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 ABSTRACT 

 The main purposes of the present work are devoted to the investigation of 

the free axial vibration, as well as the time-dependent and forced axial 

vibration of a SWCNT subjected to a moving load. The governing 

equation is derived through using Hamilton's principle. Eringen’s 

nonlocal elasticity theory has been utilized to analyze the nonlocal 

behaviors of SWCNT. A Galerkin method based on a closed-form 

solution is applied to solve the governing equation. The boundary 

conditions are considered as clamped-clamped (C-C) and clamped-free 

(C-F). Firstly, the nondimensional natural frequencies are calculated, as 

well as the influence of the nonlocal parameter on them are explained. 

The results of both boundary conditions are compared together, and both 

of them are compared to the results of another study to verify the 

accuracy and efficiency of the present results. The novelty of this work is 

related to the study of the dynamic forced axial vibration due to the axial 

moving harmonic force in the time domain. The previously forced 

vibration studies were devoted to the transverse vibrations. The effect of 

the geometrical parameters, velocity of the moving load, excitation 

frequency, as well as the small-scale effect, are explained and discussed 

in this context. According to the lack of accomplished studies in this 

field, the present work has the potential to be used as a benchmark for 

future works.                     © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords : Moving load; Size dependent; Axial vibration; Free 

vibration; Forced vibration; Galerkin method; Harmonic load.  

1    INTRODUCTION 

 HE discovery of fullerenes [1, 2] and CNTs [3-5] since 1991, made the researchers focus on the two different 

allotropes of carbon, including almond and graphene [6]. Carbon nanotubes (CNTs) have considerable 

mechanical, thermal [7], and electrical [7, 8] properties , as well as high strength, low density [4, 9]. Carbon 
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nanotubes are layers of rolled-up graphene[10], which depending on their applications, are divided into three 

different types. CNTs are composed of one layer graphene or more, which are known as single-walled (SWCNT) 

and multi-walled (MWCNT) carbon nanotubes, respectively [11]. SWCNTs and MWCNTs have three different 

structures, including zigzag, chiral, and armchair structures [12]. The production of carbon nanotubes is limited to 

three methods, including electric-arc discharge, laser ablation, and CVD [13]. CNTs are utilized in different 

branches such as the vibration of FG-CNT [14, 15], sandwich plates [16, 17], etc. The applications of CNT can be 

summarized in Nano biology [18, 19], Nano devices [20, 21], and nanocomposites [22, 23]. The local continuum 

theory cannot be qualified for the nanoscale structures [24-29]. To do that, Eringen’s nonlocal elasticity theory [30, 

31], has been selected. However, there are different other theories for small-scale studies [32-41]. Xu et al. [42] 

investigated the effect of the nonlinear van der Waals forces between layers in coaxial and non-coaxial free vibration 

of the DWCNT. Lee and Chang [43] analyzed the vibrational behavior of the SWCNT conveying viscous-fluid 

surrounded by an elastic medium. Moradi-Dastjerdi et al. [44] worked on the free vibration analysis of FG-

nanocomposite reinforced by a CNT using an axisymmetric model. Pourseifi et al. [45] utilized an active control 

vibration of a simply supported CNT under a moving nanoparticle. Mahdavi et al. [46] studied the effect of the 

nonlinear interaction van der Waals forces between adjacent tubes and elastic polymer matrix in free non-coaxial 

responses of MWCNT. In addition, the axial force is applied to evaluate the variation of the responses. Kiani [47] 

modeled a tapered nanowire, which variates in radii and cross-sectional area linearly, and assessed the accuracy by 

Fredholm theorem. Timoshenko beam theory is utilized by Askari et al. [48] to analyze the nonlinear vibration of 

nanowires with the various cross-sectional area along with Galerkin and energy methods as analytical methods. 

Ansari et al. [49] modeled FG-CNTRC annular sector plates under the thermal loading embedded in an elastic 

medium to analyze the buckling and natural frequencies. Yas and Heshmati [50] investigated the FG nanocomposite 

beams, which was reinforced by randomly oriented CNT subjected by transverse moving force. The forced vibration 

of a SWCNT under a moving harmonic load based on Euler-Bernoulli theory was studied by Şimşek [51]. 

Malekzadeh and Zarei [52] carried out the free vibration of quadrilateral plates laminated by composite layers with 

CNT reinforced using first-order shear deformation theory. Joshi et al. [53] simulated SWCNT under an attached 

mass for bridged and fixed-free end conditions using a FEM approach to calculate the resonant frequencies by 

variation the value of the mass and length. Aydogdu [54] used Eringen nonlocal elasticity theory to obtain the axial 

natural frequencies of a CNT surrounded by an elastic medium using Nano rod model. In another study, Aydogdu 

[55] investigated the effect of the van der Waals force on the axial vibration of DWCNT, and showed the influence 

of the van der Waals force on the axial vibration of CNT. The small-scale effect, the influence of the stiffness 

parameter, and geometrical parameters are illustrated. Murmu and Adhikari [56] studied the axial vibration of a 

double-Nano rod-system coupled with longitudinally directed springs using Eringen theory to show the effect of the 

nonlocality on the axial vibration of DNRS. Free axial vibration of a tapered AFG Nano rod for two various end 

supports, including C-C and C-F boundary conditions, are investigated by Şimşek [57]. The cross-sectional area was 

changed linearly and sinusoidal, and results compared with those obtained from other studies. Murmu and Adhikari 

[58] worked on the instability of the double-nanobeams, which was elastically connected to evaluate the small-scale 

effect. Also, the stiffness of the medium on the instability of the in-phase and out-phase buckling, are studied when 

one of the Nano beams are fixed. Danesh et al. [59] investigated the axial vibration of a tapered nanorod based on 

nonlocal elasticity theory and differential quadrature method as an analytical method. In addition, it was proved that 

the nonlocal parameter makes the non-dimensional frequency decreases. Filiz and Aydogdu [60] considered CNT 

heterojunctions, and used a Nano rod model to analyze the free axial vibration for different values of CNT’s length, 

along with the first segment’s length, and inferred suitable parameters cause good vibrational properties. The axial 

responses of the hetero-junction CNTs were accomplished by Mohammadian et al. [61]. Their model also 

considered other nanostructures. The effect of the small-scale parameter, the elastic ratio, connecting region, and 

mass sensors on the frequency demonstrated. Liu et al. [62] analyzed the distributed axial and torsional vibration 

simultaneously. Aydogdu and Filiz [63] modeled CNT-based mass sensors using nonlocal elasticity theory to show 

the effect of the nonlocal parameter, attached mass, and length. Bouadi et al. [64] utilized a new nonlocal higher-

order shear deformation theory with new displacement component to study the buckling properties of a single 

graphene sheet. Cherif et al. [65] modeled an Euler-Bernoulli Nano beam to investigate the vibrational behavior of 

the SWCNT embedded in an elastic medium, based on the differential transform method. Kadari et al. [66] carried 

out the buckling behavior of the orthotropic nanoplates embedded in elastic foundations based on a new hyperbolic 

plate theory and nonlocal small scale effects. Yazid et al. [67] established a new refined plate theory considering the 

small-scale effect to analyze the buckling of an orthotropic Nanoplate embedded in an elastic foundation. Youcef et 

al. [68] employed a non-classical model considering the surface stress effects to study the free vibrational behavior 

of the Nano beams. Draoui et al. [69] used the first-order shear deformation plate theory to study the dynamic and 

static behavior of the carbon nanotube-reinforced composite sandwich plates with two various sandwich plates and 
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distribution uniaxially aligned reinforced materials. Mokhtar et al. [70] accomplished the buckling behavior of a 

single layer graphene sheet considering the shear deformation effect based on nonlocal elasticity theory. Boutaleb et 

al. [71] analyzed the natural responses of the rectangular nanoplates based on a simple nonlocal quasi 3D higher 

shear deformation theory. Karami et al. [72] employed a novel size-dependent quasi-3D plate theory to work on a 

wave dispersion of FG Nanoplate embedded in an elastic foundation under a hydrothermal environment. Karami et 

al. [73] established the three-dimensional elasticity theory concerning strain gradient theory with two scale 

coefficients to study the mechanical characteristics of FG spherical nanostructures, and their results were compared 

with experimental works. Also, a variational behavior was investigated by Karami et al. [74] to study the wave 

dispersion of doubly-curved Nano shells using a new size-dependent higher-order shear deformation theory based 

on strain gradient theory. They demonstrated the influences of nonlocal strain gradient theory, wave number, and 

material properties on wave frequency. Bellifa et al. [75] analyzed the nonlinear post buckling behavior of clamped-

clamped and simply supported Nano beams based on the zeroth-order shear deformation theory and Eringen’s 

nonlocal elasticity approach, considering the shear deformation effect. Karami et al. [76] evaluated the wave 

propagation of anisotropic nanoplates due to the triaxial magnetic field based on the nonlocal strain gradient as well 

as the three-dimensional elasticity theory. Bouafia et al. [77] employed a nonlocal quasi-3D theory considering the 

shear deformation and thickness stretching effects to analyze the bending and free flexural vibration of FG Nano 

beams based on Eringen’s nonlocal elasticity theory. Zemri et al. [78] utilized a shear deformation beam theory to 

analyze the bending, buckling, and vibration of FG Nano beam under the stress-free boundary conditions based on 

nonlocal shear deformation beam model and Eringen’s nonlocal elasticity theory. 

Based on the author’s knowledge, the dynamic axial vibration under the axial moving load has not been done 

yet. Therefore, the time-dependent forced vibration of the SWCNT under an axial moving harmonic force subjected 

to any point of the body is investigated in this paper. Hamilton’s principle is used to derive the equation and 

corresponding boundary conditions. The small-scale effect has been shown by Eringen’s nonlocal elasticity theory. 

An analytical method, called Galerkin method is applied to solve the reduced-order equation. The clamped-clamped 

and clamped-free boundary conditions are utilized. In free vibration, the nondimensional axial natural frequencies 

for variant nonlocal parameters is studied. In time-dependent axial vibration, the effect of the moving load velocity, 

geometrical parameters, excitation frequency, and nonlocal parameter are investigated. The results can be used as 

good comparative cases for future studies in this filed.    

2    NONLOCAL SWCNT MODEL  

SWCNT under an axial moving force at any point of the body has been depicted in Figs. 1 and 2. The parameters l 

, 0v  , tF  and   represent the length, velocity of the moving load, time-dependent force and Dirac delta, respectively. 

The axial axis is considered in the direction of the x-axis. 

 

   

 

 

 

 

 

 

Fig.1 

SWCNT under a moving force for clamped-clamped boundary 

condition. 

  

 

 

 

 

Fig.2 

SWCNT under a moving force for clamped-free boundary 

condition. 
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Fig. 1 shows SWCNT for clamped-clamped boundary condition, while Fig. 2 indicates SWCNT for clamped-

free boundary condition. The displacement field due to the axial deflection can be written as: 

 ,

0

0

x

y

z

u u x t

u

u





      

 (1) 

 

where  ,u x t  is the only expression of the displacement at point x along the x-axis. The components of the strain 

tensor are given by: 

 

0

xx

yy zz xz xy xz yz

u

x


     





           

 (2) 

 

The governing Equation for a SWCNT subjected to the axial force can be defined as: 

 

 
2

2
,t

N u
A f x t

x t


 
 

       

 (3) 

 

In which N represents the nonlocal axial force per unit length. Parameter A denotes the cross-sectional area and 

is equal to: 

 

 2 2

out inA R R 

     

 (4) 

 

where 
outR  and 

inR  represent the outer and inner radii of CNT, respectively. The corresponding boundary condition 

is equivalent to: 

 

  0
0

l
N u 

     

 (5) 

 

The nonlocal constitutive stress-strain equation based on Eringen’s nonlocal elasticity theory can be formulated 

as: 

 

 
2

2

0 2

kl

kl kle a E
x


 


 

      

 (6) 

 

From above, kl  represents the nonlocal stress, and kl  denotes the nonlocal strain tensor. For the axial 

vibration of uniform SWCNT Eq. (6) changes into the following statement: 

 

 
2

2

0 2

xx

xx xxe a E
x


 


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      

 (7) 

 

where E is Young’s modulus of elasticity. By integrating Eq. (7) based on the cross-sectional area, the following 

statement can be taken:  

 
2

2

l

x

N
N N

x



 
      

 (8) 

 

where l

xN  is the local axial force per unit length, and is equivalent to: 
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l

x xx xx
A

N dA EA  
     

 (9) 

 

Replacing the first derivative of Eq. (3) into Eq. (8) leads to: 

 

 
 3

2

0 2

,tf x tu u
N e a A EA

x xx t


  
   

         

 (10) 

 

As a final step, to obtain the equation of motion for SWCNT under the axial displacement, the first derivative of 

Eq. (10) should be substituted into Eq. (3) as below: 
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 (11) 

 

If 
0e a  set to be zero, Eq. (11) will turn into the following local form: 

 
2 2

2 2
( , ) 0t

u u
EA A f x t

x t


 
  

       

 (12) 

3    ANALYTICAL METHOD  

3.1 Free axial vibration  

In free axial vibration, the force should be omitted (i.e., ( , )tf x t ). So the equation of motion can be rewritten as: 

 

 
4 2 2

2

0 2 2 2 2
0

u u u
e a A A EA

x t t x
 
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   
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 (13) 

 

The Galerkin method is utilized for discretizing and division of the equation of motion into two different parts as 

follows: 

 

1

( , ) ( )sinn

n

u x t U x t





     

 (14) 

 

where ( )nU x  represents the nth mode shape corresponding to the axial vibration, and the time-dependent part is 

considered sinusoidal. 
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2 2 2
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 (15) 

 

The mode shape for two states of the boundary conditions has the following format. 

 

   sinn nU x B Px

     

 (16) 

 

The natural frequency of axial vibration can be obtained as: 
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In which the coefficient in Eq. (17) is equivalent to /C E  . In addition, the coefficient for the C-C and C-F 

boundary conditions, respectively, can be stated as: 

 

/P n l

     

 (18) 

 

 2 1 / 2P n l 

     

 (19) 

 

By applying Eqs. (18) and (19) into Eq. (17), the following expressions result in: 
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 (21) 

 

where Eq. (20) represent the nondimensional natural frequency for C-C boundary condition, while Eq. (21) is used 

for C-F boundary condition. 

3.2 Galerkin method for dynamic axial vibration 

A Galerkin method is used as an analytical method to convert the higher-order of governing equation to ODE one. 

The unknown axial deflection can be stated as: 

 

1

( , ) ( ) ( )n n

n

u x t U x q t



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 (22) 

 

In which ( )nq t  denotes the unknown time-dependent generalized coordinates. Substitution of Eqs. (22) and (16) 

into Eq. (11) results in: 
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Multiplication of Eq. (23) with ( )nq t  and subsequently integrating it over the length’s span ( 0 x l  ) yields: 
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 (24) 

 

The normalized mode shape of CNT to satisfy the orthogonality relationships can be expressed as: 
 

2

0
( ) 1

l

nU x dx 
     

 (25) 

                                                                                                                                                      

From Eq. (25), the coefficient
 nB  can be obtained by multiplication of mode shapes together as follows: 
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Solving Eq. (26) in the length domain, leads to: 

 

2/nB l

     

1,2,...n   (27) 

 

It leads to rewritten the mode shape from Eq. (16) as: 

 

 ( ) 2 / sinnU x l Px

     

 (28) 

 

According to the normalized mode shape in Eq. (25), Eq. (24) can be rewritten as: 
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The simplified form of Eq. (29) can be stated as: 
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where the nonlocal natural frequency and coefficient can be expressed as: 
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( )nF t , which is called the generalized force in nth mode, can be determined as: 
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The unknown time-dependent generalized coordinates disregarding the initial condition can be obtained as: 
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3.3 Axial moving harmonic displacement 

The time-dependent force at an arbitrary point 0d v t  can be defined as: 
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By substituting Eq. (34) into Eq. (32), the generalized force can be expressed as: 
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As it is indicated in Fig. 1, the mode shape for the axial moving load at point d can be defined as: 
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   0( ) 2 / sin 2/ sinnU x l Pd l Pv t 

     

 (37) 

 

By replacing Eq. (37) into Eq. (36), the generalized force will be formed as follows: 

 

      2 2
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Replacing Eq. (38) into Eq. (34) in the time domain 0 t  , causes ( )nq t to be rewritten as: 
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Integrating Eq. (39) over time, results in: 
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where 
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From above, 
n  is equivalent to

0Pv . By multiplication of Eq. (40) by the mode shape in Eq. (28), the axial 

displacement at point / 2x l can be rewritten as: 

 

   
 

 

     
0

2 22 2
1

sin / 22
,

n
n n n n

Plf
u x t

Al  




     


  

      2 2 22 cos cos cos sin sinn n n n n nt t t t t           

 

 

(42) 

 

The axial displacement for C-C boundary condition can be defined as: 
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Subsequently, the axial displacement for C-F boundary condition can be expressed as: 
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4    NUMERICAL RESULTS  

In this part, the numerical results of governed equations from the previous section are discussed. Firstly, the natural 

frequencies for some various modes and nonlocal parameters are investigated, then in order to prove the accuracy 

and correctness, the results are compared with those obtained from Mohammadian et al. [61]. In the next part, the 

dynamic axial vibration under a moving harmonic load is studied at point / 2x l . The small-scale effect, also 

geometrical parameter, and the role of the excitation frequency in the axial displacement is depicted and explained. 

The amplitude of the harmonic load (
0 sintF f t  ) is 

0 1000f  ; the velocity is considered to be 
0 3v  nm/ns . In 

this study, the body is considered as a single-walled carbon nanotube (SWCNT), and the boundary conditions are 

assumed to be clamped-clamped and clamped-free; the material properties are assumed to be 2300 3 kg/m  , 

0.34t  , 1E  Tpa , and 5l  nm [79]. With these parameters, the inner, and the outer radii of CNT are 

  / 2inR d t   and   / 2outR d t  , respectively. Table. 1 compares the nondimensional axial natural frequencies for 

three different modes under the C-C and C-F boundary conditions. The results prove that the number of the mode 

and nonlocal parameter have a direct and inverse effect on the natural frequency, respectively. As the mode number 

increases, the frequency increases, and as the nonlocal parameter increases the natural frequency decreases. It is due 

to the fact that the increment in the nonlocal parameter and subsequent reduction of the stiffness causes a decrement 

in the natural frequency. For the final comprehensible point, it should be announced that the C-C boundary 

condition, has greater value in comparison with C-F one. It is because of freedom of the action in the opening side 

for C-F boundary condition.  
 

Table 1 

The comparison of the non-dimensional axial vibration 
n  for three various mode shapes and two C-C and C-F boundary 

condition (l =20 nm). 

0e a (nm) Mode 

Nondimensional axial natural frequencies 

Present Ref. [61] 

CC CF CC CF 

0.5 

1 

3 

5 

3.1319 

9.1735 

14.6210 

1.5695 

7.7068 

13.3292 

3.1318 

9.1732 

14.6205 

1.5697 

7.7072 

13.3297 

1 

1 

3 

5 

3.1035 

8.5255 

12.3534 

1.5659 

7.3105 

11.5443 

3.1034 

8.5253 

12.3532 

1.5661 

7.3108 

11.5445 

 

Fig. 3 indicates the effect of the nonlocal parameter on the variation of the axial displacement versus time for 

two various C-C and C-F boundary conditions. Three various nonlocal parameters are utilized 

( 0 nm  , 1 nm  , and 2 nm). It is obvious that for greater values of the nonlocal parameter, the axial 

displacement increases due to a decrease in amount of CNT’s stiffness. For the identical condition and parameters, 

the axial displacement is greater for C-F boundary condition. The wavelength is the same for each phase. Based on 

the local elasticity ( 0 nm  ), the axial displacement raises over time. When 1 nm  , not only it raises but also 

variates with a constant slope. The variations of the axial displacement in the time domain for both C-C and C-F 

boundary conditions and various lengths have been shown in Fig.4. It is observable that for the maximum 

displacement, the length is in its minimum amount. As CNT’s length increases, the axial displacement decreases. 

For C-F boundary condition, this variation is more sensible. Moreover, the value of the axial displacement is greater 

for the C-F boundary condition. Another effect of the length is that, the amplitude of the axial displacement variates 

by the time, when 5l nm , for both boundary conditions, but in other states, it just increases. In Fig. 5, the 

influence of the velocity of the moving load on the variation of the axial displacement versus time is investigated. 

The nonlocal parameter is equivalent to 1 nm  . The velocity has a direct effect on the axial displacement. The 

maximum axial displacement increases after each period for greater values of velocity (
0 20 /v nm ns ). The 

variation of the axial displacement versus time for three different values of CNT’s thicknesses for two types of 

boundary conditions, including C-C and C-F boundary condition is depicted in Fig. 6. It is distinctly clear that the 

thickness has an inverse effect on the axial displacement. When thickness is in the lowest amount, the cross-

sectional area is greater, and based on Eqs. (42) and (43), the axial displacement will be decreased with a specified 

discipline for both boundary conditions. It is because of the appearance of the cross-sectional area out of the sigma. 
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Totally, the axial displacement for the C-F boundary condition is greater than the C-C boundary condition due to the 

maximum amount of the mode shape at point / 2x l  for C-C boundary condition. Fig. 7 illustrates the effect of 

the ratio of the excitation frequency to natural frequency ( / n ). The ratio is considered less than one. It is shown 

that the less the ratio is, the more the axial displacement will be, but when t -4<4×10 ns, the axial displacement for 

greater ratios, has the maximum value. As time passes, the axial displacements will be greater for the lower values 

of the excitation frequency to natural frequency ratio for both end conditions. 

 

   

 

 

 

 

 

 

 

Fig.3 

Variation of the axial displacement versus time for various 

nonlocal parameters (
0v 3 nm/ns , and 5 nml  ).     

  

 

 

 

 

 

 
Fig.4 

Variation of the axial displacement versus time for various 

lengths (
0v 3 nm/ns , and 1 nm  ). 

  

 

 

 

 

 

 

 

 

Fig.5 

Variation of the axial displacement versus time for various 

velocities of the moving load ( 5 nml  , and 1 nm  ).    

  

 

 

 

 

 

 
Fig.6 

Variation of the axial displacement versus time for various 

thicknesses (
0v 3 nm/ns , 5 nml   and 1 nm  ).     
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Fig.7 

Variation of the axial displacement versus time for various 

excitation frequency to natural frequency ratios 

(
0v 3 nm/ns , 5 nml   and 1 nm  ). 

5    CONCLUSION 

The dynamic free and forced axial vibrations for a SWCNT due to the axial moving harmonic force was studied 

based on Eringen’s nonlocal elasticity theory in this paper. Two types of boundary conditions, including the 

clamped-clamped and clamped-free boundary conditions, were considered. By employing Hamilton’s principle, the 

governing equation and corresponding boundary conditions were derived. Via the application of Galerkin's methods, 

the derived equation was discretized by eliminating the time-dependent force and considering it to calculate the 

natural frequencies and dynamic axial displacements, respectively. In free axial vibration, it was concluded that the 

mode number and the nonlocal parameter have a direct and inverse effect on the natural frequency, respectively. The 

time-dependent axial displacement based on time under a moving harmonic SWCNT was investigated for the first 

time. The influences of the velocity of the axial moving force and excitation frequency to natural frequency ratio, as 

well as geometry and small-scale effect on the axial displacement, were illustrated. The nonlocal parameter has a 

direct effect on the axial displacement, while the thickness has an inverse effect. Also, the axial displacement for C-

F boundary condition is greater than C-C one. Increasing the amounts of the length has an inverse effect on the 

variation of the axial displacement in the time domain. This variation is more sensible for C-F boundary condition. 

Furthermore, the amounts of the axial displacement are greater for C-F boundary condition. The velocity of the 

moving load has a direct effect on the axial displacement. Also, the excitation frequency to natural frequency ratio 

has an inverse effect on the axial displacement. 
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