Fig. 17
The effect of various foundation shear layers on critical buckling load of nonlocal sandwich nano-plate 

The influences of the orientation of the shear layer and orthotropic angle of foundation on the  buckling responses 
of non-local plate integrated with two piezoelectric layers considering surface effect and NSGT are presented in 
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Figs. 18 and 19. The shear layer in the foundation provides additional resistance to shear forces, improving the 
structural stiffness. Orthotropic materials have different stiffness in different directions. Changing the orthotropic 
angle affects the stiffness and strength of the structure in specific directions. By tailoring the orthotropic angle, the 
load-bearing capacity can be maximized in desired directions, enhancing the overall performance of the structure. 
Accordingly, the selection of appropriate elastic medium parameters plays a crucial role in enhancing the stability 
and performance of the nano-plate.

Investigating the buckling behavior of sandwich structure with FG core and piezoelectric face sheets considering 
the NSGT based on different parameters of the foundation are comprehensively studied in Table 6. The elastic 
medium parameters significantly affect the critical buckling load. As these parameters increase, the critical buckling 
load also rises. This is because the elastic medium can act as a supporting factor, increasing resistance to 
deformation and failure.
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Fig. 18
The effect of orthotropic angle and shear coefficient of foundation on the buckling behavior of the structure
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The critical buckling load of the three-layer structure based on the orthotropic foundation according to the orthotropic 
angle and different parameters of the shear layer
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Table 6
Numerical investigation of buckling load based on different parameters of the orthotropic Pasternak foundation.

3( / )wK N m ( / )gxK N m ( / )gyK N m


0 6 4 3 2

1610*10

5

5 32.60 32.60 32.60 32.60 32.60

10 36.60 35.85 35.10 34.35 33.60

20 44.60 42.35 40.10 37.85 35.60

10

5 33.60 34.35 35.10 35.85 36.60

10 37.60 37.60 37.60 37.60 37.60

20 45.60 44.10 42.60 41.10 39.60

20

5 35.60 37.85 40.10 42.35 44.60

10 39.60 41.10 42.60 44.10 45.60

20 47.60 47.60 47.60 47.60 47.60

1620*10

5

5 33.41 32.60 33.41 33.41 33.41

10 37.41 35.85 35.91 35.16 34.41

20 45.41 42.35 40.91 38.66 36.41

10

5 34.41 34.35 35.91 36.66 37.41

10 38.41 37.60 38.41 38.41 38.41

20 46.41 44.10 43.41 41.91 40.41

20

5 36.41 37.85 40.91 43.16 45.41

10 40.41 41.10 43.41 44.91 46.41

20 48.41 47.60 48.41 48.41 48.41

1630*10

5

5 34.23 34.23 34.23 34.23 34.23

10 38.23 37.48 36.73 35.98 35.23

20 46.23 43.98 41.73 39.48 37.23

10

5 35.23 35.98 36.73 37.48 38.23

10 39.23 39.23 39.23 39.23 39.23

20 47.23 45.73 44.23 42.73 41.23

20

5 37.23 39.48 41.73 43.98 46.23

10 41.23 42.73 44.23 45.73 47.23

20 49.23 49.23 49.23 49.23 49.23

5    CONCLUSIONS

In this study, an analytical solution based on a refined plate theory is developed to investigate the size-dependent 
buckling behavior of FG nano-plates integrated with piezoelectric face sheets resting on the orthotropic elastic 
medium by considering neutral surface position and surface effects. Eventually, the governing equations of the 
structure are derived by applying the theory of non-local strain gradient and considering the stretching effect by 
employing Hamilton's principle. The accuracy and efficiency of the present approach are validated through a review 
of comparison studies. The influences of several parameters such as thickness ratio, aspect ratio, power low index, 
orthotropic foundation, length scale and nonlocal parameters, surface effect, the position of the neutral surface, 
initial applied voltage, and various boundary conditions are examined on buckling responses of the three-layered 
nanoplate. The results revealed that increasing the thickness-to-length ratio generally enhances the critical buckling 
load due to improved structural stiffness and strength. 

Additionally, the shear layer coefficient plays a significant role in enhancing shear resistance and distributing 
stresses, which supports higher critical buckling loads and contributes to vibration damping under dynamic 
conditions. The study also highlights the importance of boundary conditions, where fully clamped configurations 
yield the highest resistance to buckling. The relationship between the face sheet-to-total thickness ratio and 
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structural capacity further underscores the significance of these parameters in ensuring stability. The role of surface 
effects becomes more pronounced with increasing thickness-to-length ratios, leading to higher critical loads. The 
position of the neutral plane is also crucial for balancing internal stresses and enhancing stability against buckling. 
Overall, this research provides valuable insights for optimizing the design and analysis of nanostructured materials, 
emphasizing the need to consider various parameters to achieve superior structural performance and resilience under 
diverse loading conditions. Understanding these relationships is essential for advancing the development of stable 
and reliable nano-scale structures in engineering applications.
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