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 ABSTRACT 

 In this study, free vibration of stepped beam which is parallel to a 

uniform beam with same length and elastically connected to it, is 

considered. Euler-Bernoulli beam theory has been applied to drive 

equations of motion, abrupt change in height of beam considered as 

step and Winkler-type elastic layer model serve as connection 

between beams. The differential transform method (DTM) is 

applied to determine dimensionless frequencies and mode shapes. In 

the case of two uniform parallel beams accuracy of solution is 

verified by comparing with results reported by other methods. It is 

assumed all supports have one type and fully clamped and fully 

hinged supports considered for boundary conditions. The effects of 

different parameters such as: step location and ratio, connecting 

layer coefficient and boundary conditions on dimensionless 

frequencies and mode shapes investigated and discussed. This 

problem handled for first time in present study and results are 

completely new. 

                                 © 2023 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

EAMS are one of the most important and useful elements in structures and machines and have allocated a 

wide range of application to themselves in modern engineering and especially mechanical engineering, civil 

engineering and aerospace engineering. A lot of research has been conducted on the dynamical behavior of a single 

beam with homogeneous material. The behavior of this beam has been perfectly identified.  Although, when there 

exists a discontinuity in the beam such as a step or there is a set of connected beams, still there are a lot of issues to 

be studied. Elastically connected beams have wide applications in tall buildings, railways and in nano technology 

such as multi-walled carbon nano tube. Oniszczuk [1] studied the free vibration of two parallel simply supported 

beams which were connected to a Winkler elastic layer. This researcher [2] studied the forced vibration of double-

beams which had an elastic connection under the influence of harmonic load and moving force. Mao [3] concluded a 

general solution by using the Adomian modified decomposition method for the free vibration of elastically 

connected multiple-beams and also have elastic boundary conditions. Huang and Liu [4] investigated the free and 
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forced vibrations of double-parallel beams with different boundary conditions by the substructure method. 

Mirzabeigy and Madoliat [5] investigate the effect of cubic type nonlinearity in elastic inner layer on small 

amplitude vibration. The free and forced vibrations of the general form of the double-beam system with arbitrary 

intermediate supports and viscoelastic layer under the general boundary conditions are investigated by Zhao and 

Chang [6]. Hao et al [7] make use of modified Fourier-Ritz method for free vibration analysis of double-beam 

system with general boundary conditions. In none of the mentioned researches the effect of discontinuity such as 

step in the vibration of parallel beams has not been taken into consideration. The differential transform is a semi-

analytic and reliable method for solving ordinary and partial differential equations. This method was first used in 

engineering problem by Chinese scientist for analyze electric circuits problems. Chen and Ho [8] applied this 

method for eigenvalue problems and Malik and Dang [9] applied method for vibration analysis of continuous 

systems, then, differential transform method (DTM) used for vibration analysis of different structures. Kaya and 

Ozgumus [10] study flexural–torsional-coupled vibration analysis of axially loaded closed-section composite 

Timoshenko beam by DTM. Shariyat and Alipour [11] applied DTM to vibration and modal stress analyses of 

circular plate made of functionally graded materials. Arikoglu and Ozkol [12] applied DTM for free vibration of 

composite beams with viscoelastic core. Mao [13] designed of piezoelectric modal sensors for cantilever beams with 

intermediate support by using differential transformation method. Shahba and Rajasekaran [14] proposed new 

method called differential transform element method for free vibration and stability analysis of tapered beams made 

of functionally graded material and many other problems is structural dynamics which handled by DTM [15-22]. 

Beside applications in structural analysis, DTM has wide range of applications in other fields of science and 

engineering [23-25]. João Fernandes da Silva et al. [26], focused on the free vibration analysis of Euler-Bernoulli 

beams under non-classical boundary conditions, and reached to this result that the behavior of these beams are 

similar to a free-free beam. Jingtao DU et al. [27] studied free vibration analysis of elastically connected multiple-

beams with general boundary conditions using improved Fourier series method. 

In this study, free vibration of step beam elastically connected by Winkler type spring to uniform beam is 

considered. DTM has been used for vibration analysis and step considered as abrupt change in beam’s height. Effect 

of different parameters on frequencies and mode shapes are investigated and some new and useful results reported 

for first time. 

2    THE MATHEMATICAL MODEL   

Consider a stepped beam which is parallel to a uniform beam with same length and elastically connected to it as 

shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

Fig.1 

Stepped beam elastically connected to a uniform beam. 

 

Four coordinates consider for derive mathematical model of system, although, in fact two in-dependent 

coordinates exist and others coordinates are dependent. Equations of motion with Euler-Bernoulli beam theory are 

as follow: 
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It is defined that for any ( 1..4),j j  jE is elasticity modulus, j is density, 

3

12

j j

j

b h
I  is the cross-sectional 

moment of inertia, jA is cross-section area. jb and jh are the width and thickness, respectively. k is the stiffness of 

the Winkler-type elastic layer between beams. Using separation of variables as: 

 

( , ) ( ) , 1..4i t

j j j jy x t y x e j     (5) 

 

where is circular frequency and defining dimensionless coordinates as: 
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where L is length of beams, we re-write Eqs. (1)-(4) as follow: 
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where 
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It is assumed supports have one type and two different types considered for supports: clamp and hinge. When 

supports type be clamp, then the relevant boundary conditions associated Eqs. (7)-(10) are: 
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And for hinge supports the relevant boundary conditions associated Eqs. (7)-(10) are: 
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For upper beam with discontinuous cross-section due to step, the continuity conditions in step location expressed 

as: 

 

1 2( ) (1 ),y R y R     (14) 
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where sx
R

L
 is dimensionless step location and 2

1

h

h
  is step ratio. We need other four equations for the 

continuity conditions in lower beam, because, although lower beam has uniform cross-section but employed 

coordinates for this beam forced us to use continuity conditions as follow: 
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3    THE DIFFERENTIAL TRANSFORM METHOD   

Differential transform method is an efficient semi-analytic approach for solving general differential equation that 

uses the form of polynomials as the approximations to the exact solutions that are sufficiently differentiable. The 

conceptual feature of the DTM is to transform the governing differential equations and boundary conditions as well 

as continuity conditions into a set of algebraic equations using a transformation role. Solving the algebraic equations 

in the usual way leads to accurate results with fast convergence rate and small computational effort. 

A function ( )x t , analytical in domain D, can be represented by a power series around any arbitrary point in this 

domain. Differential transform of a function ( )x t  is defined as follows: 
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In Eq. (22), ( )x t is the original function and ( )X k is the transformed function. Differential inverse transform of 

( )X k is defined as: 
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Combining Eq. (22) and Eq. (23), we obtain the following equation 
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In principal applications, the function ( )x t  is shown by a finite numbers of terms and Eq. (24) can be written as: 
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which implies that: 

 

1 0

( )
( ) .

!

k k

k
k N t

t d x t
x t

k dt



  

 
  

 
    (26) 

 

Is negligibly small. In this study, the convergence of the natural frequencies determines the value of .N  Basic 

transformation rules depending on the DTM for differential equations and boundary conditions are tabulated in 

Tables 1 and 2, respectively. 

4    APPLICATION OF THE DTM TO GOVERNING EQUATIONS  

In this section, the DTM applied to Eqs. (7)-(10) by using the transformation rules given in Table 1 and the 

following recurrence equations is obtained: 
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Without loss of generality, assume all boundary conditions are clamp and solution procedure is explained for this 

type of boundary conditions.  Using DTM rules given in Table 2 to Eq. (12), the boundary conditions at each ends 

transformed as: 

 

(0) (1) 0, 1..4j jY Y j    (31) 

 

In clamp boundary condition the values of bending moment and shear force are unknown. Therefore, we assume 

the transformation of these values for each ends as follow: 

 

(2) , (3) , 1..4j j j jY a Y b j    (32) 

 

where ,j ja b are unknown parameters. 
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From recurrence equations in Eqs. (27)-(30) and by using Eq. (31) and Eq. (32), ( )( 1..4)jY n j  . For all values 

of n, can be determined in terms of other parameters such as: ,... . For example for 
1( )Y n we have: 

 
2 .(31)

1 1 1 1 1 3 1

2 .(31)

1 1 1 1 1 3 1

2 .(31&32) 2

1 1 1 1 1 3 1 1 1 1 1 3

0 : 4! (4) (0) ( (0) (0)) 0 (4) 0,

1: 5! (5) (1) ( (1) (1)) 0 (5) 0,

6! 2!
2 : (6) (2) ( (2) (2)) 0 (6) ( ( ))

2! 6!

Eq

Eq

Eq

n Y P Y K Y Y Y

n Y P Y K Y Y Y

n Y P Y K Y Y Y P a K a a





 

      

      

         ,

...

 (33) 

 

Applying transformation rules in Table 2 to the continuity conditions of upper beam yields: 
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Also, continuity conditions of lower beam transformed as follows: 
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Substituting obtained ( )( 1..4)jY n j   into transformed continuity conditions in Eqs. (34)-(41), yields eight 

algebraic equation which can be arranged and expressed in the matrix form as follow: 
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where ( 1..64)rQ r  are polynomials of  . The coefficients of these polynomials are determined from values of 

, , , ( 1..4)j jR P K j  . For the non-trivial solutions of Eq. (42), it is necessary that the determinant of the coefficient 

matrix is equal to zero. Mode shapes can be determined in similar approach as explained by other references [13,16]. 

The explained procedure can extended very easy for hinged beams. Using DTM rules given in Table 2 to Eq. (13), 

the boundary conditions at each ends with hinge support transformed as: 

 

(0) (2) 0, 1..4j jY Y j    (43) 

 

In hinge boundary condition the values of slope and shear force are unknown. Therefore, we assume the 

transformation of these values for each ends as follow: 
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Table 2 
Basic rules of differential transform method for the boundary conditions. 
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5    NUMERICAL RESULTS    

For the purpose of verification of the results, by setting 1   we consider the state of two homogeneous beams and 

compare the results with the result due to the analysis method [1] and the substructure method [4] for the joint 

fulcrums. The considered physical parameters are as follows: 

 
10 2 3 2 410 , 2000 , 0.05 , 0.0004 ,( 1..4), 10j j j jE Nm kgm A m I m j L m        (45) 

 

Comparison between the results due to suitable attention of the concluded solution has been presented in Table 

(3). In order to get new results, we have considered the below amounts and will apply them to all states studied: 

 
10 2 3 2 410 , 2000 , 0.05 , 0.0004 ,( 1,3,4), 10j j j jE Nm kgm A m I m j L m        (46) 

 

It is obvious that with regard to the amount of parameter  , we can determine the rest of the amounts as follows: 
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3

2 1 2 1 2 1 2 1, , ,E E A A I I        (47) 

 

In Figs. 2 and 3 the influence of number of sentences used in the differential transform method has been 

conducted to determine the first six normal frequencies respectively for simply and clamp supported. It is obviously 

seen that differential transform has a suitable convergence speed and by increasing the number of sentences, we can 

find the frequency of higher modes. It is also observed that convergence speed in this method is dependent on the 

boundary conditions and convergence has a higher speed for simply supported. 

 

 

 

 

 

 

 

 

 

Fig.2 

Convergence of frequencies with number of terms for 

clamped boundary conditions
5 2( 0.75, 0.5, 10 )R k Nm    . 

  

 

 

 

 

 

 

 

 

Fig.3 

Convergence of frequencies with number of terms for hinged 

boundary conditions 5 2( 0.75, 0.5, 10 )R k Nm    . 

 
Table 3 

Comparison between frequencies obtained via different approach for hinged boundary conditions ( 1  ). 

 1st mode 2nd mode 3rd mode 4th mode 5th mode 

 
52 10k    

Present 19.7392 66.2543 78.9568 101.1641 177.6531 

[1] 19.7 66.3 79 101.2 177.7 

[4] 19.7 66.3 79 101.2 177.7 

 
54 10k    

Present 19.7392 78.9568 91.5945 119.3071 177.6531 

[1] 19.7 79.9 91.6 119.3 177.7 

[4] 19.7 79.9 91.6 119.3 177.7 

 

In Tables 4 and 5 in order, simply and clamp supported conditions, the effect of the step location and ratio on the 

first three normal frequencies has been studied. It is observed that in similar states, the frequency of clamp supported 

is higher than simply supported and a special model for frequency changes with the step location and ratio cannot be 

reached. 

 
  Table 4 

Effects of step ratio & location on first three natural frequencies (Clamp boundary conditions) 5 2( 2 10 ).k Nm   

0.5R  0.25R   

 Third mode Second mode First mode Third mode Second mode First mode 

102.564 74.76845 38.76832 111.8353 96.64126 42.69323 0.2 

101.8175 79.19804 39.031 93.60445 84.5356 40.93723 0.5 

115.9679 77.65222 42.31968 111.0572 79.05062 42.46136 0.8 

130.5862 79.29161 52.32188 130.7973 80.93028 56.5971 2 

131.4475 121.0564 61.82504 131.2663 91.47169 61.82164 5 

177.8633 130.7441 62.85439 133.1261 130.203 63.02413 10 
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Table 5 

Effects of step ratio & location on first three natural frequencies (Hinge boundary conditions) 5 2( 2 10 ).k Nm   

0.5R  0.25R   

 Third mode Second mode First mode Third mode Second mode First mode 

82.80892 59.78389 16.3901 84.30559 57.20208 17.54418 0.2 

73.82652 66.70117 17.06414 77.00327 60.71742 16.88171 0.5 

75.05734 67.62479 18.64353 71.93426 68.99217 18.12958 0.8 

88.56852 62.16411 21.58367 89.08865 60.9605 27.96908 2 

89.77614 56.33265 18.96197 90.73489 54.62537 29.06021 5 

89.74423 52.81479 15.46677 90.77748 51.46593 23.10144 10 

 

In Table 6 and 7 the influence of the elastic layer coefficient between the two beams has been studied on the first 

five normal frequencies. It is observed that despite of the type of boundary conditions with increase in the elastic 

layer coefficient, the frequencies increase in any mode. 

 
Table 6 

Effect of connected layer coefficient on first five natural frequencies (Clamp boundary conditions) ( 0.5& 0.5).R     

Fifth mode Fourth mode Third mode Second mode First mode 2( )Nm k 

168.0152 128.108 96.48185 62.63296 38.05052 
51 10 

172.1923 134.2529 101.8175 79.19804 39.031 
52 10 

176.0512 141.3777 105.6076 92.53394 39.40934 
53 10 

179.6053 148.963 109.8051 102.3921 39.62403 
54 10 

 
Table 7  

Effect of connected layer coefficient on first five natural frequencies (Hinge boundary conditions) ( 0.5& 0.5).R   
Fifth mode Fourth mode Third mode Second mode First mode 2( )Nm k 

124.5821 88.12379 67.19462 51.2115 16.83789 
51 10 

129.7141 100.2119 73.82652 66.70117 17.06414 
52 10 

132.0591 112.1904 86.5853 69.80956 17.17393 
53 10 

137.7016 123.4021 98.50526 70.77611 17.24407 
54 10 

 

In Tables 8 and 9 the effect of the step ratio and the elastic layer coefficient between the two beams on the main 

normal frequency has been studied respectively for simply and clamp supported condition. In these tables on the 

contrary to Tables 4 and 5, a smaller range of variation has been considered for the step ratio and the amounts are 

close to one. It can be said that in spite of the type of supported, by increasing the step ratio, the main frequency also 

increases. Also when the step ratio gets close to one, change in the elastic layer coefficient does not have much 

effect of the main frequency. 

 
Table 8 

Effects of step ratio & connected layer coefficient on fundamental natural frequency (Clamp boundary conditions) ( 0.3).R  

 2( )Nm k 
1.5 1.3 1.1 0.9 0.7 0.5 

50.96466 48.75109 46.11192 43.45048 41.42416 40.6932 415 10 
51.62307 48.99212 46.13726 43.47264 41.58558 41.04229 425 10 
51.9308 49.10372 46.14903 43.48305 41.66264 41.20835 435 10 

 

Table 9 

Effects of step ratio & connected layer coefficient on fundamental natural frequency (Hinge boundary conditions) ( 0.3).R  

 2( )Nm k 
1.5 1.3 1.1 0.9 0.7 0.5 

23.6954 22.24276 20.58802 18.92045 17.54401 16.80372 415 10 
23.81801 22.29097 20.59352 18.92562 17.58214 16.87507 425 10 
23.88621 22.31727 20.59645 18.92831 17.60157 16.91101 435 10 
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In Figs. 4 to 7, the effect of change in the location of step in the entire length of the beam on the first two normal 

frequencies has been studied for two different amounts of the step ratio and different fulcrum conditions. It is 

completely obvious that under the clamp supported conditions, changes in frequency with change in the step 

location is not predictable at all and when the step gets close to the supported, the slope of changes gets very steep. 

Although in the simply supported conditions the changes in the first mode are homogeneous and in the second mode 

depending on the step ratio a different behavior is observed. Also in this type of fulcrum, the frequency changes 

become really leveled with the step location and there are no steep slopes seen. 

 

  
Fig.4 

Effect of step location on first two natural frequencies (Clamp boundary conditions)
5 2( 0.75, 10 ).k Nm    

  

  
Fig.5 

Effect of step location on first two natural frequencies (Clamp boundary conditions)
5 2( 2, 10 ).k Nm   

  

  
Fig.6 

Effect of step location on first two natural frequencies (Hinge boundary conditions)
5 2( 0.75, 10 ).k Nm    
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Fig.7 

Effect of step location on first two natural frequencies (Hinge boundary conditions)
5 2( 2, 10 ).k Nm    

 

In Figs. 8 and 9, the effect of step location on the four shapes of the first normal mode of the beam with the 

clamp supported conditions is presented. As it is shown, alteration in the step location does not make much 

difference to the shape of modes. In Figs. (10) and (11), the effect of step location on the four shapes of the first 

normal mode of the beam with the simply supported conditions is presented. On the contrary to the clamp supported 

conditions, in this state alteration in the step location has a considerable influence on the shape of modes and 

changing the step location alters the phase and of-phase of the mode shapes. 

 

 
First mode shape 

 
Second mode shape 

 

 
Third mode shape 

 
Fourth mode shape 

Fig.8 

Normalized mode shapes in the case of clamp boundary conditions (Solid line: upper beam, Dashed line: lower beam), 
5 2( 0.25, 0.5, 2 10 ).R k Nm      

 

 
First mode shape 

 
Second mode shape 
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Third mode shape 

 
Fourth mode shape 

Fig.9 

Normalized mode shapes in the case of clamp boundary conditions (Solid line: upper beam, Dashed line: lower beam), 
5 2( 0.75, 0.5, 2 10 ).R k Nm      

  

 
First mode shape 

 
Second mode shape 

  

 
Third mode shape 

 
Fourth mode shape 

Fig.10 

Normalized mode shapes in the case of hinge boundary conditions.(Solid line: upper beam, Dashed line: lower beam), 
5 2( 0.25, 0.5, 2 10 ).R k Nm      

  

 
First mode shape 

 
Second mode shape 
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Third mode shape 

 
Fourth mode shape 

Fig.11 

Normalized mode shapes in the case of hinge boundary conditions (Solid line: upper beam, Dashed line: lower beam), 
5 2( 0.75, 0.5, 2 10 ).R k Nm      

6    CONCLUSIONS 

In present study, free vibration of elastically connected beams when one of them has step due to abrupt change in 

height investigated by means of differential transform method. Euler-Bernoulli beam theory has been applied to 

drive equations of motion. Applied method (DTM) yields high accuracy, rapid convergence and stability in 

computation. In special case of two parallel uniform beams, accuracy of results verified by comparing with other 

references. Effects of different parameters on dimensionless frequencies and normalized mode shapes investigated. 

The main conclusions are as follows: 

1) Convergence rate of the DTM depend on boundary conditions, although the DTM yields rapid 

convergence. 

2) Despite the type of boundary condition, by increasing the elastic layer coefficient, frequencies increase in 

any mode. 

3) When the step ratio is close to one, the elastic layer coefficient between the two beams does not have much 

influence on the main frequency. 

4) Under the clamp supported conditions, the frequency changes in a completely irregular manner with other 

parameters. 

5) Alteration in the step location does not influence the shape of modes much under the clamp supported 

conditions; although, in simply supported conditions, the step location is completely influential on the 

mode shapes. 
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