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 ABSTRACT 

 In this paper, the analysis of nonlinear free vibrations of beams 

made of functionally graded materials with magnetorheological 

fluid as core is investigated. It is assumed that the beam is made 

of three layers including constraining layer, magnetorheological 

fluid and base layer and is located on Simply-Simply, Clamped-

Simply and Clamped–Clamped supports. The governing 

equations of the beam are derived using the Hamilton’s principle. 

To obtain the vibrational frequencies, the theory of Timoshenko 

beam is used by the Generalized Differential Quadrature method. 

The effects of magnetic field intensity, power law exponents, core 

thickness and constraining layer thickness and the length of the 

beam on natural frequency and modal loss factor related to 

different frequencies modes for the three boundary conditions 

have been investigated. The results show the effects of physical 

and geometrical parameters regarding the natural frequency and 

modal loss factor of the sandwich beam with different modes. 

Also, the frequency and loss factor values obtained from 

Generalized Differential Quadrature method are very close to the 

results obtained by the Finite Element method. This shows the 

accuracy and precision of this method.  
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1    INTRODUCTION 

MART materials are materials whose properties change significantly in the absence of external stimulus. So 

far, many smart materials have been identified, the most important of which are magnetorheological fluids, 

electrorheological fluids, piezoelectric materials and shape-memory alloys. Magnetic suspensions are mixed fluids 

whose rheological properties change significantly in the presence of a magnetic field [1]. Many studies on MR and 
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ER materials have been reported in this article. In 2014, Allahverdizadeh and et al [2] analyzed the nonlinear 

vibrations of functional sandwich beams with electrorheological fluid. This paper investigates the dynamic 

characteristics related to the amplitude of functional sandwich beams with electro-rheological fluid. The nonlinear 

characteristics of the electrorheological fluid layer (ERF) are modeled by an exponential function. In addition, due 

to the nonlinearity of the geometry and the assumption of continuous change for the properties of the functional 

calibrated material (FGM) in the direction of the layer thickness, the nonlinear governing equations for free 

vibration of the FGER beam are obtained by finite element method. Aguib and et al [3] studied numerical 

simulations of the nonlinear static behavior of composite sandwich beams with magnetorheological fluid cores. In 

this paper, the static behavior of magnetorheological elastomer sandwich beams in bending mode with cross-section 

was studied. The beam consists of two aluminum shells that surround a core of silicon oil and is loaded with 30% 

iron particles. Beam stiffness is created by adding a typical stiffness matrix of two aluminum shells and a mixed 

MRE stiffness matrix. Then a function of the magnetorheological properties of MRE is presented. Dynamic 

behavior of sandwich beams with different compositions of magnetorheological fluid core investigated by Subash 

Acharya and et al [4]. In this paper, six samples of magnetorheological fluid including a combination of two 

particles and three weight components of carbonyl iron powder have been studied. A sandwich beam with MRF 

132DG fluid as core was used to analyze viscoelastic characteristics of beam. Biswajit Nayak and et al [5] analyzed 

the capabilities of a three-layered magnetorheological viscoelastic cored sandwich beam with conductive and non-

conductive skins. To mathematical modeling of magnetorheological sandwich beam, finite element method is used. 

The results obtained by FEM method were compared with the results obtained from experiments on sandwich beams 

with viscoelastic core. Navazi and et al [6] investigated the free vibration of a magnetorheological rotating sandwich 

beam with a tapered cross section. The geometry of the beam consists of two elastic layers between which a 

magnetoreological fluid is placed. The equations of motion of the beam are based on Euler-Bernoulli theory. Using 

the Lagrange equation the governing equations are discretized based on the Ritz method. Dynamic analysis of an 

axially moving sandwich beam with a polyurethane core as a viscoelastic core and two aluminum facings as elastic 

faces is studied by Krzysztof  Marynowski [7]. In this paper only shear deformation is considered in the core. 

Material characteristics of the core are modeled with Kelvin–Voigt rheological model. For solving the governing 

equation the Galerkin method is used. The vibration characteristics of electrorheological elastomer cantilever 

sandwich beams were analyzed by Kexiang Wei and et al [8]. In this work characteristics and control capabilities of 

the beam subjected to different electric fields are investigated. The finite element method was used to investigate the 

frequency response of the beam vibrations. Also, experimental analysis was performed to evaluate the effects of 

electric field on the frequency responses and natural frequencies of sandwich beams. Allahverdizadeh and et al [9] 

investigated vibration characteristics of a rotating Functionally Graded Electro-Rheological (FGER) beam. The 

beam consists of three layers so that the electro-rheological fluid is located between two elastic layers of 

functionally graded materials. In beam analysis, the classical beam theory method has been used. The Hamilton 

principle and the finite element method have also been used to obtain the equations of motion of the beam. Dynamic 

behavior of functionally graded electrorheological sandwich beams is studied by Allahverdizadeh and et al [10]. The 

beam consists of constraining layers that are made of functionally graded materials (FGM) and middle layer that is 

electro-rheological fluid (ERF). The finite element method (FEM) is used to obtain the equations of motion of the 

beam. Liao-Liang Ke and et al [11], Elmaguiri and et al [12] and Sompon Taeprasartsit [13] studied nonlinear 

vibration of beams made of functionally graded materials (FGM). Euler-Bernoulli beam theory and von-Kármán 

geometric nonlinearity are used to obtain the equations of motion of the beam. Sheng and et al [14] investigated 

nonlinear vibration of functionally graded beams subjected to parametric and external excitations. In this article, 

equations of motion are derived based on the Hamilton's principle, Euler-Bernoulli beam theory and von-Kármán 

geometric nonlinearity. Other methods such as variational iteration (VIM) and parameterized perturbation (PPM) 

methods were also used to study the nonlinear vibrations of the Bernoulli Euler beam [15]. Sümeyye Sınır and et al 

[16] investigated nonlinear free and forced vibrations of functionally graded beams with non-uniform cross-section. 

Euler-Bernoulli beam theory is used to derive beam motion equations. Hemmatinezhad and et al [17] and Jagadish 

Babu Gunda [18] analyzed the nonlinear free vibration analysis of functionally graded beams. The von-Karman type 

nonlinear strain–displacement relationships are employed based on the Timoshenko beam theory.The large-

amplitude nonlinear vibration of functionally graded (FG) beams made of porous material is analyzed by Farzad 

Ebrahimi and et al [19] and Da Chen and et al [20]. The governing equations are derived based on Timoshenko 

beam theory through Hamilton's principle and to solve the governing equations Galerkin's method and the method of 

multiple scales have been applied. In many studies on beam vibrations, in addition to the FEM method, the 

generalized differential quadrature (GDQ) method has been used. Ghorbanpour Arani and et al [21] examined 

nonlinear thermo free vibration and instability of viscose fluid-conveying double-walled carbon nanocones 

(DWCNCs). The governing equations are solved using Hamilton’s principle and differential quadrature method. The 
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nanocone is simulated as a clamped-clamped Euler-Bernoulli's beam located in an elastic foundation of the Winkler 

and Pasternak type. In this regard, Ghaitani and et al [22] investigated nonlinear vibration and instability response of 

an oil pipe located on an elastic foundation. The governing equations are derived based on Timoshenko beam 

theory. The von-Karman type nonlinear strain–displacement relationships are employed. The governing equations 

are solved using a direct iterative approach and Hamilton's principle. The differential quadrature method (GDQ) is 

used to obtain the nonlinear vibration frequencies and critical fluid velocity of the pipe. 

In this paper, nonlinear free vibrations of a FGMR beam are formulated and verified by associated studies in the 

literature. Hamilton’s principle, the theory of Timoshenko beams and GDQ method are used to derive vibrational 

frequencies. The effects of magnetic field intensity, power law exponents, core thickness and constraining layer 

thickness and the length of the beam on natural frequency and modal loss factor related to different frequencies 

modes for the three mentioned SS, CS and CC boundary conditions have been investigated. 

2    PROBLEM  DESCRIPTIONS    

2.1 Description of functionally graded sandwich beam with magnetorheological fluid core 

The sandwich beam model is described based on the following hypotheses: 

1. Top and bottom layers are considered as ordinary beams with axial and bending resistance. 

2. The core layer does not withstand any longitudinal stress if it withstands nonlinear displacement fields 

along the x and z axes. 

3. All the three layers are assumed to be perfectly bonded and there is no slippage between the layers. 

4. The transverse displacements of the top and bottom layers are equal to the transverse displacements of the 

core at interfaces. 

The sandwich beam consists of upper and lower layers of functionally graded linear elastic material with 

thickness h1
and h3  

and a core of viscoelastic material with thickness h2
. The magnetorheological sandwich beam 

model is shown in Fig.1. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

The MR fluid layer sandwich beam. 

2.2 Structural relationships of MR fluid 

To understand and predict the behavior of a MR fluid, it must be possible to model the fluid mathematically. 

Intelligent liquids have a low viscosity in the absence of magnetic applications, but they become quasi-solid as a 

result of the application of a magnetic field. The yield stress depends on the magnetic field applied to the liquid, but 

as the magnetic field increases, we reach a point where the intensity of the magnetic field has no greater effect and 

the liquid becomes magnetically saturated at this point. Therefore, the behavior of magnetorheological fluid (MR) 

can be assumed to be similar to Bingham Plastic. However, a magnetorheological fluid does not exactly follow 

Bingham plastic properties. For the following example, the fluid yield stress in the active state behaves like a 

viscoelastic material with a complex shear modulus that is a function of the magnetic field strength. (Fig. 2) 
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Fig.2 

Shear stress–shear strain relationship of MR materials under 

varying intensities of magnetic field [23]. 

 

Since the MR material has linear viscoelastic properties in the pre-yield regime, the shear modulus is complex in 

shape and depends on the magnetic field intensity. The complex shear modulus for viscoelastic materials is 

expressed as follows. [6,8] 
 

G *   (1) 

 

G
G G iG G i G i

G

* 1 (1 )
 

          
 (2) 

 

where  is the shear stress,  is the shear strain and G * is the complex shear modulus. In this regard, G  is called the 

shear modulus of storage and indicates the material ability to store elastic strain energy during a deformation cycle. 

The imaginary part ofG  , is called the shear modulus of dissipation and is associated with energy dissipation during 

deformation. On the other hand, the loss modulus is a measure of the energy dissipated per unit volume of the 

material over a cycle. G G/  is the energy dissipation coefficient of the structure denoted by . 

The complex shear modulus for the MR material is defined as a polynomial function in terms of magnetic field B 

(in Gaussian terms G) as follows [24]. 

 

G G iG*     (3a) 

 

G B B B2 3 6( ) 3.3691 4.9975 10 0.873 10        (3b) 

 

G B B B2 3 6( ) 0.9 0.8124 10 0.1855 10        (3c) 

2.3 FGM materials 

The material properties P of  FGMs are a function of the material properties and volume fractions of the constituent 

material, and are expressed as follows [9,25]. 

 
k

j fj

j

P P V
1

  (4) 

 

where jP and fjV  are respectively, the material property and volume fraction of the constituent material j. In this 

paper, it is assumed that the functional layer is a combination of ceramic and metal and the composition changes 

from one surface to another. The Young's modulus E and the density  are defined as a property of P as follows. 

 

c c m mP PV P V   (5) 

 

where c and m  indicates respectively ceramic and metal. The volume fractions of all the constituent materials 

should add up to one, i.e. 
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k

fj

j

V
1

1


  (6) 

 

The volume fraction of ceramics and metals is expressed as follows. 

 

fc fmV V 1  (7) 

 

For a beam with a uniform thickness  h  and a reference surface at its middle surface, the volume fraction can be 

written as. [12,19] 

 
N

f

z h
V

h

2

2

 
  
 

 (8) 

 

where N is the power- law exponent,  N0 . The mechanical properties of materials according to the law of 

power are expressed as follows. [9,11,12,19] 

 

Ni i

i c m m

i

z h
P z P P P i

h

2
( ) ( )( ) , 1,3

2


     (9) 

 

In FGM layers, a combination of aluminum ( Al ) and zirconium ( ZrO2
) is used. 

2.4 Displacement field 

The longitudinal and transverse displacement fields for the upper and lower layers according to Timoshenko theory 

are expressed as follows. [2,3,9,10,11,12,19] 

 

i i i iU u x t z x t i( , ) ( , ) , 1,2,3    (10a) 

 

iW w x t( , )  (10b) 

 

where 
iU is the longitudinal displacements of the upper and lower layers for any x and z location. 

iu
 
is the 

longitudinal displacement at the centroid of the upper and lower layers, 
iz  is the distance from centroid of the upper 

and lower layers in the transverse direction, 
iW
 
is the transverse displacement in the upper and lower layers for any 

x and z location. w is the transverse displacement at the centroid of the top and bottom layers. 
i  is the angle of 

rotation of the cross section about the y axis and i 1,2,3 are the coordinates of the top, middle and bottom layers.  

As expressed, in those assumptions with a perfect bond between the three layers, to obtain the continuity 

between all the three layers the following relations are used. [3] 

 

U x h t U x h t1 1 2 2( , 2, ) ( , 2, )   (11a) 

 

U x h t U x h t2 2 3 3( , 2, ) ( , 2, )   (11b) 

 

Using the interlayer continuity conditions for Timoshenko theory, the longitudinal displacement at the centroid 

of the middle layer and the angle of rotation of the cross section are followed as. 

 

u u
u x t h h1 3

2 3 3 1 1

1
( , ) ( ) ( )

2 4
 


    (12a) 
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u u
x t h h
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1 3

2 3 3 1 1

2 2

1
( , ) ( ) ( )

2
  


    (12b) 

2.5 Strain-Displacement relations 

It can be easy to formulate the strains developed in all the three layers by using the assumed displacement fields. 

The mechanical strains of the first and third layers according to Timoshenko theory are obtained as follows. 

[2,3,11,12,13,14,19] 

 

i i

xx i

u w
z

x x x

21
( )

2




  
  
  

 (13a) 

 

yy zz 0    (13b) 

 

xy yz 0    (13c) 

 

xz i

w

x

1

2
 

 
  

 
 (13d) 

 

where i 1,3
 
are the coordinates of the top and bottom layers. The mechanical strains of the second layer are 

obtained as follows. 

 

xx yy zz 0      (14a) 

 

xy yz 0    (14b) 

 

xz

u u w x t
h h

h h x

1 3

3 3 1 1

2 2

1 ( , )
( ) ( )

2
  

 
   


 (14c) 

2.6 Constitutive equations 

The relationship between stress and strain according to Hooke's law in the plane stress state is expressed as follows. 

[9,17,19] 

 

xx i i xx

yy i i yy

i xzxz

Q z Q z

Q z Q z

Q z

11 12

12 22

55

( ) ( ) 0

( ) ( ) 0

0 0 ( )

 

 



     
    

    
        

 (15) 

 

which ijQ  is the stiffness matrix for single layer as follows. [9] 

 

i

i i

E z
Q z Q z11 22 2

( )
( ) ( )

1 
 


 (16a) 
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E z
Q z12 2
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1







 (16b) 
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i

i

E z
Q z55

( )
( )

2(1 )



 (16c) 

 

The components of resulting forces and moments are expressed as follows. [11,13] 

 
i

x x i iN z dA( ) ( )   (17a) 

 
i

x x i i iM z z dA( ) ( )   (17b) 

 
i

xz xz i iR z dA( ) ( )   (17c) 

 

By substituting relations (13) and (14) in Eqs. (15) and (17), the components of resulting forces and moments in 

terms of displacements based on Timoshenko theory are expressed as follows. [11,13,14] 

 

x

u x t x tw x t
N A B

x x x

2

(1) (1) (1)1 1

11 11

( , ) ( , )1 ( , )

2

     
             

 (18a) 

 

xz

w x t
R A x t

x

(1) (1)

55 1

( , )
( , )

 
  
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 (18b) 
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M B D

x x x

2 2

(1) (1) (1)1 1

11 11 2
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2
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             

 (18c) 
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h u x tu x t h w x t
R A x t x t

h h h h x

2 2 3 31 1

55 3 1

2 2 2 2

( , )( , )1 1 ( , )
( , ) ( , )

2 2
 

 
      
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 (18d) 

 

x

u x t x tw x t
N A B

x x x

2

3 3 33 3

11 11

( , ) ( , )1 ( , )

2

     
             

 (18e) 
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w x t
R A x t

x

3 3

55 3

( , )
( , )

 
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 
 (18f) 
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u x t x tw x t
M B D

x x x

2 2

3 3 33 3

11 11 2

( , ) ( , )1 ( , )

2

     
             

 (18g) 

 

where
ij ij ijA B D, , are the extensional, torsional and flexural stiffness defined as [11,12,13,14,19] 

 
h

hij ij ij ij iA B D Q z z z dz
2

2

2, , ( ) 1, ,  (19) 

 

Mass inertia moments are expressed as follows. [11,12,13,19] 
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   (20a) 
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

   (20b) 
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i

i i i

h

I z dA
2

2

2

2





   (20c) 

2.7 Equations of motion 

To obtain the equations of motion of the beam, we use the Hamilton principle. The advantage of using the Hamilton 

principle is the possibility of obtaining boundary conditions with equations of motion. [12,13,14] 

 
t t

t t

L dt T U dt
2 2

1 1

( ) 0      (21) 

 

By expanding the variation of kinetic energy T and strain energy U based on Timoshenko theory, the strain 

energy and kinetic energy of the first and third layers are expressed as follows. [12,13,20] 

 
L

i i

i xx xx xz xz i xx i xz i i

A

u w w w
U dV z dA dx

x x x x x
10

( )
   

       
       

               
    (22a) 

 

     
i

L

i i i i i i i i i i i i i i i

V A

T U U W W dV u z u z w w dA dx
0

( )                 (22b) 

 

where i 1,3 are the coordinates of the top and bottom layers.  

Using the definition of stress consequences, the strain energy changes of the first and third layers are obtained as 

follows. 

 
L

i i i ii

i x x x xz i

u w w w
U N M N R dx

x x x x x

1

0

( ) ( )
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 
     

     
     

  (23a) 

 

Using the definition of mass moment of inertia, the kinetic energy changes of the first and third layers are 

obtained as follows. 

 

 
L

i i i

i i i i i i i i iT I u u w w I u u I dx0 1 2
0

( ) ( )             (23b) 

 

where i 1,3 are the coordinates of the top and bottom layers.  

By expanding the variation of kinetic energy and strain energy, the strain energy and kinetic energy of the 

second layer are expressed as follows. 
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L

V A

T U U W W dV u z u z w w dA dx

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0

( )                 (24b) 

 

Using the definition of stress consequences, the strain energy changes of the second layer are obtained as 

follows. 
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Using the definition of mass moment of inertia, the kinetic energy changes of the second layer are obtained as 

follows. 
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By integrating Eqs. (23) and (25) in the integration by parts method, the equations of motion in terms of stress 

components based on Timoshenko theory, are obtained as follows. 
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Substituting Eqs. (18) in Eqs. (26), the equations of motion in terms of displacement components based on 

Timoshenko theory, are obtained as follows. 

 



129                                    O.Miraliyari et.al. 

 
 

Journal of Solid Mechanics Vol. 15, No. 2 (2023) 
© 2023 IAU, Arak Branch 

A h Au x t x tw x t w x t
A A B x t u x t

xx x x h h

A h A A u x tw x t
x t u x t I

h xh h

(2) (2)2 22
(1) (1) (1) 55 3 551 1

11 11 11 3 12 2 2 2 2

2 2

(2) (2) (2) 2

(1)55 1 55 55 1

1 3 02 2

22 2

( , ) ( , )( , ) ( , )
( , ) ( , )

2

( ,( , )
( , ) ( , )

2






       
        

       

 
    

 

x t
I

t t

x t u x tx t I u x t I u x t I
I h I h

ht t t h t h t

I h x t

h t

2

(1) 1

12 2

2 22 (2) 2 (2) 2 (2)

(2) (2) 3 31 1 1 2 1 2

0 1 0 32 2 2 2 2 2 2

2 2 2

(2) 2

1 1 1

2

2

) ( , )

( , ) ( , )( , ) ( , ) ( , )1 1

8 8

( , )

2







   
   

    

           
            

            

 
  

 

I h x t u x tI h x t u x t
I I

h t h t t t

(2) 2 2(2) 2 2

(2) (2)2 3 3 32 1 1 1

0 02 2 2 2 2 2

2 2

( , ) ( , )( , ) ( , )1 1

4 42 2

         
        

         

 (27a) 

 

u x t x t A h Aw x t w x t
A A B x t u x t

xx x x h h

A h A A u x tw x t
x t u x t I

h xh h

2 2 (2) (2)2
(3) (3) (3)3 3 55 3 55

11 11 11 3 12 2 2 2 2

2 2

(2) (2) (2) 2

(3)55 1 55 55 3

1 3 02 2

22 2

( , ) ( , )( , ) ( , )
( , ) ( , )

2

( ,( , )
( , ) ( , )

2






       
        

       

 
    

 

x t
I

t t

x t u x t u x tx t I I u x t I
I h I h

ht t t h t h t

I h x t

h t

2

(3) 3

12 2

2 2 22 (2) (2) 2 (2)

(2) (2) 3 3 31 1 2 1 2

0 1 0 32 2 2 2 2 2 2

2 2 2

(2) 2

1 3 3

2

2

) ( , )

( , ) ( , ) ( , )( , ) ( , )1 1

8 8

( , )

2







   
   

    

           
            

            

 
  

 

I h x t u x tI h x t u x t
I I

h t h t t t

(2) 2 2(2) 2 2

(2) (2)2 3 3 32 1 1 1

0 02 2 2 2 2 2

2 2

( , ) ( , )( , ) ( , )1 1

4 42

         
        

         

 
(27b) 

 

u x t x tw x t w x t w x t
B B D A x t A

x xx x x

A h h A h A h A h
x t u x t u x t

h h h h

2 22
(1) (1) (1) (1) (1)1 1

11 11 11 55 1 552 2 2

(2) (2) (2) (2) 2

55 1 3 55 1 55 1 55 1

3 1 32 2 2 2

2 2 2 2

( , ) ( , )( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )
4 2 2 4






          
          

          

   
A h u x tw x t

x t I
h x t

x tx t I h u x t I h x t I h u x t
I I h h

h ht t t t h t

(2) 2

(1)55 1 1

1 1 2

2

22 (2) 2 (2) 2 2 (2) 2

(2) (2) 31 1 1 1 1 1 1 2 1 1

2 0 1 32 2 2 2 2 2

2 2 2

( , )( , )
( , )

2

( , )( , ) ( , ) ( , ) ( , )1

16 2 4 2



 

  
    

    

           
           

           

u x t I h h x t u x tI h x t I h u x t
I h I h

h t h t h t t t

x t
I h

t

2 (2) 2 2(2) 2 2 (2) 2

(2) (2)3 2 1 3 3 32 1 1 2 1 1

0 1 0 12 2 2 2 2 2 2 2

2 2 2

2

(2) 2 1

0 1 2

( , ) ( , ) ( , )( , ) ( , )1 1

8 84 2 4

( , )1

16








           
            

            

 
  

 

 
(27c) 

 

u x t x tw x t w x t w x t
B B D A x t A

x xx x x

A h A h A h A h h
x t u x t u x t

h h h h

2 22
(3) (3) (3) (3) (3)3 3

11 11 11 55 3 552 2 2

(2) 2 (2) (2) (2)

55 3 55 3 55 3 55 1 3

3 1 32 2 2 2

2 2 2 2

( , ) ( , )( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )
4 2 2 4






          
          

          

   
A h u x tw x t

x t I
h x t

x t x t I h I h x t I h u x tu x t
I I h

ht t h t t h t

(2) 2

(3)55 3 3

1 1 2

2

2 2 (2) (2) 2 2 (2) 22

(3) (2) 23 3 2 3 1 3 3 2 3 31

2 0 32 2 2 2 2 2 2

22 2

( , )( , )
( , )

2

( , ) ( , ) ( , ) ( , )( , )1

16 42 2



  

  
    

    

           
           

           

I h x t I h u x t I h h u x tx t u x t
I h I h

hh t t h t t t

x t
I h h

t

(2) 2 2 (2) 2 (2) 22 2

(2) (2)2 3 3 1 3 3 2 1 3 31 1

0 3 0 12 2 2 2 2 2 2

22 2

2

(2) 1

0 1 3 2

( , ) ( , ) ( , )( , ) ( , )1 1

2 8 84 4

( , )1

16

 






           
            

            

 
  

 

 
(27d) 

 



                                                                                  Nonlinear Free Vibration Analysis of Functionally Graded ….               130 
 

Journal of Solid Mechanics Vol. 15, No. 2 (2023) 
                                                                                                              © 2023 IAU, Arak Branch 

x t A h x tx t w x t w x t
A A A A

x x h xx x

A A h A u x tu x t x t

h x h x h x

(2)2 2
(1) (1) (3) (3)3 55 3 31

55 55 55 552 2

2

(2) (2) (2)

55 55 1 55 31 1

2 2 2

( , ) ( , )( , ) ( , ) ( , )

2

( , )( , ) ( , )

2

 



          
           

           

      
        

       

u x tw x t w x t
A A

xx x

x t u x tw x t w x t w x t w x t
A B A

x x xx x x

w x t
B

22
(2) (1) 1

55 112 2

2 22 2
(1) (1) (1)1 1

11 11 112 2 2

2
(1)

11

( , )( , ) ( , )

( , ) ( , )3 ( , ) ( , ) ( , ) ( , )

2

( , )



     
     

     

             
           

             




u x tx t w x t w x t w x t
A A

x x xx x x

x t u x tw x t w x t w x
B A B

x xx x

22 2
(3) (3)31

11 112 2 2

2 2 2
(3) (3) (3)3 3

11 11 112 2

( , )( , ) ( , ) 3 ( , ) ( , )

2

( , ) ( , )( , ) ( , ) ( ,





            
         

            

        
        

       

x tt

xx

w x t w x t w x t
I I I

t t t

3

2

2 2 2
(1) (2) (3)

0 0 02 2 2

( , ))

( , ) ( , ) ( , )

   
  

   

       
       

       

 
(27e) 

  

To obtain the frequency equations of the beam, we consider the displacements of the beam to be harmonic [26]. 
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i tw x t W x e( , ) ( )   (28c) 

 

Substituting relations (28) in Eqs. (27), the frequency equations of the beam based on Timoshenko theory, are 

obtained as follows. 
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3   CALCULATION OF THE EQUATIONS OF MOTION IN TERMS OF DISPLACEMENT FIELD 

YSING GDQM 

3.1 Solution procedure 

The DQM is a numerical discretization technique for the approximation of derivatives in which very accurate 

numerical results can be obtained by using just a few grid points with respect to finite differences and finite elements 

methods. The main idea of the GDQM is that the derivative of a function ( )f x  at a sample point can be 

approximated as a weighted linear summation of the function value at all of the sample points in the domain, that is 

[27]. 
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where the number of grid points along x direction is defined by n. Also, ijC is obtained as follows: 
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In which ( )M x is defined as: 
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   (32) 

 

And superscript r is the order of derivative. Also, ( )rC is the weighting coefficient along x direction which is 

written as: 
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In order to obtain a better mesh point distribution and increased convergence of solutions, Chebyshev–Gauss–

Lobatto technique has been employed as follows: 
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Finally, by applying boundary conditions equations into Eq. (29) and using eigenvalue equation in the form of 

(35), the overall problem will be solved and natural frequency will be calculated. 
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To solve the problem of nonlinear eigenvalue Eq. (34), an iterative process should be used. For this purpose, in 

the first step, by neglecting the nonlinear terms, the eigenvalue problem is solved in each case and the linear 

eigenvector is then appropriately normalized by dividing to the maximum transverse displacement. In the second 

step, by applying the eigenvector related to the eigenvalues of Eq. (35), the nonlinear vibration equation will be 

solved. Finally, the eigenvalue problems are solved again to help us obtain the new eigenvalues and eigenvectors. 

The iterative process continues until the nonlinear frequency values from the two subsequent iterations ‘ e ’ and 

‘ 1e  ’ satisfy the prescribed convergence criteria as: 

 
1 4/ , 10e e         (36) 

3.2 Equations of motion using GDQM 

By applying the Generalized Differential Quadrature Method (GDQM) in the Eqs. (29), the motion equations of the 

beam based on Timoshenko theory, are obtained as follows: 
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4    VALIDATION  

Comparing the results in terms of natural frequencies presented in the literature [28], demonstrates the effectuality of 

the developed finite element formulation for a MR fluid sandwich beam. This paper developed the generalized 

differential quadrature formulation for a MR fluid sandwich beam regardless of the shear deformation and rotary 

inertia effects of the elastic face layers to simplify the precision of the dynamic properties of thin face layers based 

on MR fluid sandwich beam. The validation of the GDQ formulation is indicated by comparing the natural 

frequencies examined in the literature [28].   

A thin face layers based on MR fluid sandwich beam with the dimensions of elastic layers 300×30×1 mm and an 

identical thickness of MR fluid layer is considered for this simulation. The considered properties of the basic 

constituents of FG Sandwich Beam are as follows [28].  

 
 

Table1 

Material and geometrical properties of the FG sandwich beam [28]. 

Properties Material Layers 

Young modulus 168cE GPa  

Ceramic (Zro2) 

 

 

 

Elastic Layers 

Poisson ratio 0.3cv  

Density 35700 /c kg m  

Young modulus 68mE GPa  

Metal (Aluminum) Poisson ratio 0.3mv  

Density 32700 /m kg m    

Density 33500 /mc kg m   Magnetorheological Core 

 

For the accuracy of the obtained equations and the applied solution method, which in this article is the GDQ 

method, the evaluated first five natural frequencies corresponding to 0 and 250 (G) under simply supported at both 

ends in the present work are presented and compared with the references [28] and [29] together in Table 2. It shows 

a reasonable convergence and accuracy in the results of the present GDQ formulation in which the shear 

deformation and rotary inertia effects are included as regards the frequencies corresponding to higher modes for 

both magnetic fields. Validation of linear vibrations for GDQM analysis of a magnetorheological functionally 

graded beam is performed according to the Table 1 specifications. 

 
106.8 10 ( )mE pa  , 0.3m c   , 32700( / )m kg m  , 3

2 3500( / )kg m  , 35700( / )c kg m  ,
   

1 2 3 1( )h h h mm   , 30( )b mm , 300( )L mm , SSB  
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Table2 

Linear validation for generalized differential quadrature method analysis of a magnetorheological fluid sandwich beam. 

Natural frequency (Hz)  

B=250(G) B=0  

Ref [29] (FEM) Ref [28] (FEM) Present (GDQM) Ref [29] (FEM) Ref [28] (FEM) Present (GDQM) Mode number 

50.92 51.88 45.75 40.31 40.74 36.77 1 

120.32 123.56 124.85 103.10 105.70 105.23 2 

222.24 229.01 235.33 200.07 206.51 210.59 3 

357.33 369.67 383.52 332.45 344.72 356.29 4 

528.15 547.94 573.86 501.67 521.57 545.65 5 

 

The comparison of the results of the present article with the results of Reference [29] is shown in Table 3. The 

validation of nonlinear vibrations for GDQ analysis of a magnetorheological functionally graded beam is performed 

according to the following specifications. 

 
106.9 10 ( )mE pa  , 6

2 1.794 10 ( )E Pa  , 0.3m c   , 2 0.3  , 32766( / )m c kg m   , 
 

3

2 968.1( / )kg m  , 1 3 1.524( )h h mm  , 2 0.127( )h mm , 177.8( ), 12.7L mm b mm  , SSB , 1c   

 
Table3  

Nonlinear validation for generalized differential quadrature method analysis of a magnetorheological fluid sandwich beam. 

/w h  /NL L   /NL L   

Ref [30] (FEM) Present (DQM) Ref [30] (FEM)  Present (DQM) 

0.1 1.092 1.065 0.838 0.801 

0.2 1.330 1.297 0.565 0.542 

0.4 2.019 1.998 0.245 0.213 

0.6 2.816 2.801 0.126 0.107 

0.8 3.649 3.632 0.075 0.068 

1 4.5 4.487 0.049 0.042 

5    NUMERICAL RESULTS AND DISCUSSION    

Many parameters such as field intensity, fluid layer thickness, complex shear modulus of the MR fluid, beam 

geometry, boundary conditions, elastic layer thickness, etc. can greatly affect the properties of a sandwich MR 

beam. The proposed nonlinear model is used to study the effects of the variations in the magnetic field intensity and 

the MR fluid layer thickness on the properties of the beam in terms of natural frequencies ratio and the loss factors 

ratio for different boundary conditions. 

5.1 Influences of the magnetic field intensity on natural frequencies and loss factors 

Fig. 3 summarizes the influence of variations in the magnetic field intensity on the natural frequencies of a MR fluid 

sandwich beam based on Timoshenko theory and simply–simply (SSB) condition. 

 

 

 

 

 

 

 

 

 

Fig.3 

Influence of variations in the magnetic field intensity, on the 

nonlinear frequency to linear frequency ratio corresponding 

to maximum deflection to thickness ratio of the 

magnetorheological beam made of functionally elastic layers. 
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Fig.4 

Influence of variations in the magnetic field intensity, on the 

nonlinear loss factor to linear loss factor ratio corresponding 

to maximum deflection to thickness ratio of the 

magnetorheological beam made of functionally elastic layers. 

 

It can be observed that with an increase in the magnetic field intensity, the nonlinear frequency to linear 

frequency ratio gets lower. Also, at a constant frequency ratio, the maximum deflection to thickness ratio increases 

with increasing magnetic field intensity. Based on Fig. 4 with an increase in the magnetic field intensity, the 

nonlinear loss factor to linear loss factor ratio gets higher and at a constant loss factor ratio, the maximum deflection 

to thickness ratio increases with increasing magnetic field intensity. 

5.2 Influences of the power law coefficient in x direction on natural frequencies and loss factors 

The variations in the nonlinear frequency to linear frequency ratio and nonlinear loss factor to linear loss factor ratio 

of the MR beam with simply-simply boundary condition based on Timoshenko theory for different power law 

coefficients in x direction are computed corresponding to the maximum deflection to thickness ratio and are 

presented in Figs. 5 and 6. The results generally show an increase in the maximum deflection of the beam with 

decreasing the power law coefficients. Also, with increasing power law exponent, the frequency ratio increases and 

the loss factor decreases respectively. There is a significant increase in the nonlinear frequency to linear frequency 

ratio and a significant decrease in nonlinear loss factor to linear loss factor changing of power law coefficient in x 

direction from 0 to 2. 

 

 

 

 

 

 

 

 

 

Fig.5 

Influence of variations in power law coefficient in x direction 

on the nonlinear frequency to linear frequency ratio 

corresponding to maximum deflection to thickness ratio of 

the magnetorheological beam made of functionally elastic 

layers. 

  

 

 

 

 

 

 

 

Fig.6 

Influence of variations in power law coefficient in x  

direction on the nonlinear loss factor to linear loss factor ratio 

corresponding to maximum deflection to thickness ratio of 

the magnetorheological beam made of functionally elastic 

layers. 
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5.3 Influences of the MR layer thickness on natural frequencies and loss factors   

The variations of frequency and loss factors of the MR beam corresponding to the maximum deflection to thickness 

ratio at a magnetic field of 500( )B G for the simply- simply supported end conditions in the different MR layers 

thickness ratio, have been shown in Figs. 7 and 8. 

 

 

 

 

 

 

 

 

 

Fig.7 

Influence of variations in the MR layer thickness, on the 

nonlinear frequency to linear frequency ratio corresponding 

to maximum deflection to thickness ratio of the 

magnetorheological beam made of functionally elastic layers. 

  

 

 

 

 

 

 

 

 

Fig.8 

Influence of variations in the MR layer thickness, on the 

nonlinear loss factor to linear loss factor ratio corresponding 

to maximum deflection to thickness ratio of the 

magnetorheological beam made of functionally elastic layers. 

 

The results show that with an increase in the MR layer thickness, the nonlinear frequency to linear frequency 

ratio gets higher. Also, at a constant frequency ratio, the maximum deflection to thickness ratio decreases with 

increasing the MR layer thickness (Fig.7). The trend for the nonlinear loss factor to linear loss factor ratio is 

reversed (Fig.8). 

5.4 Influences of the beam length to elastic layer thickness ratio on natural frequencies and loss factor 

The variations of frequency and loss factors of the MR beam corresponding to the maximum deflection to thickness 

ratio at a magnetic field of 500( )B G for the simply- simply supported end conditions in the different beam length 

to top layer thickness ratios, have been shown in Figs. 9 and 10. 

 

 

 

 

 

 

 

 

 

Fig.9 

Influence of variations in the different beam length to top 

layer thickness ratios, on the nonlinear frequency to linear 

frequency ratio corresponding to maximum deflection to 

thickness ratio of the magnetorheological beam made of 

functionally elastic layers. 
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Fig.10 

Influence of variations in the different beam length to top 

layer thickness ratios, on the nonlinear loss factor to linear 

loss factor ratio corresponding to maximum deflection to 

thickness ratio of the magnetorheological beam made of 

functionally elastic layers. 

 

The results obtained from these two diagrams, indicates that increasing the ratio of beam length to the thickness 

of top layer, the nonlinear frequency to linear frequency ratio will decrease and the nonlinear loss factor to linear 

loss factor ratio will increase. Also, at a constant frequency ratio, the maximum deflection to thickness ratio 

increases with increasing the ratio of beam length to the thickness of top layer and at a constant loss factor ratio, the 

maximum deflection to thickness ratio increases with increasing the ratio of beam length to the thickness of top 

layer.  

5.5 Influences of the boundary conditions on natural frequencies and loss factor 

The variations in the nonlinear frequency to linear frequency ratio and nonlinear loss factor to linear loss factor ratio 

of the functionally graded MR beam based on Timoshenko theory for simply supported-simply supported, simply 

supported-clamped and clamped-clamped boundary conditions at the magnetic field of 0B  corresponding to the 

maximum deflection to thickness ratio are presented in Figs. 11 and 12. 

It can be observed that the simply support-simply support boundary condition has the highest frequency and the 

clamped-clamped boundary condition has the lowest frequency. It is also observed that the clamped-clamped 

boundary condition has the highest loss factor and the simply support-simply support boundary condition has the 

lowest loss factor. 

 

 

 

 

 

 

 

Fig.11 

Influence of variations in different boundary conditions, on 

the nonlinear frequency to linear frequency ratio 

corresponding to maximum deflection to thickness ratio of 

the magnetorheological beam made of functionally elastic 

layers at the magnetic field 0B  . 

  

 

 

 

 

 

 

Fig.12 

Influence of variations in different boundary conditions, on 

the nonlinear loss factor to linear loss factor ratio 

corresponding to maximum deflection to thickness ratio of 

the magnetorheological beam made of functionally elastic 

layers at the magnetic field 0B  . 
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Also, at a constant frequency ratio and a constant loss factor ratio, the lowest maximum deflection to top layer 

thickness ratio is related to the simply support-simply support boundary condition and the highest maximum 

deflection to top layer thickness ratio is related to the clamped-clamped boundary condition. 

 

 

 

 

 

 

 

 

Fig.13 

Influence of variations in different boundary conditions, on 

the nonlinear frequency to linear frequency ratio 

corresponding to maximum deflection to thickness ratio of 

the magnetorheological beam made of functionally elastic 

layers at the power law coefficient 0xn  . 

  

 

 

 

 

 

 

 

Fig.14 

Influence of variations in different boundary conditions, on 

the nonlinear loss factor to linear loss factor ratio 

corresponding to maximum deflection to thickness ratio of 

the magnetorheological beam made of functionally elastic 

layers at the power law coefficient 0xn  . 

 

Figs.13 and 14 summarize the variations in the nonlinear frequency to linear frequency ratio and nonlinear loss 

factor to linear loss factor ratio of the functionally graded MR beam based on Timoshenko theory for simply 

supported-simply supported, simply supported-clamped and clamped-clamped boundary conditions at the power law 

coefficient 0xn  corresponding to the maximum deflection to thickness ratio. It can be observed that the simply 

support-simply support boundary condition has the highest frequency and the clamped-clamped boundary condition 

has the lowest frequency. It is also observed that the clamped-clamped boundary condition has the highest loss 

factor and the simply support-simply support boundary condition has the lowest loss factor. Also, at a constant 

frequency ratio and a constant loss factor ratio, the lowest maximum deflection to top layer thickness ratio is related 

to the simply support-simply support boundary condition and the highest maximum deflection to top layer thickness 

ratio is related to that the clamped-clamped boundary condition. 

 

 

 

 

 

 

 

Fig.15 

Influence of variations in different boundary conditions, on 

the nonlinear frequency to linear frequency ratio 

corresponding to maximum deflection to thickness ratio of 

the magnetorheological beam made of functionally elastic 

layers at the thickness ratio 2 1/ 0.5h h  . 
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Fig.16 

Influence of variations in different boundary conditions, on 

the nonlinear loss factor to linear loss factor ratio 

corresponding to maximum deflection to thickness ratio of 

the magnetorheological beam made of functionally elastic 

layers at the thickness ratio
2 1/ 0.5h h  . 

 

Figs.15 and 16 summarize the variations in the nonlinear frequency to linear frequency ratio and nonlinear loss 

factor to linear loss factor ratio of the functionally graded MR beam based on Timoshenko theory for simply 

supported-simply supported, simply supported-clamped and clamped-clamped boundary conditions at the thickness 

ratio
2 1/ 0.5h h  corresponding to the maximum deflection to thickness ratio. It can be observed that the simply 

support-simply support boundary condition has the highest frequency and the clamped-clamped boundary condition 

has the lowest frequency. It is also observed that the clamped-clamped boundary condition has the highest loss 

factor and the simply support-simply support boundary condition has the lowest loss factor. Also, at a constant 

frequency ratio and a constant loss factor ratio, the lowest maximum deflection to top layer thickness ratio is related 

to the simply support-simply support boundary condition and the highest maximum deflection to top layer thickness 

ratio is related to that the clamped-clamped boundary condition. 

 

 

 

 

 

 

 

Fig.17 

Influence of variations in different boundary conditions, on 

the nonlinear frequency to linear frequency ratio 

corresponding to maximum deflection to thickness ratio of 

the magnetorheological beam made of functionally elastic 

layers at the beam length to top layer thickness 1/ 25L h  . 

  

 

 

 

 

 

 

Fig.18 

Influence of variations in different boundary conditions, on 

the nonlinear loss factor to linear loss factor ratio 

corresponding to maximum deflection to thickness ratio of 

the magnetorheological beam made of functionally elastic 

layers at the beam length to top layer thickness 1/ 25L h  . 

 

Figs.17 and 18 summarize the variations in the nonlinear frequency to linear frequency ratio and nonlinear loss 

factor to linear loss factor ratio of the functionally graded MR beam based on Timoshenko theory for simply 

supported-simply supported, simply supported-clamped and clamped-clamped boundary conditions at the beam 

length to top layer thickness 
1/ 25L h  corresponding to the maximum deflection to thickness ratio. It can be 

observed that the simply support-simply support boundary condition has the highest frequency and the clamped-

clamped boundary condition has the lowest frequency. It is also observed that the clamped-clamped boundary 

condition has the highest loss factor and the simply support-simply support boundary condition has the lowest loss 

factor. Also, at a constant frequency ratio and a constant loss factor ratio, the lowest maximum deflection to top 

layer thickness ratio is related to the simply support-simply support boundary condition and the highest maximum 

deflection to top layer thickness ratio is related to that the clamped-clamped boundary condition. 
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6    CONCLUSIONS 

In this paper, the analysis of nonlinear free vibrations of functionally graded beams with Magnetorheological fluid 

as core is investigated. It is assumed that the beam is located on Simply-Simply(SS), Clamped-Simply(CS) and 

Clamped–Clamped(CC) supports, and is made of three layers including Constraining Layer, Magnetorheological 

(MR) fluid and Base Layer. The governing equations of the beam are derived using the Hamilton’s principle. To 

obtain the vibrational frequencies and modeling of composite layers, the theory of Timoshenko beam with von 

Karman geometric nonlinearity are used by the Generalized Differential Quadrature (GDQ) method. In core 

modeling, only shear strain energy is considered. The shear strain in core is expressed by writing the continuity 

relationships in the layers. The complex shear modulus of the magnetorheological material in the pre-yield region is 

modeled with the complex shear modulus, which is a function of the magnetic field intensity. The validity of the 

relationships is shown by comparing the results in terms of natural frequencies with the results in other articles. The 

effects of magnetic field intensity, dimensional ratio, core thickness and constraining layer thickness on natural 

frequency and modal loss factor related to different beam modes for the three mentioned SS, CS and CC boundary 

conditions have been investigated. The results show the impact of physical and geometrical parameters regarding the 

natural frequency and modal loss factor of the sandwich beam with different modes. The manageable capabilities of 

MR fluid were perused through conducting various parametric studies. 

The main points of this study are outlined as follows:  

 In all three boundary conditions, by increasing the strength of the magnetic field (B), the natural 

frequencies ratio  NL

L





 
 
 

 would be decreased and loss factor ratio NL

L





 
 
 

 would be increased. 

 In all three boundary conditions, by increasing the length of the beam (L), the natural frequencies ratio 

NL

L





 
 
 

 would be decreased and loss factor ratio NL

L





 
 
 

 would be increased. 

 In all three boundary conditions, by increasing the power law coefficient  xn , the natural frequencies ratio 

NL

L





 
 
 

 would be increased and loss factor ratio NL

L





 
 
 

 would be decreased. 

 In all three boundary conditions, by increasing the MR layer thickness 2

1

h

h

 
 
 

, the natural frequencies ratio 

NL

L





 
 
 

 would be increased and loss factor ratio NL

L





 
 
 

 would be decreased. 

 Regarding the comparison of boundary conditions, it can be said that in different values of magnetic field 

strength, in different values of power law coefficient, in different values of MR layer thickness and in 

different values of beam length, the simply supported boundary condition has the highest natural 

frequencies ratio NL

L





 
 
 

 and the lowest loss factors ratio NL

L





 
 
 

 . 

 Regarding the comparison of boundary conditions, it can be said that in different values of magnetic field 

strength, in different values of power law coefficient, in different values of MR layer thickness and in 

different values of beam length, the clamped supported boundary condition has the highest loss factors 

ratio NL

L





 
 
 

 and the lowest natural frequencies ratio NL

L





 
 
 

 . 

 The comparison of the analysis of GDQ and FEM methods shows that the frequency values and loss factor 

obtained from GDQ method were obtained with a small percentage difference compared to FEM method. 

This shows the accuracy and precision of the GDQ method. 
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