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 ABSTRACT 

 In this article, dynamic stability analysis of bi-directional 

functionally graded materials (BDFGMs) beam rested on visco-

Pasternak foundation under harmonic excitation is studied. Also, 

BDFGMs beam is subjected to a transversely uniformly distributed 

temperature rising and it is assumed that the material properties to 

be temperature-dependent. According to the exponential and power 

law distributions, thermo-mechanical properties of BDFGMs beam 

vary continuously in both the thickness and longitudinal directions. 

Based on various shear deformation theories (e.g. Euler-Bernoulli, 

Timoshenko, third order shear deformation and sinusoidal shear 

deformation theories), the stability equations of BDFGMs beam is 

derived by applying the Hamilton's principle. The generalized 

differential quadrature method (GDQM) in conjunction with the 

Bolotin method is utilized to solve the differential stability 

equations under SS, SC and CC boundary conditions. To validate 

the present analysis, a comparison study is carried out with the 

results found in the literature and a good agreement is observed 

compared to the reported results. Finally, numerical results are 

presented to study the influences of the gradient index, length-to-

thickness ratio, temperature rise and foundation parameters on the 

dynamic stability region of BDFGMs beam. The results of 

presented paper can be used to the optimal design and assessment 

of the structural failure. 

                                  © 2022 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

UNCTIONALLY graded materials (FGMs) were first proposed in 1984 by a group of Japanese scientists in 

Sendai and very soon have become very popular in research and engineering applications. These materials are 
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made of two (or more) different materials which their properties vary continuously in desired directions. Due to the 

high resistance heat capacity of ceramic and good mechanical properties of metal, FGMs structures composed of 

these two materials are widely used in high temperature applications, such as the spacecraft, nuclear reactors or 

structures for the chemical industry and defence. Also, these structures are often under the different types of 

dynamic loads, among which the periodically time-varying force may cause dynamic instability through parametric 

resonance. Thus, a comprehensive research about the dynamic stability characteristics of FGMs structures in thermal 

environments is a matter of considerable importance for the optimal design and assessment of the structural failure. 

The dynamic response of ordinary FGMs beams under dynamic loads has been widely studied by many researchers. 

Li [1] presented a unified approach for analyzing static and dynamic behaviors of FG Timoshenko and Euler–

Bernoulli beams. He assumed that all material properties are arbitrary functions along the beam thickness. Piovan 

and Machado [2] considered thermo-elastic dynamic stability of FG thin-walled beams subjected to axial external 

dynamic loading. They used Galerkin's and Bolotin's methods with the scope to discretize the equations of motion 

and to obtain the regions of dynamic stability, respectively. Mohanty et al. [3] investigated the dynamic stability of 

ordinary FG beam and FG sandwich beam on Winkler's elastic foundation using finite element method (FEM). They 

considered that the material properties vary continuously based on exponential and power law. Yan et al. [4] studied 

the dynamic response of FG beams with an open edge crack resting on an elastic foundation subjected to a 

transverse load moving at a constant speed. By applying an exponential variation for material properties through the 

thickness direction, they derived the governing equations of motion by using Hamilton’s principle. Based on the 

modified couple stress theory (MCST), dynamic stability of micro-beams made of FGMs were investigated by Ke 

and Wang [5]. They estimated the material properties of FGM microbeams along the thickness direction according 

to the Mori–Tanaka homogenization technique and obtained the higher-order governing equations and boundary 

conditions using the Hamilton’s principle. Şimşek et al. [6] presented linear dynamic analysis of an axially FG beam 

with simply-supported edges under a moving harmonic load using Euler–Bernoulli beam theory. They employed 

Newmark method to find the dynamic responses of FG beam and discussed about the effects of material distribution, 

velocity of the moving load and excitation frequency on dynamic behavior of these system. Salamat-talab et al. [7] 

developed MCST to analyze the static and dynamic stability of third-order shear deformation FG micro-beam. 

While the Poisson’s ratio is constant, they assumed that mechanical properties of the FG micro beam follow a power 

law form through thickness. Yan et al. [8] investigated the nonlinear flexural dynamic behavior of a clamped FGMs 

beam with an open edge crack under an axial parametric excitation which is a combination of a static compressive 

force and a harmonic excitation force. They derived the nonlinear partial differential equations based on 

Timoshenko shear deformable beam theory, von Karman type geometric nonlinearity, and rotational spring model. 

Dynamic analysis of FG nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of 

moving load were studied by Yas and Heshmati [9]. They utilized the Eshelby–Mori–Tanaka approach based on an 

equivalent fiber to estimate the material properties of the beam. Zamanzadeh et al. [10] presented a model for static 

and dynamic stability of a capacitive FGM micro-beam based on MCST. They applied the nonlinear electrostatic 

pressure and thermal changes regarding convection and radiation on beam and by changing the ceramic constituent 

percent of the bottom surface, studied five different types of FGM micro-beams. Nguyen et al. [11] analyzed the 

dynamic response of non-uniform FG beams under a variable speed moving point load via FEM. They considered 

the influences of shear deformation, cross-sectional variation and the shift in the neutral axis position and formulated 

a beam element by using exact polynomials derived from solutions of the governing differential equations of a 

homogeneous Timoshenko beam element. Dynamic response of Timoshenko FG beams with classical and non-

classical boundary conditions were investigated by Wattanasakulpong and Mao [12] using Chebyshev collocation 

method. They defined material composition across the beam thickness according to different mathematical models 

such as the power law, exponential and Mori–Tanaka models. Nonlinear dynamic buckling and imperfection 

sensitivity of the FGM Timoshenko beam subjected to sudden uniform temperature rise were presented by Ghiasian 

et al. [13]. They employed the Budiansky–Roth criterion to detect the unbounded motion type of dynamic buckling 

and observed that for beams with stable post-buckling equilibrium path, no dynamic buckling occurs according to 

the Budiansky–Roth criterion. Gan et al. [14] developed a FEM for dynamic analysis of non-uniform Timoshenko 

beams made of axially FGMs subjected to the multiple moving point loads. They assumed that the material 

properties change in the longitudinal direction according to a power law equation. Wang and Wu [15] studied 

thermal effect on the dynamic response of axially FG beam subjected to a moving harmonic load within the 

frameworks of classical beam theory and Timoshenko beam theory. They utilized the Lagrange method to obtain the 

thermal buckling equations and then, with the critical buckling temperature as a parameter, evaluated the dynamic 
response of system under thermal environments via Newmark-β method. Based on the first-order shear deformation 

theory (FSDT), Malekzadeh and Monajjemzadeh [16] investigated the dynamic response of FG beams in thermal 

environment under a moving load. They considered FEM to develop a solution approach for FG beams with general 
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loading and boundary conditions. Wu et al. [17] analyzed the dynamic instability of FG multilayer nanocomposite 

beams reinforced with a low content of graphene nanoplatelets (GPLs). They applied a periodic axial force with a 

temperature change on beam and indicated that distributing more GPLs near the top and bottom surfaces can 

effectively increase the natural frequency and reduce the size of the unstable region. By considering surface effects 

according to Gurtin-Murdoch continuum theory, Saffari et al. [18] presented the dynamic stability of FG nano-beam 

resting on Pasternak elastic medium based on nonlocal Timoshenko theory. Recently, Nguyen et al. [19] developed 

a higher-order finite beam element for dynamic analysis of FG Timoshenko beams in thermal environment using 

hierarchical functions. They considered the effect of environmental temperature in the element derivation by 

assuming that the material properties are temperature-dependent. 

However, dynamic stability analysis of bi-directional functionally graded materials (BDFGMs) beam rested on 

visco-Pasternak substrate is a novel topic that it hasn’t been found in literature. Motivated by these considerations, 

our aim is to study of thermo-mechanical dynamic stability analysis of BDFGMs beam which is placed in uniform 

temperature and harmonic excitation. It is assumed that the temperature-dependent material properties vary 

continuously in both the thickness and longitudinal directions according to the exponential and power law 

distributions. Four shear deformation beam theories include Euler-Bernoulli beam theory (EBT), Timoshenko beam 

theory (TBT), third order shear deformation beam theory (TSDT) and sinusoidal shear deformation beam theory 

(SSDT) are used to develop the governing stability equations of BDFGMs beam and solved by the generalized 

differential quadrature method (GDQM) in conjunction with the Bolotin method. 

2    BI-DIRECTIONAL FUNCTIONALLY GRADED MATERIAL (BDFGM) 

In this article, it is suggested two types of distributions include the exponential and power law models for predicting 

the material properties of BDFGM beam such as Young’s modulus E, shear modulus G, thermal expansion   and 

mass density   (except for Poisson’s ratio  ) vary in both axial and transverse directions. On the other hand, four 

different materials include two ceramics (referred to as Pc1 and Pc2) and two metals (referred to as Pm1 and Pm2) are 

selected as the constituent materials of BDFGMs beam which are shown in Fig. 1. Also, all material properties are 

considered to be temperature-dependent. Thus, a typical material property P must be a function of environment 

temperature T(K) which can be given by [20]: 
 

 c c m mP P P T P T P T P T

    1 2 3

1, 2, 1, 2 0 1 1 2 31 ,  (1) 

 

In which, P0, P-1, P1, P2 and P3 are the coefficients of constituent materials depend on the temperature. 
 

 

 

 

 

 

Fig.1 

BDFGMs beam rested on visco-Pasternak foundation under a 

harmonic axial force and thermal environment. 

2.1 Power law model 

Based on the rule of mixture, the effective material properties of BDFGM beam can be expressed as [21]: 

 

  1 1 2 2 1 1 2 2, , ,c c c c m m m mP x z T V P V P V P V P     (2) 

 

where V is the volume fraction of materials which change along the x and z axes of beam as follows: 
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In Eq. (3), zn  and xn  represent the grading indexes and indicate the variation of the constituent materials in the 

thickness and longitudinal directions, respectively. By substituting Eq. (3) into Eq. (2), the following relation can be 

obtained as: 
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 (4) 

2.2 Exponential law model 

Based on the exponential law model, the effective material properties of BDFGMs beam can be obtained from [22]: 
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 (5) 

 

Hence, in both exponential and power law models, the beam becomes homogeneous by inserting 0
x y

n n  . 

3    GEOMETRY AND GOVERNING EQUATIONS  

A BDFGMs beam with length L, width b and thickness h subjected to harmonic axial force F(t) and thermal 

environment is shown in Fig. 1 where the Cartesian coordinate system (x, z) is specified on these figure. Also, beam 

is rested on visco-Pasternak foundation includes springs ( w
K ), dampers ( d

C ) and shear layer ( G
K ). 

In this article, four shear deformation beam theories include EBT, TBT, TSDT and SSDT are selected as the 

displacement field of BDFGMs beam. In general form, the displacement field can be written as: 

 

 
 

 
,

( , , ) , ( ) ( ) , ,x

w x t
u x z t u x t f z g z x t

x



  


 (6a) 

 

   , ,, ,z x z t w xu t  (6b) 

 

where, u and w are the displacement components in the mid-plane along the coordinates x and z, respectively. Also, 

  is the rotation of the cross section about the y axis. In accordance with arbitrary shear deformation beam theories, 

functions ( )f z  and ( )g z  can be defined as: 
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EBT: ( ) ,f z z   and ( ) 0,g z   (7a) 

 

TBT: ( ) 0,f z   and ( ) ,g z z  (7b) 

 

TSDT : 
3
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4
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3

z
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h
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3

2
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z
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SSDT: ( ) ,f z z   and ( ) sin .
h

g z z
h
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
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The strain-displacement relations can be expressed as: 
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 (8) 

 

In which, xx  and xz  indicate normal and shear strains, respectively. Based on the Hook’s law, the constitutive 

equation can be written as follows: 

 

   

 

, , , , ,

, , ,

xx xx
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 (9) 

 

where xx  is normal stress and xz  is shear stresse. Also, the shear correction factor k can be obtained from: 

 

5 5

6 5
0, , 1.EBT TBT TSDBT SSDBTk k k k




 





  (10) 

 

The governing differential equations of BDFGMs beam subjected to the harmonic axial force and thermal 

environment can be derived from Hamilton’s principle [23]: 

 

 
0

0,

t

extT U W dt     (11) 

 

In which, T, U and Wext refer to the kinetic energy, the strain energy and the work done by external loads, 

respectively. The kinetic energy for a beam can be determined with the following equations: 
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where   is the volume of beam. Using Eq. (6), variations of kinetic energy can be defined as: 
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where 
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Variations of strain energy can be expressed as follows: 
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Substituting Eqs. (6) and (9) into Eq. (15) yields: 
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where 
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The external work variation done by the harmonic axial force [24], thermal loading [25] and visco-Pasternak 

medium force [26] can be given by: 
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where 
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In which,   and   are static and dynamic load factors, respectively. Also,   is the frequency of excitation or 

pulsation frequency. By introducing Eqs. (13), (16) and (18) into Eq. (11) and putting the coefficients of u , w  

and   to zero, the differential equations of motion of present system can be given by: 
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The expression of boundary conditions for clamped and simply supported edges (x=0, L) of the beam can be 

defined as: 
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a) Clamped 
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b) Simply supported 
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The relations between stress resultants and displacement components can be determined by inserting Eq. (6) into 

Eq. (17): 
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 (23) 

 

Substituting Eq. (22) into Eqs. (20) and (21), the differential equations of motion and boundary conditions of 

BDFGMs beam in terms of the displacements can be derived as follows: 
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a) Clamped 
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b) Simply supported 
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(25b) 

4    SOLUTION PROCEDURE  

4.1 Generalized differential quadrature method (GDQM) 

According to the GDQM, the approximation value of rth derivative at the ith discrete points for a one dimensional 

continuous function f(x) can be obtained by [27]: 

 

( )

1

( )
( ),

i

r N
r

ij jr
jx x

f x
A f x

x 





  (26) 

 

In which, ( )r

ijA  are weighting coefficients, f(x) can be taken as the displacement functions (i.e., u, w and  ) and 

1,2,...,ix N are the discrete points and mostly introduced in non-uniform pattern based on the Chebyshev–Gauss–

Lobatto pattern: 
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    for   1,2,...,i N  (27) 

 

Using the Lagrange interpolation functions, the weighting function associate to first order of f(x) can be 

formulated as: 
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     for , 1,2,...,i j N  (28) 

 

and for higher-order derivatives 
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     for , 1,2,...,i j N  (29) 
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A set of discretized relations can be obtained for stability and boundary equations in the matrix form by 

substituting Eq. (26) into stability Eqs. (24) and boundary condition (25) as follows: 

 

              0 ,PM X C X K P t K X     (30) 

 

where M, C, K and PK  indicate the mass, damping, stiffness and geometrical stiffness matrices, respectively, and, X 

represent the displacement vector ( , ,X u w ). 

4.2 Bolotin method 

The dynamic instability region of present system can be achieved by Bolotin method. According to this method, the 

displacement vector (X) can be written in the Fourier series with the period 2T as follows: 

 

1,3,5,...

sin cos ,
2 2

k k

k

k t k t
X a b





  
  

 
  (31) 

 

In which, ka  and kb  are unknown constants. Substitute Eq. (31) into Eq. (30) and set the coefficients of each 

sine and cosine as well as the sum of the constant terms to zero, the final relation can be obtained as following form: 

 

         
2

0.
2 2 4

cr P cr PK P K P K C M



 

     (32) 

 

This method presented by Bolotin [28] in 1964 shows that the first instability region is wider than other regions 

and the structural damping becomes neutralized in higher regions. Therefore, the most important region is usually 

the first instability region for researchers where can be obtained by plotting the variation of   versus   after 

solving Eq. (32). 

5    RESULTS AND DISCUSSION   

Numerical investigations are carried out in this section to study the effects of the material distributions, length-to-

thickness ratio, different boundary conditions, temperature rise and foundation coefficients on the dynamic stability 

region of BDFGMs beam. Silicon (Si3N4), zirconia (ZrO2), stainless steel (SUS304) and titanium (Ti-6Al-4V) with 

temperature-dependent material properties given in Table 1 [29] are selected as ceramic1, ceramic2, metal 1 and 

metal 2, respectively. 
 
Table 1 

Coefficients of temperature-dependent material properties [29]. 

Material Si3N4 ZrO2 SUS304 Ti-6Al-4V 

 

 

 

( )E GPa  

1P  0 0 0 0 

0P  348.43 132.20 201.04 122.70 

1P  -3.070×10-4 -3.805×10-4 3.079×10-4 -4.605×10-4 

2P  2.160×10-7 -6.127×10-8 -6.534×10-7 0 

3P  -8.946×10-11 0 0 0 

 

 

 
  

1P  0 0 0 0 

0P  0.2400 0.3330 0.3262 0.2888 

1P  0 0 -2.002×10-4 1.108×10-4 

2P  0 0 3.797×10-7 0 

3P  0 0 0 0 
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3
( )
Kg

m
  

1P  0 0 0 0 

0P  2370 3657 8166 4420 

1P  0 0 0 0 

2P  0 0 0 0 

3P  0 0 0 0 

 

 

1
( )
K

  

1P  0 0 0 0 

0P    5.8723×10-6 13.300×10-6 12.330×10-6 7.4300×10-6 

1P  9.095×10-6 -1.421×10-3 8.086×10-6 7.483×10-4 

2P  0 9.546×10-7 0 -3.621×10-7 

3P  0 0 0 0 

 

Furthermore, in order to obtain the numerical results, CC boundary condition is considered for BDFGMs beam 

except for the cases to be mentioned and other parameters are as follows: 

 

2 ,L m  / 0.04,h L   2,x zn n   0.3,    0.2,   4 310 / ,wK N m  310 / ,GK N m
 

350 / ,dC Ns m  
0 300 ,T K 100T K   

 

 

Before presenting the results, the reliability of the presented solution procedure should be investigated. Table 2 

demonstrates the dimensionless frequency of simply supported BDFGMs beam obtained from present work and 

Refs. [30, 31] without thermal environment. As it can be seen, the present results are in excellent agreement and 

very small difference between three papers is due to employ various solution methods. 
 

Table 2 

Comparison of dimensionless frequency (
2

Al

Al

L

h E


  ) of simply supported BDFGMs beam without temperature rise. 

nz Source 
nx 

0 1/3 1/2 5/6 1 4/3

 
3/2 2 

0 

Present 3.3032 3.7383 3.9127 4.1986 4.3171 4.5167 4.6012 4.8079 

Ref. [30] 3.3018 3.7428 3.9146 4.1966 4.3137 4.5116 4.5954 4.8003 

Ref. [31] 3.3018 3.7429 3.9148 4.1968 4.3139 4.5118 4.5956 4.8005 

1/3

 Present 3.2189 3.5518 3.6791 3.8759 3.9534 4.0792 4.1307 4.2526 

Ref. [30] 3.1543 3.5050 3.6305 3.8251 3.9022 4.0276 4.0791 4.2008 

Ref. [31] 3.1542 3.5050 3.6305 3.8252 3.9022 4.0277 4.0792 4.2009 

1/2

 Present 3.1997 3.4978 3.6099 3.7797 3.8455 3.9511 3.9939 4.0943 

Ref. [30] 3.1069 3.4258 3.5397 3.7087 3.7745 3.8805 3.9235 4.0244 

Ref. [31] 3.1068 3.4258 3.5397 3.7087 3.7745 3.8805 3.9236 4.0245 

5/6

 Present 3.1570 3.4080 3.4984 3.6308 3.6810 3.7601 3.7918 3.8655 

Ref. [30] 3.0505 3.3296 3.4206 3.5547 3.6058 3.6868 3.7193 3.7946 

Ref. [31] 3.0504 3.3296 3.4206 3.5548 3.6059 3.6869 3.7194 3.7947 

1 

Present 3.1366 3.3720 3.4542 3.5730 3.6179 3.6881 3.7161 3.7811 

Ref. [30] 3.0359 3.2983 3.3818 3.5034 3.5493 3.6217 3.6507 3.7175 

Ref. [31] 3.0359 3.2984 3.3819 3.5035 3.5495 3.6219 3.6508 3.7177 

 

Fig. 2 illustrates the dynamic stability regions of BDFGMs beam for various boundary conditions based on four 

shear deformation beam theories (EBT, TBT, TSDT and SSDT). According to this figure, the dynamic instability 

region and the pulsation frequency for CC boundary condition is higher than SC and SS boundary conditions. Also, 

the pulsation frequency obtained by EBT is higher than that for other shear deformation beam theories and the 

results obtained by TBT, TSDT and SSDT are very close to each other. Moreover, considering power law model in 

order to determine the material properties of BDFGMs beam causes to obtain the lower pulsation frequency in 

comparison with exponential law model. 

Fig. 3 indicates the dynamic stability regions of BDFGMs beam for different temperatures rise. It can be 

observed that by increasing temperature, the dynamic instability region shift to the lower pulsation frequency and 

decreases. It is due to increase the flexibility of BDFGMs beam under rising temperature. 
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(a) 

  

  

(b) 
Fig.2 

The dynamic stability regions of BDFGMs beam for various boundary conditions; a) power law model, b) exponential law 

model. 
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(a) 

  

  

(b) 
Fig.3 

The dynamic stability regions of BDFGMs beam for different temperatures rise; a) power law model, b) exponential law 

model. 
 

The influence of static load factor on the dynamic stability of BDFGMs beam is depicted in Fig. 4. As can be 

seen, increasing   leads to decrease the pulsation frequency and increase the dynamic instability region. This is 

expected as the increase of static load factor means the increase of the time independent component of the axial 

force which reduces the effective stiffness of the beam. 
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(a) 

  

  

(b) 
Fig.4 

The dynamic stability regions of BDFGMs beam for different static load factor; a) power law model, b) exponential law 

model. 
 

Figs. 5 and 6 show the dynamic stability regions of BDFGMs beam for different gradient indexes through in x 

and z directions, respectively. According to Fig. 5, increasing nx leads to increase the pulsation frequency for both 
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power and exponential law models and will be approximately constant for 3xn  . But from Fig. 6, it is evident that 

the instability region decreases by increasing nz and shifts to the lower pulsation frequency. In addition, the effect of 

nz is greater than nx on the dynamic stability of BDFGMs beam by comparing the results obtained from Figs. 5 and 

6. 

 

  

  

(a) 

  

  

(b) 
Fig.5 

The dynamic stability regions of BDFGMs beam for different gradient index through in x direction (nx); a) power law model, 

b) exponential law model. 
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(a) 

  

  

(b) 
Fig.6 

The dynamic stability regions of BDFGMs beam for different gradient index through in z direction (nz); a) power law model, 

b) exponential law model. 
 

The effect of thickness-to-length ratio on the dynamic stability regions of BDFGMs beam is demonstrated in Fig. 

7. It can be concluded that the system becomes more stable and stiffer by increasing thickness-to-length ratio and 

therefore, the pulsation frequency increases and shifts to the right side of figure. 
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(a) 

 
 

  

(b) 
Fig.7 

The dynamic stability regions of BDFGMs beam for different thickness-to-length ratios; a) power law model, b) exponential 

law model. 
 

Fig. 8 presents the dynamic stability regions of BDFGMs beam for various foundation models. In order to study 

this issue, Four cases of foundation models are assumed as, case 1 (without foundation: ( 0, 0, 0w G dK K C   ), 

case 2 (Winkler foundation: 350 / , 0, 0w G dK MN m K C   ), case 3 (Pasternak foundation: 350 / ,wK MN m
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10 / , 0G dK MN m C  ) and case 4 (visco-Pasternak foundation: 3 350 / , 10 / , 10 /w G dK MN m K MN m C KNs m   ).  

It is obvious that the pulsation frequency increases by putting the system on the elastic foundation and the dynamic 

instability region moves to the larger pulsation frequency. Also, due to consider the influences of normal stresses 

and the transverse shear deformation by Pasternak model, it can be found that the dynamic instability region of case 

3 is higher than that of Winkler or visco-Pasternak one. 

 

  

  

(a) 

  

  

(b) 
Fig.8 

The dynamic stability regions of BDFGMs beam for various foundation models; a) power law model, b) exponential law 

model. 
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6    CONCLUSIONS 

This research investigated the dynamic stability analysis of BDFGMs beam rested on visco-Pasternak foundation 

subjected to the harmonic excitation and thermal environment. By assuming temperature-dependent material 

properties, mechanical and thermal properties of beam obtained along the thickness and longitudinal directions 

according to the exponential and power law models. Based on EBT, TBT, TSDT and SSDT, the stability equations 

of BDFGMs beam derived using the Hamilton's principle and solved by GDQM in conjunction with the Bolotin 

method under SS, SC and CC boundary conditions. Then, the results of present work compared with the results 

found in the literature and a good agreement observed. The remarkable results are listed as follows: 

 The pulsation frequency obtained by EBT is higher than that for other shear deformation beam theories and 

the results obtained by TBT, TSDT and SSDT are very close to each other. 

 Considering exponential law model in order to determine the material properties of BDFGMs beam causes 

to obtain the larger pulsation frequency in comparison with power law model. 

 The effect of gradient index of material properties along the thickness direction is greater than gradient 

index along the longitudinal direction on the dynamic stability of BDFGMs beam. 

 The flexibility of BDFGMs beam increases under rising temperature and thus, the dynamic instability 

region shift to the lower pulsation frequency and decreases. 
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