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 ABSTRACT 

 In this paper, the low-velocity impact response of composite plates in the 

presence of pre-loads is investigated using three new models for contact 

force estimation. The boundary conditions are considered as simply 

supported and the behavior of the material is linear elastic. The equations 

are based on both classical and first order shear deformation theory and 

the Fourier series method is used to solve the governing equations. The 

mass of the impactor is considered to be large mass and therefore the 

impact response is categorized as quasi-static. In the first impact model, 

the contact force history is first considered as a half-sine and then the 

maximum contact force and contact duration are calculated.  In the 

second model, an improved two degree of freedom (ITDOF) spring-mass 

system is expressed by calculating the effective contact stiffness using a 

fast-iterative scheme. In the third model, which is expressed for the first 

time in this paper, the plate is considered as a series of masses and 

springs constructing a multi degree of freedom (MDOF) spring-mass 

system and the average forces applied to springs is introduced as the 

contact force. Validation of these models is done by comparing the 

results with the analytical, numerical and experimental results and shows 

good agreement. Results show that the new MDOF spring-mass system 

is more accurate for calculating the contact force rather than the ITDOF 

spring-mass system.                            

       © 2022 IAU, Arak Branch. All rights reserved. 

 Keywords: Low-velocity impact; Composite plate; Impact force history; 

Quasi-static response. 

1    INTRODUCTION 

OMPOSITE laminates have received much attention in recent years and their applications in various 

industries, especially in the aerospace industries, are expanding day by day. Alongside this wide range of 

applications, most of these structures are exposed to external objects in their work environment. This impact can 

damage the composite structure and make it unusable. For example, dropping a tool on a composite piece while 

working can cause significant damage to its surface. However, this damage can sometimes occur internally and may 
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not be visible. Therefore, it is important to know the impact energy limit and, consequently, the maximum contact 

force on the impact that initiates the damage. In impact analysis, two parameters are of major concern. The first 

parameter is the estimation of the contact force and the second parameter is the prediction of displacements as well 

as strains in the target structure due to the impact. Many researchers have investigated the impact on composite 

plates. Some of these researchers have investigated the impact experimentally and studied the contact force, the 

displacement of the plate and the duration of the contact in the impact (Aslan et al. [4]; Karakuzu et al. [12]; 

Zouggar et al. [29]). Some of them have also analyzed the plate's response using numerical and finite element 

methods (Her and Liang [10]; Setoodeh et al. [21]; Ansari et al. [2]). Meanwhile, many researchers have tried to 

predict plate response using analytical methods. First time, Shivakumar et al. [22] applied analytical modeling of 

impact on composite structures. They presented two models. In the first model, using the energy balance between 

the impact kinetic energy and the sum of the energies spent on the deformation of the structure, they were able to 

calculate the contact force. In the second model, the impactor and plate were considered as two rigid masses and 

their deformation as two springs. Then, by applying an initial velocity to the impactor and obtaining the response of 

the system, they obtained a time history of the contact force and the plate's displacement. Pierson and Vaziri [20] 

using the first-order shear deformation theory, proposed a model for analyzing the behavior of special orthotropic 

plates with simply supported conditions. Their model was based on the Hertz nonlinear contact law. Olsson [17] 

classified the low-velocity impact according to the impactor mass to target structure mass ratio into two categories 

of small mass and large mass. When the impactor mass is larger than the mass of the target structure, the structure 

exhibits a quasi-static behavior. Abrate [1] has studied extensively the behavior of impacted composite structures. 

His models include spring-mass models, energy balance models, complete models and a model for analysis of 

impact on infinite plates. Christoforou [7] provided a reverse response for the low-velocity impact of composite 

plates. They were able calculate the mass and velocity of the impactor with experimental dynamic response. Choi 

and Lim [5] investigated the low-velocity impact on composite laminates using the Hertz linear contact law. Khalili 

et al. [14] investigated the effect of initial stresses on transverse impact response of composite plates. Payeganeh et 

al. [19] analyzed the dynamic response of FML laminates under low-velocity impact using a two degree of freedom 

spring-mass system and using the Hertz linearized contact model presented by Choi. Khalili et al. [13] investigated 

the transverse impact response on FGM composite plates considering the effect of temperature on the properties. 

Feli et al. [9] presented a new analytical model for behavior of CNT reinforced composite plates under low-velocity 

impact. Huo et al. [11] studied low-velocity impact response of foam-core sandwich panels analytically and 

experimentally. Patil and Reddy [18] studied oblique low-velocity impact on composite plate numerically. 
In this paper, three models for low-velocity impact on composite plates in the presence of pre-loads are 

presented. The basis of the first model is the estimation of the contact force as a function of half-sine. In the second 

model, the impactor and plate are considered as a two degree of freedom spring-mass system and the stiffness of the 

contact is determined using iterative cycle. In the third model, the stiffness of the plate is considered as a series of 

springs and by the Fourier series method, the stiffness of each spring is determined. Also, the mass of the participant 

in each mode is calculated after calculating the natural frequency of the plate in that mode. Finally, the average of 

forces applied to the springs is referred to as the contact force. 

2    GOVERNING EQUATIONS  

A composite laminate with length a, width b and thickness h is shown in Fig. 1. The center of the xyz orthogonal 

coordinate system is located in the mid-plane of this laminate. The displacement components along the x, y and z 

directions are defined by u, v and w respectively. In this section, the equations for static deflection, critical buckling 

load and natural frequency of plate are examined for both classical and first-order shear deformation theories. 

 

 

 

 

 

 

 

 

 

Fig.1 

Schematic of a composite plate under central impact. 
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2.1 Classical plate theory (CPT) 

In the classical plate theory, the effects of shear deformation and rotational inertia are ignored. So, the assumed 

displacement field is given by (Whitney [28]): 

 

xu u x y t zw x y t0

,( , , ) ( , , )   

yv v x y t zw x y t0

,( , , ) ( , , )   

w w x y t( , , )  

(1) 

 

where u
0
, v

0
, and w are the plate displacements in the x, y, and z directions at the plate's mid-plane and the 

differentiation respect to x or y is denoted by a comma. The equations of motions of an especially orthotropic plate 

with considering uniform initial stress resultants Nx and Ny and applied force pz are (Whitney [28]): 

 

xxxx xxyy yyyy z x xx y yyD w D D w D w w p N w N w11 , 12 66 , 22 , 0 , ,2( 2 )         (2) 

 
where ρ0 is the plate mass per unit area and differentiation with respect to time is denoted by a dot. Also, the values 

for the flexural stiffness of the plate are (Whitney [28]): 

 
h

ij
h ij

D z Q dz i j
/ 2

2

2
( , 1,2,6)


   (3) 

 

where  ijQ  is the reduced stiffness matrix. For a simply supported plate the following boundary conditions are 

applicable (Whitney [28]): 

 

w 0  at x a0,  

w 0  at y b0,  
(4) 

2.1.1 Static loading 

For a static load, solution to Eq. (2) that satisfy the boundary conditions Eq. (4) are given by (Ugural [25]): 

 

sin( / )sin( / )mnW A m x a n y b    (5) 

 

and the loading function given by (Ugural [25]): 

 

 sin( / )sin( / )z mnp q m x a n y b    (6) 

 

where qmn is the term of a Fourier series representation of the load. For a concentrated force p which is applied at a 

point to the (x1, y1) of the plate, qmn are given by (Ugural [25]): 

 

1 1

4
sin( / )sin( / )mn

p
q m x a n y b

ab
   (7) 

 

Substituting Eqs. (5) and (6) into the equation of motion Eq. (2) produces: 

 

    

4

2 2
2 44 4

11 12 66 222 2

mn

mn

x y

a q
A

ma nRa
D m D D mnR D nR N N

 


    

        
     

  
(8) 
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where R = a/b is the aspect ratio of the plate. The displacement at any point in the plate may be calculated as (Ugural 

[25]): 

 

   
1 1

sin / sin /
M N

mn

m n

w A m x a n y b 
 

   (9) 

 

where m and n are the half-wave counters and M and N are the half-wave numbers in the x and y respectively. 

2.1.2 Critical buckling load 

In order to find the critical value of the loads Nx and Ny we must utilize Eq. (2) with initial in-plane force effects and 

pz = 0. Considering a form similar to Eq. (5) for the deflection and Substituting it into Eq. (2) produces (Whitney 

[28]): 

 

2 4 2 2 2 4 4 2 2 2 2

11 12 66 222( 2 ) X yD m D D m n R D n R a N m N n R               (10) 

 

The in-plane loads considered of the form (Whitney [28]): 

 

0 0x yN N N kN       (11) 

 

where N0>0 and k denote the ratio of Ny/Nx. Therefore from Eq. (10) obtained (Whitney [28]): 

 
2 4 2 2 2 4 4

11 12 66 22

0 2 2 2 2

2( 2 )

( )

D m D D m n R D n R
N

a m kn R

     



 (12) 

 

The critical buckling load corresponds to the value of m and n which yields the lowest value of N0. 

2.1.3 Natural frequency 

The governing equation for free vibration can be obtained from Eq. (2) by ignoring the lateral load (pz). The solution 

to this equation must satisfy the boundary condition as well as the initial conditions with respect to time. The 

solution considered of the form (Whitney [28]): 

 

    sin / sin / i t

mnw A m x a n y b e     (13) 

 
where ω is the natural frequency of vibration. Substituting Eq. (13) into the governing equation and solving the 

natural frequency obtained: 

 

 
2 24

2 4 2 2 2 4 4

11 12 66 224

0

2 2mn x y

ma nRa
D m D D m n R D n R N N

a




 

    
              

  (14) 

2.2 First order shear deformation theory (FSDT) 

In the first order shear deformation theory the assumed displacement field is given by (Dobyns [8]): 

 
0

0

( , , )

( , , )

(

( , ,

,

( , , )

)

)

,

x

y

u u x y t z

v v x

x y t

x y t

w

y t z

w x y t







 

   (15) 
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where ψx and ψy are the shear rotations in the x and y directions. The equations of motion of a special orthotropic 

plate with considering uniform initial stress resultants are (Dobyns [8]): 

 

 11 , 66 , 12 66 , 55 55 ,x xx x yy y xy x x xD D D D A A w I             

 12 66 , 66 , 22 , 44 44 ,x xy y xx y yy y y yD D D D A A w I             

   55 , 55 , 44 , 44 ,x x x xx y y y yy zA A N w A A N w p Pw             

(16) 

 

where   is a shear correction factor and is popularly taken to be  2
/12 and the inertias are given by (Dobyns [8]): 

 
/ 2

/ 2
1,2,6

h

ij ij
h

A Q dz ij


     

/ 2

/ 2
, 4,5

h

ij ij
h

A C dz i j


   

   
/ 2

2

/ 2
, 1,

h

h
P I z dz


    

(17) 

 
where ρ is density of plate and Cij are transverse shear stiffnesses, as defined by (Whitney and Pagano [27]). For a 

simply supported rectangular plate of uniform thickness the boundary conditions are given by (Dobyns [8]): 

 

 
, 0x xw    at 0,x a  

, 0y yw    at 0,y b    
(18) 

2.2.1 Static loading 

For a static load, solutions to Eq. (16) that satisfy the boundary conditions Eq. (18) are given by (Dobyns [8]): 

 

   cos / sin /x mnA m x a n y b    

   sin / cos /y mnB m x a n y b    

   sin / sin /mnW C m x a n y b    

(19) 

 

and the loading function is given by an equation similar to Eq. (6). Substituting Eq. (19) and the loading function 

into the equations of motion Eq. (16) produces (Dobyns [8]): 

 

11 12 13

12 22 23

13 23 33

0

0

mn

mn

mn mn

L L L A

L L L B

L L L C q

     
    

    
         

 (20) 

 

where the values for the matrix parameters are given in Dobyns [8]. By solving Eq. (20) for Cmn the displacement at 

any point in the plate may be calculated as (Dobyns [8]): 

 

   
1 1

sin / sin /
M N

mn

m n

w C m x a n y b 
 

  (21) 

2.2.2 Critical buckling load 

Considering a form similar to Eq. (19) and Substituting it into Eq. (16) without the term including time and 

transverse load produces: 
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11 12 13

12 22 23

13 23 33

0

0

0

mn

mn

mn

L L L A

L L L B

L L L C

     
    

    
         

 (22) 

 

By setting determinant of the coefficients equal to zero, the buckling load is calculated. Moh and Hwu [16] 

found an equation to calculate the critical buckling load (Vinson and Sierakowski [26]): 

 

0

0 2

0

(1 )

1 ( / ) (1 )x y

p
N

k an bm



  



     

 

2 2

2 *

44 55

1 1m n
D

A a A b
 

    
     

     

 

2 22

11 66

55

x

m n
D D

A a b




    
     

     

 

2
2 2

66 22

44

( ) ( )y

m n
D D

A a b




 
  

 
 

* 2 2

0

0 2

55 44

D p m n

a A A
   

 
4 2 2 42 2

0 11 12 66 222
2 2

a m m n n
p D D D D

a a b bm

         
           

         

 

 
4 2 2 42 2

*

0 11 66 12 22 12 12 66 22 662
2

a m m n n
D p D D D D D D D D D

a a b bm

          
              

         

 

(23) 

 

The critical buckling load corresponds to the value of m and n which yields the lowest value of N0. 

2.2.3 Natural frequency 

The frequency of natural vibration may be computed by assuming for displacements (Dobyns [8]): 

 
i t

x x e            
i t

y y e              i tw We   (24) 

 

where 
x , y , and W are given by Eq. (19). Substituting the assumed displacements Eq. (24) into the equations of 

motion Eq. (16) results in (Dobyns [8]): 

 
2

11 , 66 , 12 66 , 55 55 ,( )
mn mn mn mn mn mnx xx x yy y xy x x mn xD D D D A A W I               

2

12 66 , 66 , 22 , 44 44 ,( )
mn mn mn mn mn mnx xy y xx y yy y y mn yD D D D A A W I               

0 0 2

55 , 55 , 44 , 44 ,( ) ( )
mn mn mn mnx x x xx y y y yy mn mnA A N W A A N W PW              

(25) 

 

Substituting Eq. (19) and its derivatives into Eq. (25) results in a set of homogeneous equations that may be 

solved for the natural frequencies of vibration (Dobyns [8]): 

 

11 12 13

12 22 23

13 23 33

0

0

0

mn

mn

mn

L L L A

L L L B

L L L C

      
          
          

 (26) 
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where 
11L  , 

22L  , and 
33L   are given by (Dobyns [8]): 

 
2

11 11 mnL L I            2

22 22 mnL L I            2

33 33 mnL L P    (27) 

 

Three eigenvalues and their respective eigenvectors result from Eq. (26) for each m, n pair and natural 

frequencies and mode shapes are obtained. 

3    NEW CONTACT FORCE ESTIMATION PROCEDURES  

First, to prepare the initial information, the static displacement of the plate under concentrated unit force (p = 1) at 

the point (x1, y1) is calculated from Eq. (9) or Eq. (21) and then the global static stiffness (Kbs) is obtained from: 

 

1 1( , )
bs

p
K

w x y
  (28) 

 

Also, the natural frequency of the plate in different modes is calculated for both CLT and FSDT and the smallest 
(fundamental frequency ωf) is determined. Based on this preliminary data, three new models for estimating the 

contact force are introduced: the half-sine (HS) model, the improved two degree of freedom (ITDOF) model, and the 

multi degree of freedom (MDOF) model. In all of these models, the impactor mass (isotropic sphere) relative to 

plate mass is assumed to be large and thus the impact response is assumed to be quasi-static. 

3.1 Half-Sine model (HS) 

Because the impactor mass is large relative to the mass of the plate, the nature of the plate response is quasi-static, 

and therefore this response can be considered as a half-sine function (Olsson [17]). The maximum contact force 

(Fmax) is calculated using energy balance method from (Apetre et al. [3]): 

 
2 1 1/

2max max

01/

1

2 2( 1)
i

bs

F F
M V

K K







 


 (29) 

 
where Mi and V0 are mass and initial velocity of the impactor. According to Hertz contact law, μ is assumed to be 

1.5. Also, K is the Hertz contact stiffness obtained from (Abrate [1]): 

 

1/ 24

3
eff effK E R              

1 2

1 1 1

effR R R
             

2 2

1 2

1 2

1 11

eff

v v

E E E

 
   (30) 

 

In this Equations subtitle 1 is related to the impactor and subtitle 2 is related to the target structure. Since in this 

paper a flat plate is considered, so R2 is infinite and Reff is equal to the radius of impactor. The characteristic equation 

of the system of a plate with length a, width b and mass Mp with a point mass Mi attached at the plate in impact point 

(x1, y1) on the mid-plane of the plate is (Soedel [23]): 

 

2 21 1

2 2 2
1 1

4 1 1
sin sin 0

( )

M N

m np mn k i k

m x n y

M a b M

 

   

   
    

    
  (31) 

 
where ωk is the natural frequency of the system consists of the plate and the mass attached to it. After solving this 

equation, the lowest value of the ωk will be the fundamental frequency of the system (ω1
*
). Finally, the contact force 

Fc(t) is obtained by estimating a half-sine function according to the following equation: 

 

max 1 1( ) sin( ), 0 /cF t F t t       (32) 
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Flowchart of the present HS contact force estimation procedure is indicated in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Flowchart of the present HS model. 

3.2 Improved two degree of freedom spring-mass model (ITDOF) 

In this model, the impactor and plate are expressed as two rigid bodies and their deformation as two springs. The 

initial impact velocity is V0 and the other initial conditions are considered zero. Schematic of this model shown in 

Fig. 3. 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Schematic of the two degree of freedom impact model. 

 

According to Newton's second law, the equation of motion of this two degree of freedom system is: 

 

0 0

0 0( )

i i ic c

p p pc c bs

M x xK K

M x xK K K

 

  

           
        

            
 (33) 

 

where Mi and Mp
*
 are the impactor mass and effective plate mass, Kc

*
 and Kbs are the effective (modified) contact 

stiffness and the global bending stiffness of the plate, and xi and xp are the impactor and plate displacements, 

respectively. Swanson presented an approximate relation for effective mass estimation (Swanson [24]): 

 

bs

f

p

K

M



  (34) 
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where ωf is the lowest natural frequency of the plate. The calculated effective mass from this equation is used in the 

present model. The contact force Fc(t) is obtained by solving Eq. (33): 

 
2 2

0 2 1 1 2

2 2

1 21 2

( )( ) sin( ) sin( )
( ) ( )

( )

bs c i c i

c bs p

c i

K V K M K M t t
F t K x t

K M

   

  

 



  
    

  
 (35) 

 
where ω1 and ω2 are the natural frequencies of the two degree of freedom spring-mass system. The effective contact 

stiffness used in Eq. (35) is obtained from an iterative scheme. In the first iteration, the maximum contact force is 

obtained from (Choi and Lim [5]): 

 
(1)

0m bs iF V K M  (36) 

 

Then the effective contact stiffness is calculated from (Choi and Lim [5]): 

 
1/ 3 2 / 3

c mK F K  (37) 

 

where K is the Hertz contact stiffness. Using this effective stiffness, the maximum contact force can be achieved 

again. This action will be repeated until the maximum contact force does not change. The rate of convergence is 

very fast. Finally, the correct effective contact stiffness (Kc
*
) will be calculated and by replacing it in Eq. (35) 

contact force history will be obtained. Flowchart of the present ITDOF model shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Flowchart of the present ITDOF model. 

3.3 Multi degree of freedom spring-mass model (MDOF) 

In this model, instead of considering a spring equivalent to the global stiffness of the plate, the plate is considered as 

a system consisting of M×N mass and series springs, according to Fig. 5. For this purpose, the plate considered as an 

equivalent lamina and according to the superposition principle, the contribution of each mode (m, n) of the plate can 

be defined as a single spring and mass. If the unit load that is quasi-static applied at (x1,y1) in the plate, each spring 

has the same force share, but the displacement at this point arising from each mode (m, n) is proportional to the 

deformation of each individual spring and the rate of this deformation also depends on the stiffness of the spring. 
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Fig.5 

Schematic of the multi degree of freedom impact model. 

 

Firstly, using Eq. (5) or Eq. (19) the displacement of plate in each mode (m, n) shown with wmn and calculated. 

Then, considering concentrated unit force (p = 1) the stiffness of each spring corresponding to each mode (m, n) in 

the static deformation shown with Kmn and obtained from: 

 

mn

mn

p
K

w
  (38) 

 
The natural frequency of the bending vibrations of the plate at each mode (ωmn) calculated and then the 

contribution of the participant's mass to the vibration of the plate in each mode at the point of impact shown with  

Mmn and obtained from: 

 

2

mn

mn

mn

K
M


  (39) 

 

In this model, the effective contact stiffness is obtained in a process similar to the ITDOF model. After 

determining the mass and stiffness values of each mode, with considering the effective contact stiffness as the first 

spring, the equation of motion of this (M×N) +1 degree of freedom system is: 
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 (40) 

 

where xi is displacement of impactor and xmn is displacement of any of the Mmn masses. By solving this equation, the 

average of the forces applied to the springs is the contact force and obtained from: 

 

1 1

1
( )

M N

c mn

m n

F t F
M N  




  (41) 

 

By applying the unit central load on the plate, the stiffness of the springs in the MDOF model for M=N=20 in a 

specific case is calculated from Eq. (38) and shown in Fig. 6. When the impact is applied to the center of the plate 

(concentrated static load), the contributory mass for all modes is equal to one-fourth the mass of the plate, and the 

displacement of the plate is only calculated for the odd modes. As expected, as the number of modes increases, the 
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plate displacement under a constant static load decreases in each mode and therefore the stiffness corresponding 

each mode increases. The final value of M and N for use in this model is the number of modes in which the plate 

deflection to convergence. Also, because the impactor only contacts the first mass in the set of masses, the 

displacement of the first mass is considered as the displacement of the plate during impact. Flowchart of the present 

MDOF model shown in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Stiffness of springs in different modes. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Flowchart of the present MDOF model. 

4    NUMERICAL SIMULATIONS  

In order to validate the models presented in this paper, in addition to the available references, numerical results from 

the ABAQUS software have also been used. For this purpose, the analysis was performed with ABAQUS/Explicit 

solver. The Analytical Rigid type used for impactor modeling. For composite plate layering, Conventional Shell 

elements and in plate meshing, S4R elements are used. The arrangement of the meshes modeled from Khalili et 
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al.[15] according to Fig. 8. Plate elements are Quad type and the Free technique is applied to mesh. Penalty Contact 

is used to simulate the contact between the impactor and the plate. Vertical contact behavior is defined as Hard 

Contact and tangential contact behavior is defined as Frictionless. The boundary conditions of the plate are simply 

supported and the impactor can only be moved in the impact direction. The initial velocity of the impactor is 

assigned to a reference point on the imoactor using Predefined Field and the initial loads applied as the shell edge 

load. Also, since the purpose of this article is to investigate the low-velocity impact and find the contact force before 

reaching to damage, very minor damage at the impact site is ignored and the simulation does not enter to damage 

range in the plate. The area of impact after the impact in a specific case is shown in Fig. 9. 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Mesh pattern of the plate (Khalili et al. [15]). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Relative position of impactor and plate and plate's deflection 

contour after impact. 

5    RESULTS AND DISCUSSION   

In order to validate the presented models, first the results without considering pre-loads are compared with Pierson 

and Vaziri [20] analytical model Delfosse. Experimental results which are adapted from Pierson and Vaziri [20]. 

Then the results with considering pre-loads are compared with Choi [6] numerical results. 
According to Pierson and Vaziri [20], impactor considered a steel isotropic sphere (E = 200 GPa, υ = 0.3) with a 

radius of 12.7 mm, mass of 6.15 kg and initial velocity of 1.76 m/s. The plate specifications are given in Table 1. It 

should be noted that the plates examined in these references are quasi-isotropic and are not special orthotropic and 

contain values A16, A26, D16 and D26 in their stiffness matrix. However, in many practical cases the laminates have 

sufficient number of plies to render the coupling vanishingly small (Pierson and Vaziri [20]). 

Table 1 

Characteristics of the plate used in validating the results (Pierson and Vaziri [20]). 

T800H/3900-2 CFRP plate 

simply supported 
Property and boundary condition 

Layup: [45/90/-45/0]3s Size: 127×76.2×4.65 mm 

3.5 GPa G12  129 GPa E11 

3.5 GPa G13  7.5 GPa E22 

2.6 GPa G23  0.33 υ12 

1540 Kg/m3 ρ  0.194 mm Ply thickness 
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Fig. 10 and Fig. 11 show the comparison of the results of the present models with the references for contact force 

in CPT and FSDT. As can be seen, the results of these models are in good agreement with the results of Pierson and 

Vaziri. Because the plate's thickness is out of thin-walled range, the results for FSDT is more accurate than CPT. 

 

 

 

 

 

 

 

 

 

Fig.10 

Comparison the results of present models with references and 

numerical simulation with ABAQUS in CPT (the results of 

Delfosse adapted from Pierson and Vaziri [20]). 

  

 

 

 

 

 

 

 

Fig.11 

Comparison the results of present models with references and 

numerical simulation with ABAQUS in FSDT (the results of 

Delfosse adapted from Pierson and Vaziri [20]). 

 

In order to compare the results including pre-loads with the numerical model of Choi, the impactor considered 

with a radius of 6.35 mm, mass of 1 kg and initial velocity of 2.77 m/s and the plate specifications are according to 

Table 2. The initial biaxial load is tension and equal to 3Ncr=2.406e5 N/m. 

Table 2 

Characteristics of the plate used in validating the results (Choi [6]). 

 

The comparison of the results of the present models with the Choi results for contact force in CPT and FSDT is 

shown in Fig. 12 and Fig. 13. The figures well illustrate the good performance of the models presented in predicting 

contact force in presence of pre-loads. The deflection of plate due to impact in CPT and FSDT is shown in Fig. 14 

and Fig. 15. This figures also show the good performance of the models presented in predicting the deflection, 

especially in the MDOF model. In this section, the results are examined for a=b=160 mm without changing 

thickness and h=8 mm (h/a=1/20) without changing dimensions and compared with ABAQUS results. The material 

of the plate used in this section is similar to Pierson and Vaziri (Table 1) and the plate's layup is [0/90]10s. The mass 

of impactor is always 10 times the mass of the plate and the initial velocity of the impactor is selected so that the 

maximum deflection of the plate is in the linear range (w/h<0.5). Also, the pre-loads applied in two cases 0.25Ncr 

and -0.25Ncr which the Ncr in each method is determined according to the calculated critical buckling load of that 

method. The critical buckling loads of each method shown in Table 3. 

Table 3 

Critical buckling load (N/m) for each method. 

 ABAQUS CPT FSDT 

a=b=160 mm 1.528e5 1.461e5 1.444e5 

h=8 mm 1.281e6 1.286e6 1.224e6 

Graphite/Epoxy plate 

simply supported 
Property and boundary condition 

Layup: [0/45/0/-45/0]2s Size: 152.4×101.6×2.69 mm 

5.5 GPa G12  120 GPa E11 

5.5 GPa G13  7.9 GPa E22 

5.5 GPa G23  0.3 υ12 

1580 Kg/m3 ρ  0.135 mm Ply thickness 
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Fig.12 

Comparison the results of present models with Choi results 

and numerical simulation with ABAQUS in CPT. 

  

 

 

 

 

 

 

 

 

Fig.13 

Comparison the results of present models with Choi results 

and numerical simulation with ABAQUS in FSDT. 

  

 

 

 

 

 

 

 

 
Fig.14 

Time history of deflection using current models in CPT and 

numerical simulation with ABAQUS compared with Choi 

results. 

  

 

 

 

 

 

 

 
 

Fig.15 

Time history of deflection using current models in FSDT and 

numerical simulation with ABAQUS compared with Choi 

results. 

 

Figs. 16 to 19 shows the contact force between the impactor and the plate in the presence of tensile and 

compressive pre-loads using two theories CPT and FSDT for the dimensional ratio a/b = 1. The mass and velocity of 

the impactor  is 1.53 kg and 1 m/s, respectively. Also, the maximum numerical values of force, final time, and sub-

curve level in these four states are given in Table 4. As can be seen, although the plate thickness is 3,875 mm and the 

plate is within the wall-narrow range, the results of the FSDT, especially in the MDOF model, are more favorable 

than the CPT results. Among the models presented, the results of the MDOF model are much closer to those of 

Abacus than other models. This is especially true in the maximum force. The results also show that the presence of a 

pressure precursor reduces the maximum contact force and increases the contact time. At the same time, the area 

under the force-time curve is almost equal for the two tensile and compressive precursors, and therefore, the force 

pulse is almost the same. 
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Table 4 

The measured characteristics for a=b=160 mm. 

Theory and 

pre-load 
Model Final time Maximum force Area under the curve 

CPT and 

tension pre-

load 

ABAQUS 4.620 ms 1436.680 N 3.056 N.s 

HS 4.355 ms 1082.724 N 3.002 N.s 

ITDOF 4.500 ms 1105.239 N 3.063 N.s 

MDOF 4.575 ms 1181.591 N 3.066 N.s 

FSDT and 

tension pre-

load 

ABAQUS 4.620 ms 1436.680 N 3.056 N.s 

HS 4.430 ms 1040.991 N 2.936 N.s 

ITDOF 4.775 ms 1061.965 N 3.061 N.s 

MDOF 4.800 ms 1376.192 N 3.112 N.s 

CPT and 

compression 

pre-load 

ABAQUS 5.600 ms 1181.580 N 3.017 N.s 

HS 5.524 ms   863.106 N 3.035 N.s 

ITDOF 5.725 ms   876.083 N 3.062 N.s 

MDOF 5.700 ms   927.332 N 3.075 N.s 

FSDT and 

compression 

pre-load 

ABAQUS 5.600 ms 1181.580 N 3.017 N.s 

HS 5.606 ms   837.550 N 2.989 N.s 

ITDOF 5.825 ms   849.507 N 3.063 N.s 

MDOF 5.700 ms 1038.373 N 3.079 N.s 

 

 

 

 

 

 

 

 

 

 

Fig.16 

Time history of contact force using current models in CPT 

and numerical simulation with ABAQUS for a=b=160 mm in 

presence of tension pre-load. 

  

 

 

 

 

 

 

 

 

Fig.17 

Time history of contact force using current models in FSDT 

and numerical simulation with ABAQUS for a=b=160 mm in 

presence of tension pre-load. 

  

 

 

 

 

 

 

 

 
Fig.18 

Time history of contact force using current models in CPT 

and numerical simulation with ABAQUS for a=b=160 mm in 

presence of compression pre-load. 
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Fig.19 

Time history of contact force using current models in FSDT 

and numerical simulation with ABAQUS for a=b=160 mm in 

presence of compression pre-load. 

 

Figs. 20 to 23 show the contact force between the shock absorber and the plate in the presence of tensile and 

compressive precursors using two theories CPT and FSDT for a/h = 1/20 ratio. The mass and velocity of the 

impactor are 3.154 kg and 1m/s, respectively. Also, the maximum numerical values of force, final time and sub-

curve level in these four states are given in Table 5. Because the thickness of the plate in this case is at the boundary 

of the wall, the results of the MDOF model for CPT are very different from the results obtained from ABAQUS. But 

this model works very well in FSDT theory. Also, the HS model in FSDT theory has calculated the final time more 

accurately. In this case, the results of the MDOF model are more in line with the results of ABAQUS than other 

models, and indicate the superiority of this model over other models. 
 

 

Table 5 

The measured characteristics for h=8 mm. 

Theory and pre-

load 
Model Final time Maximum force 

Area under the 

curve 

CPT and tension 

pre-load 

ABAQUS 2.500 ms 5076.350 N 6.302 N.s 

HS 2.108 ms 4141.432 N 5.557 N.s 

ITDOF 2.450 ms 4288.533 N 6.335 N.s 

MDOF 2.500 ms 6199.800 N 6.362 N.s 

FSDT and 

tension pre-load 

ABAQUS 2.500 ms 5076.350 N 6.302 N.s 

HS 2.256 ms 3648.148 N 5.240 N.s 

ITDOF 2.875 ms 3785.925 N 6.321 N.s 

MDOF 2.500 ms 4639.305 N 6.383 N.s 

CPT and 

compression pre-

load 

ABAQUS 3.060 ms   4367.32 N 6.275 N.s 

HS 2.674 ms 3405.016 N 5.796 N.s 

ITDOF 3 ms 3515.122 N 6.333 N.s 

MDOF 3.175 ms 5464.689 N 6.440 N.s 

FSDT and 

compression pre-

load 

ABAQUS 3.060 ms   4367.32 N 6.275 N.s 

HS 2.839 ms 3077.144 N 5.561 N.s 

ITDOF 3.300 ms 3135.462 N 6.308 N.s 

MDOF 3.100 ms 3798.343 N 6.381 N.s 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig.20 

Time history of contact force using current models in CPT 

and numerical simulation with ABAQUS for h=8 mm in 

presence of tension pre-load. 
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Fig.21 

Time history of contact force using current models in FSDT 

and numerical simulation with ABAQUS for h=8 mm in 

presence of tension pre-load. 

  

 

 

 

 

 

 

 

 
Fig.22 

Time history of contact force using current models in CPT 

and numerical simulation with ABAQUS for h=8 mm in 

presence of compression pre-load. 

  

 

 

 

 

 

 

 
 

Fig.23 

Time history of contact force using current models in FSDT 

and numerical simulation with ABAQUS for h=8 mm in 

presence of compression pre-load. 

 

In this section, the effect of pre-load on the plate response and the effects of impactor mass at constant velocity 

and impactor velocity at constant mass are investigated. The FSDT-ITDOF model has been used to evaluate the 

results. Impactor mass and velocity are considered to be 1.53 kg and 1 m/s, respectively, a=b=160 mm and other 

specifications are similar to the previous section. The effect of the presence of pre-load on the plate response is 

shown in Fig. 24. As can be seen, the compressive pre-load decreases the maximum contact force and increases the 

contact time, while the tensile pre-load increases the maximum contact force and decreases the contact time. Also, 

the effect of compressive pre-load is greater than tensile pre-load. By applying a compressive pre-load of -0.5 Ncr , 

the maximum contact force is decreased by about 28.57% and the contact time is increased by about 27.14%, while 

by applying a tensile pre-load of 0.5 Ncr , the maximum contact force is increased by about 14.78% and the contact 

time is decreased by about 13.73%. 

 

 

 

 

 

 

 

 
 

Fig.24 

Effect of pre-load on the contact force history. 
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The effect of the impactor mass on the plate response at V0 = 1 m/s is shown in Fig. 25. Increasing the impactor 

mass increases both the maximum contact force and the contact time. By increasing the impactor mass from 1 to 2 

kg, the maximum contact force is increased by about 27% and the contact time is also increased by about 28%. 

 

 

 

 

 

 

 

 
 

 

 

Fig.25 

Effect of the impactor mass on the contact force history. 

 

The effect of impactor velocity on the plate response for impactor mass of Mi = 1.53 kg is shown in Fig. 26. This 

figure shows that changes in the impactor velocity have no effects on the contact time. However, increasing the 

impactor velocity increases the maximum contact force. By increasing the impactor velocity from 0.5 to 1.5 m/s, the 

maximum contact force is increased by about 67.3%. 

 

 

 

 

 

 

 

 
 

 

 

Fig.26 

Effect of impactor velocity on the contact force history. 

6    CONCLUSION 

In this paper, three models for predicting low-velocity impact response on composite plates were presented in the 

presence of pre-loads. These models are suitable for quasi-static impact. The validation of the results of these 

models was done using the analytical, experimental and numerical results of the articles available in the references. 

Also, the results of these models for a special orthotropic plate were compared with the results obtained from 

ABAQUS software in two modes: a/b = 1 dimensional ratio and thickness at wall-to-wall boundary (a/b = 1.20). 

The models presented in this article are simple and have high computational speed. Among the models offered, the 

MDOF is more accurate than other models, despite its high computational speed. 
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