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 ABSTRACT 

 The fundamental solution of the system of differential 

equations in bio-thermoelasticity with dual phase lag (DPL) in 

case of steady oscillations in terms of elementary function is 

constructed and basic property is established. The tissue is 

considered as an isotropic medium and the propagation of 

plane harmonic waves is studied. The Christoffel equations are 

obtained and modified with the thermal as well as bio 

thermoelastic coupling parameters. These equations explain the 

existence and propagation of three waves in the medium. Two 

of the waves are attenuating longitudinal waves and one is non-

attenuating transverse wave. The thermal property has no effect 

on the transverse wave. The velocities and attenuating factors 

of longitudinal waves are computed for a numerical bioheat 

transfer model with phase lag. The variation with frequency, 

thermal parameters, blood perfusion parameter and phase lag 

parameter are presented graphically.   Also the reflection of 

plane wave from a stress free isothermal boundary of isotropic 

bio-thermoelastic half space in the context of DPL theory of 

thermoelasticity is studied. The amplitude ratios of various 

reflected waves are obtained and these amplitude ratios are 

further used to obtain the energy ratios of various reflected 

waves. These energy ratios are function of the angle of 

incidence and bio-thermoelastic properties of the medium. The 

expressions of energy ratios have been computed numerically 

for a particular model to show the effect of Poisson ratio, blood 

perfusion rate and phase lag parameters.  

                          © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Fundamental solution; Dual-phase-lag; Bio-

thermoelasticity; Wave propagation; Energy ratios. 

1    INTRODUCTION 

 HE construction of fundamental solution has great importance in many mathematical, physical and engineering 

problems. To investigate the boundary value problems in the theory of biothermomechanics, elasticity and 
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thermoelasticity by potential method, it is necessary to construct a fundamental solution of the system of partial 

differential equations. Hetnarski [1-2] was the first to study the fundamental solution in the classical theory of 

coupled thermoelasticity. The fundamental solution in the theories of elastic mixtures and thermoelasticity was 

constructed by Svanadze [3]. Ciarletta et.al. [4] studied the fundamental solution in the theory of micropolar 

thermoelasticity for materials with voids.  Svanadze [5-6] studied fundamental solutions of the equations of the 

theory of thermoelasticity with microtemperatures and double porosity. Scarpetta et al. [7] constructed fundamental 

solutions in the theory of thermoelasticity for solids with double porosity. Svanadze [8-9] constructed fundamental 

solutions in the theory of elasticity and thermoelasticity for solids with triple porosity respectively. Sharma et al. 

[10-11] investigated the plane wave and fundamental solution in electro-microstretch elastic and viscoelastic solids. 

Kumar and Kansal [15-16] investigated fundamental solution in the theories of thermo-microstretch elastic diffusive 

solid and micro-polar thermoelastic diffusion with void. Kumar et al. [12] examined fundamental solution in 

micropolar thermoelastic solid with void. Kumar and Kaur [17] studied plane wave and fundamental solution in heat 

conduction micro-polar fluid. Kumar et al. [14] presented plane wave fundamental solution in a modified couple 

stress generalized thermoelastic with mass diffusion. Kumar et al. [13] discussed some consideration for 

fundamental solution in micro-polar thermoelastic material with double porosity. Sharma [29] studied the 

propagation of thermoelastic wave in poroelastic medium and showed that three of the waves are attenuating 

longitudinal wave and one is non-attenuating transverse wave.  Several authors have studied thermal-mechanical 

behaviors of soft tissues under thermal therapy. Xu and Lu [18] analyzed the non-Fourier thermo-mechanical 

behavior of skin tissue under surface heating boundary conditions. Shen et al. [19-20] developed a tissue damage 

model using Fourier bio-heat transfer equation. It shows that thermally induced mechanical deformation decreases 

the activation energy for protein denaturation, making soft tissue more easily to be damaged. Li et al. [21-22] 

developed a model to predict thermally induced mechanical deformation and thermal damage of soft tissue by 

combining the Fourier bio-heat transfer equation with the theory of linear thermo-elasticity.  Panji et al. [31-32] 

investigated some problems on wave propagation in a homogeneous, isotropic elastic medium by boundary element 

method. Panji and Ansari [33] developed a direct half plane time boundary element method and applied to analyse 

the transient response of ground surface in the presence of arbitrarily shaped lined tunnels, embedded in a line 

elastic half space subjected to propagation/incident SH wave. Various authors (Sharma and Ansari [35]; Sharma 

[36]; Kumar and Gupta [37]; Saini [38]; Kumar et al. [39]) studied the reflection, refraction and transmission 

problems in different media and obtained amplitude ratios. Xu et al. [23] investigated the non-Fourier behavior of 

skin biothermomechanics. Li et al. [24] gave a new methodology for modeling of thermal-mechanical behaviors and 

associated damage of soft tissues during thermal ablation, where the modeling process combines non-Fourier bio-

heat transfer, continuum mechanics, as well as non-rigid motion of dynamics to predict and analyze temperature 

distribution and thermal-induced mechanical deformations of soft tissues.  

In this work, we constructed a fundamental solution of the bioheat transfer equation with thermo-elastic coupling 

and equations of motion. The fundamental solution is constructed for the case of steady oscillations. In second part 

of the paper, the plane wave propagation in bio-thermomechanical system with DPL model is discussed. Christoffel 

equations are obtained and modified with thermal as well as the thermoelastic coupling parameter. These equations 

explain the existence and propagation of three waves in the medium. It is found that there are two attenuating 

longitudinal waves and one non-attenuating transverse wave. The phase velocities and attenuation coefficients of 

two longitudinal waves are computed numerically and presented graphically for bio-thermomechanical model. The 

variation with the frequency, lagging time and thermal and blood perfusion parameters depicted graphically.  Also 

the reflection of plane wave from a stress free isothermal boundary of isotropic bio-thermoelastic half space in the 

context of DPL theory of bio-thermoelasticity is studied. The amplitude ratios of various reflected waves are 

obtained and these amplitude ratios are further used to obtain the energy ratios of various reflected waves. The effect 

of bio-thermoelastic parameters on energy ratios is presented graphically.  

2    BASIC EQUATIONS  

Let 1 2 3= ( , , )x x x x  be a point of the Euclidean three-dimensional space 3R  and t  denotes the time variable, > 0t . 

Bioheat transfer equation Pennes [25] considering coupled thermo-elastic effect can be described as:  

 

0

ˆ
ˆ= . ( ) ,b b b b m ext

T e
c T q c T q q

t t
    

 
     

 
        

 

(1) 
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 ˆ= .e u        (2) 

 

and 0
ˆˆ =T T  , T̂  temperature increment, ̂  tissue temperature, 0T  reference temperature,   is tissue density, b  

blood density, c tissue specific heat, bc  blood specific heat, b  blood perfusion rate, bT  the temperature of blood, 

0T  the initial temperature,   the coefficient of thermal expansion, mq  the metabolic heat generation,  extq the 

external heat source, û  the displacement vector, q heat flux vector and 
1 2 3
, ,

x x x

   
   

   
. Single phase lag 

(SPL) constitutive relation is described by Cattaneo [26] and Vernotte [27] to incorporate lagging behavior in 

Fourier law as follows:  

 

ˆ
(1 ) = .q

T
q k

t t


 
 

 
       

 

(3) 

 

DPL constitutive relation is described by Tzou [28] and given as follows: 

 

ˆ(1 ) . = (1 ) .q Tq k T
t t

 
 

    
 

       
 

(4) 

 

where q , T  are phase lag parameters and   is Laplacian operator.

 Using Eq. (4) in Eq. (1), we obtain the following bioheat transfer equation 

 
2 2

02 2

ˆ ˆ ˆ
ˆˆ(1 ) = ( ) ( ) ( ) (1 )( ).T q q b b b b q b b b q m ext

T T e e T
k T c T c T c q q

t t t t tt t
           

      
          

     
       

 

(5) 

 

Biologically, soft tissues are complex in terms of material compositions and structural formations. While soft 

tissue structure shows time-dependent, non-linear and anisotropic behaviors, in terms of small deformation caused 

by thermal load, soft tissues can be investigated by linear thermo-elastic models to a high precision. 

We consider an isotropic and homogeneous bio-thermoelastic medium with the assumption 0=bT T  and assume 

that the subscripts preceded by a comma denote partial differentiation with respect to the corresponding Cartesian 

coordinate, repeated indices are summed over the range (1,2,3) and the dot denotes differentiation w.r.t. time t. 

From the constitutive elastic material law under thermal loads, the stress tensor lj  is related to the strain tensor 

and temperature and given as follows: 

 

, , ,
ˆˆ ˆ ˆ= ( ) ,lj l j j l k k lj lju u u T               (6) 

 

where is the displacement components, and ij  is the Kronecker’s symbol defined as: 

 

0, for
= .

1, for =
ij

i j

i j






       
 

 

The governing equations of motion is  

 
(1)

,
ˆˆ= ( ), = 1,2,3.lj j l lu F l          (7) 

 

where 
(1) (1) (1)(1)

1 2 3 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ= ( , , ) = ( , , )F F F F F FF      .  

The equations of motion expressed in terms of the displacement vector u and the temperature T̂  is  
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2
(1)

2

ˆˆˆ ˆ( ) . = .
u

u u T F
t

    


      


       
 

(8) 

  

 Eq. (5) can be written as: 

 

11 12 13 0 12 4
ˆ ˆ ˆ( ) . = .b b bk T c c T T u F                   (9) 

   

For steady oscillations ˆ
lu , T̂ , ˆ

jF  are postulated to have a harmonic time variation, that is,  

 

ˆ ˆˆ( , , )( , ) = [( , , )( ) ]i t
l j l l ju T F x t Re u T F x e            =1,2,3,l =1,2,3,4j  (10) 

 

Using Eq. (10) in Eqs. (8) and (9), we have  

 
2 (1)( ) ( ) = ,u divu T F         

 

14 15 16 0 15 4[ ( )] . = .b b bk c c T T u F                      

 

(11) 

 

where   is angular frequency, > 0 ; (1)
1 2 3= ( , , )F F FF . 

We introduce second order matrix differential operator with constant coefficients  

 

, 4 4( ) = ( ( , )) ,x ij xA D A D              (12) 

 

where,  

 
2 2

2
4 4 0 152

= ( ) ( ) ( ) , = , =ij ij i j
i j ii

A A A T
x x xx

       
  

    
 

 

44 14 15 16
1 2 3

= [ ], = ( , , ), , = 1,2,3.b b bA k c c Dx i j
x x x

     
  

 
  

      

 

  

 It can be easily seen that Eq. (11) can be rewritten in the following matrix form:  

 

A(Dx, )U(x) = F(x),            (13) 

 

where = ( , )U u T  and 1 2 3 4= ( , , , )F F F F F  are four-component vector functions, 3x R . 

3    FUNDAMENTAL SOLUTIONS   

3.1 Fundamental solution of equations 

Definition: The fundamental solution of Eq. (11), the fundamental matrix of operator ( , )xA D   is the matrix 

4 4( , ) = ( ( , ))ijx x    , satisfying the following equation in the class of generalized functions 

 

( , ) ( , ) = ( ) ,xA D x x J              (14) 

 

where ( )x  is the Dirac delta function and 4 4= ( )ijJ    is the unit matrix, 3x R . 

 Assume that 14 0k    and consider the following system of non homogeneous equations:  
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2 (1)
0 15( )u ( ) divu T T = F ,          

 

14 15 16 4. [ ( )] = .b b bu k c c T F                      

 

(15) 

 

As one may easily verify, the system (15) may be written in the following form  

 
TA (Dx, )U(x) = F(x),            (16) 

 

where TA  is the transpose of matrix A, 1 2 3 4= ( , , , )F F F F F  is a four-component vector function and 3x R . 

Applying the operator div to the first equation of the system (15), we obtain the following system 

 
2 (1)

0 0 15( )div T T = div ,u F     
 

14 15 16 4. [ ( )] = .b b bu k c c T F                      

(17) 

 

where 0 = 2   . 

The system of Eq. (17), can be written as: 

 

( , ) ) = ( ),B Vx x             (18) 

 

where, 1 2 4= ( , ) = ( , )divF F    are two-component vector function.  

 
2

2 2 11 0( , ) = ( ( , )) , ( , ) = ,ijB B B          

12 0 15 21 22 14 15 16= , = , = ( ).b b bB T B B k c c                       

 

  

 We introduce the notation  

 

1
14

1
( , ) = ( , ).detB

k
 

 
              

 

(19) 

 

It is easily seen that 1( , ) = 0    is a second degree algebraic equation and there exits two roots 2
1 , 2

2  w.r.t. 

 . Then we have  

 
2

2
1

=1

( , ) = ( ).j

j

                
 

(20) 

 

Eq. (19) imply  

 

1( , ) = ,V              (21) 

 

where,  

 
2

*
1 2 14

0 =1

1
= ( , ), = , = 1,2.j lj l

l

B l
k 

                
 

(22) 

   

 and 
*
ljB  is the co-factor of the element ljB  of the matrix B. 

Now applying the operator 1( , )   to the first equation of the system (15) and taking into account Eq. (21), we 

obtain 
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2 ( , ) = ,u F             (23) 

 

where 
2

2
2 1 1 3( , ) = ( , )( ) = ( , )( ),


   


        and  

 

1 1 0 15 2

1
= [ ( , ) ( ) ].F F T    


                  
 

(24) 

 

On the basis of equation (21) and (23), we get 

 

( , ) ( ) = ( )U x x              (25) 

 

 where 2= ( , )F   is a four-component vector function and  

 

4 4( , ) = ( ( , )) ,ij        

11 22 2 33 2 44 1= = , = , =      
 

= 0, and , =1,2,3,4ij for i j i j            

 

 

We introduce the notations  

 

* * *0 15
1 1 2

0 14 0 14 0 14

( ) 1
( , ) = , ( , ) = ( , ).l l l lm lm

T
n B B n B

k k k

  
  

     

 
               

 

(26) 

 

In view of Eqs. (26), from Eqs. (22) and (24), we have  

 
2

1 1 1 11 21 4

=1

2 2 22 4

1 1
= ( , ) ( , ) = [ ( , ) ( , ) ] ( , )

= ( , ) ( , )

l l

l

l

F F n I n div F n F

n divF n F

    
 

 

            

   

            

 

 

(27) 

 

where 3 3= ( )ij I  is the unit matrix. Thus, from Eqs. (27) we have  

 

( ) = ( , ) ( ),T
xx L D F x            (28) 

 

where  

 

4 4( , ) = ( ( , )) ,x ij xL D L D     

2

1 11 4 12 4 21 44 22

1
= ( , ) ( , ) , = , = , = .lj ij j j

l j j j

L n L L
x x x x

     


  
   

   
          

 

 

(29) 

  

By virtue of Eqs. (18) and (28) from (25), it follows that = T TU L A U . It is obvious that =T TL A   and, 

hence,  

 

( , ) ( , ) = ( , ).x xA D L D              (30) 

 

We assume that , where , =1,2,3l j  and l j . Let 
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4 4

3
( )

11 22 33 2

=1

3
( )

44 1

=1

( , ) = ( ( , )) ,

( , ) = ( , ) = ( , ) = ( , )

( , ) = ( , ), ( , ) = 0, for, , , = 1,2,3,4.

ij

j
j

j

j
j ij

j

Y x Y x

Y x Y x Y x x

Y x x Y x i j i j

 

     

    









          

 

 

 

(31) 

 

where  
| |

( ) ( , ) = ,
4 | |

i x
j

j e
x

x



 


           

 

(32) 

 

Is the fundamental solution of the Helmholtz’s equation, i.e. 
2 ( )( ) ( , ) = ( )j
j x x     and 

 
2 2 1 2 2 1

11 2 1 12 1 2= ( ) , = ( ) ,                  (33) 

 
2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1

21 2 1 3 1 22 1 2 3 2 23 1 3 2 3= ( ) ( ) , = ( ) ( ) , = ( ) ( ) ,                                   (34) 

 

Lemma: The matrix ( , )Y x   is the fundamental solution of the operator ( , )  , that is,  

 

( , ) ( , ) = ( ) ,Y x x J              (35) 

 

Proof: It is suffices to show that 11Y  and 44Y  are the fundamental solutions of operators 2 ( )   and 1( )  , 

respectively, i.e.  

 

2 11

1 44

( , ) ( , ) = ( )

( , ) ( , ) = ( )

Y x x

Y x x

  

  

 

 
          

 

(36) 

 

Taking into account the equalities 

 
2

2 2
1 11 12 12 1 2

=1

= = 0,and ( ) = 1j

j

          

2 ( ) 2 2 ( )( ) ( , ) = ( ) ( ) ( , ),j j
l l jx x x                  

 

 

  

 We have 

 
2 2

2
1 44

=1=1

2 2 1 2
1 2 11 12

2
2 2 2 ( )
2 1 1

=1

2
2
2 1

=1

( , ) ( , ) = ( ) ( , )

= ( )( )[ ( , ) ( , )]

.
= ( ) [ ( ) ( ) ( , )]

= ( ) ( , )] = ( ).

j
j ij

jj

j
j j

j

j
j

j

Y x x

x x

x x

x x

     

       

      

    

   

    

   

 







          

 

 

 

 

 

(37) 

Similarly,  
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2 44( , ) ( , ) = ( ).Y x x              (38) 

 

We introduce the matrix 

 

( , ) = ( , ) ( , ).xx L D Y x             (39) 

 

Using Eq. (30) and (34) from (35), we get 

  

( , ) ( , ) = ( , ) ( , ) ( , ) = ( , ) ( , ) = ( ) .x x xA D x A D L D Y x Y x x J                    (40) 

 

Hence, ( , )x   is the solution to Eq. (14). 

Theorem: The matrix ( , )x   defined by Eq. (39) is the fundamental solution of Eq. (11), where the matrices 

( , )L D x   and ( , )Y x   are given by formulas (29) and (31), respectively. 

Each element ( , )ij x   of the matrix ( , )x   is represented in the following form: 

 

11

44

( , ) = ( , ) ( , ),

( , ) = ( , ) ( , ),

= 1,2,3,4.

ij ij x

lm lm x

x L D Y x

x L D Y x

l

  

  



           

 

 

(41) 

3.2 Basic property of the matrix ( , )x   

Property: Each column of the matrix ( , )x   is a solution of the homogeneous equation  

 

( , ) ( , ) = 0xA D x             

 

at every point 3x R  except the origin.  

4    PLANE WAVE SOLUTION  

We consider equation of motion and bioheat transfer equation in the absence of body force and heat source as: 

 

, , ,

2 2
2

0 ,2 2

ˆˆ ˆ ˆ( ) = 0,

ˆ ˆ ˆ(1 ) [ ( ) (1 )] ( ) = 0.

k ik i kk i i

T q b b b q q j j

u u T u

k T c c T T u
t t t tt t

    

       

   

     
       

    

          

 

(42) 

 

For harmonic solution of Eq. (42) for the propagation of plane waves, we assume 

 

0
ˆˆ( , ) = ( , )exp( ( )),j j k ku T T U i p x t             (43) 

 

where   is angular frequency and 1 2 3( , , )p p p  is slowness vector. In terms of the phase velocity V, slowness is 

written as 1 2 3( , , ) =
N

p p p
V

. The row matrix 1 2 3= ( , , )N n n n  represents the direction of phase propagation. The 

vectors 1 2 3( , , )U U U defines the polarization for the motions of the solids particles. Substituting Eq. (43) in Eq. (42) 

yields  
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0

0

2

0

= ,

= ,

= ,

k kT T Gn u

i T V
G

k c V

i

 

 

 








          

 

 

 

(44) 

 

Relates the temperature (T) and particle displacement in the medium. The other subsystem is  

 
= 0,AU           (45) 

 
2 2= ( ) ( ) ,TA gV N N V I                  (46) 

 

where I is the identity matrix of order three and TN  denotes the transpose of row matrix N. The later subsystem is 

resolved into the following eigen system 

 

[ ( )] = 0,T TaN N b I N N U            (47) 

   

 where  

 
2 2= ( 2 ),a gV V                (48) 

 
2= ,b V            (49) 

 

0

2
14 2

= .

T

T
g

k V



 
          

 

(50) 

 

The eigensystem (47) explains the propagation phenomenon in the medium and may be called the generalized 

Christoffel equations for thermoelastic wave propagation in the considered medium. 

Non-trivial solution for Christoffel Eq. (47) is ensured by vanishing the determinant of the coefficient matrix 

( )T TaN N b I N N  . For = 0b , we get a relation 

 

= ,V



          

 

(51) 

 

with polarization U  normal to propagation direction N. Hence this defines the phase velocity of a non-attenuating 

transverse wave in the medium. The other relation, = 0a , is solved into  

 
2 2( 2 ) = 0.gV V                (52) 

 

For 2k c V  , the Eq. (52) is solved into a quadratic equation in 2V . This quadratic equation is written as: 

 
4 2

0 1 2 = 0,C V C V C            (53) 

 

Two roots of quadratic Eq. (53) explain the existence and propagation of two longitudinal waves in thermoelastic 

solid. The relaxation time parameter   is frequency dependent complex number. This implies that the roots of Eq. 

(53) are complex and hence the longitudinal waves in the medium are attenuating waves. 
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5    REFLECTION AT PLANE BOUNDARY  

This study aims to analyse the propagation and attenuation of three reflected waves at the free plane surface of a bio-

thermoelastic medium. The half space 3 0x   is considered as the bio-thermoelastic solid with depth increasing 

along the 3x -direction. The plane 3 = 0x  is the surface of the medium. The propagation and attenuation of waves 

are considered in a 1 3x x  plane. In this plane an incident wave travels towards the surface making an angle   

with the 3x  axis.  

The components of displacement are given by  
 

1
1 3

= ,u
x x

  


 
          

 

(54) 

 

3
3 1

= ,u
x x

  


 
          

 

(55) 

   

 where   and   satisfy the following wave equations  

 
2

2

2
( ) = 0, = 1,2.i

i

i
V


            

 

(56) 

 
2

2

2
= ,

t


  





          

 

(57) 

 

where 1 2=    and iV  are velocities of two longitudinal wave obtained from the Eq. (53). 

The potential functions can be written as: 

 
2 0 0 1 1( . ) ( . ) ( . ) ( . )0 1

1

( , ) = (1, )( ),
A r i P r t A r i P r t

i i i i
i i iT n B e e B e e

 


 
           

 

(58) 

 
0 0 1 1( . ) ( . ) ( . ) ( . )0 13 3 3 3

3 3= ,
A r i P r t A r i P r t

B e e B e e
 


 

           
 

(59) 

 

where  

 
2 2 2

2

( 2 )
= .i

i

i

V
n

V

   



  
          

 

 

 

The coefficients 0
iB , = 1,2,3i  are the amplitudes of the incident P, T and SV wave respectively and the 

coefficients 1
iB , = 1,2,3i  are the amplitudes of the reflected P, T and SV wave respectively. The propagation 

vector 0
iP  and 1

iP  , and the attenuation vector 0
iA  and 1

iA  are given by  

 
0 1

1 3 1 3
ˆ ˆ ˆ ˆ= , = ,i R iR i R iRP k x d x P k x d x            (60) 

 
0 1

1 3 1 3
ˆ ˆ ˆ ˆ= , = ,i I iI i I iIA k x d x A k x d x              (61) 

 

where  
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2
2

2
= = . .( ), = 1,2,3.i iR iI R

i

d d id pv k i
V


            

 

(62) 

 

1x̂  and 3x̂  denotes the denote the unit vectors propagating in the 1x  and 3x  directions, respectively, and 

= R Ik k ik  is the complex wave number. The subscripts R and I denote the real and imaginary parts of the 

corresponding complex number, and p.v. stands for the principal value of the complex quantity derived from square 

root.  

5.1 Boundary conditions 

Three boundary conditions are required to be satisfied at the plane 3 = 0x .  

 

33

31

( ) = 0,

( ) = 0,

( ) = 0.

i

ii

ii T



           

 

 

(63) 

 

Making use of potentials given by Eqs. (58) and (59), we find that the boundary conditions are satisfied if and 

only if 

 

31 2

1 2 3

sin( )sin( ) sin( )sin( )
= = = = ,Rk

V V V V

     
          

 

(64) 

 

where V=V1 ; for incident P-wave, V2; for incident T-wave, V3; for incident SV-wave. 

Using the boundary conditions given by Eq. (63) and with the aid of Eqs. (6) and (47), we get a system of three 

non-homogeneous equations which can be written as: 

 
3

=1

= ,ij j i

i

a Z Y           
 

(65) 

 

where jZ , = 1,2,3j  are the ratios of amplitudes of reflected P, reflected T, and reflected SV- waves to that of 

amplitude of incident wave.  

 
2 2

1 13 3= ( 2 ) , for i=1,2, = 2 ,i ia d k a kd         

 2 2
2 23 3= 2 , for i=1,2, = ,i ia kd a k d   

3 33=1, for i=1,2, = 0.ia a       

 

 

 

The coefficients iY , = 1,2,3i  on the right side of the Eq. (64) are given by [labe l=()]  

1. For incident P-wave 1 11=Y a , 2 21=Y a , 3 31=Y a .  

2. For incident T-wave 1 12=Y a , , 3 32=Y a .  

3. For incident SV-wave 1 13=Y a , 2 23=Y a , 3 33=Y a .  

 5.2 Energy ratios 

Distribution of incident energy among different reflected waves is considered across a surface element of unit area at 

the plane 3 = 0x . The scalar product of surface traction and particle velocity per unit area, denoted by *P , 
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represents the rate at which the energy is communicated per unit surface area per unit time. For a surface with 

normal along the 3x  direction, the average energy flux is represented through the components *
eP  given by 

 
( ) ( ) ( )*

131 33 3< >= ( ) ( ) ( ) ( ).
e e ee

eP Re Re u Re Re u            (66) 

 

Following Achenbach [34] , for any two complex functions f and g, we have  

 

1
( ( ). ( )) = ( . ).

2
Re f Re g Re f g           

 

(67) 

 

The energy ratios ( =1,2,3)iE i , for the reflected P, T and SV waves, respectively, are defined as follows: 

 
*

*
0

( )
= ,( = 1,2,3),ei

i

e

P
E i

P
           

 

(68) 

where  

 

* 2 2 0 2
0 1 1 1

1
= ( 2 ) (( ) ) | | ,

2
eP Re d k d B              

 

(69) 

 

* 2 2 1 2
1 1 1 1

1
= ( 2 ) (( ) ) | | ,

2
eP Re d k d B               

 

(70) 

 

* 2 2 1 2
2 2 2 2

1
= ( 2 ) (( ) ) | | ,

2
eP Re d k d B               

 

(71) 

 

* 2 2 1 2
3 3 3 3

1
= (( ) ) | | .

2
eP Re k d d B             

 

(72) 

 

The expression given by Eqs. (69)-(71) are calculated when P-wave is incident.   

6    RESULTS AND DISCUSSION  

Three waves are found in considered isotropic medium. Two of these are attenuating longitudinal waves and one 

non-attenuating transverse wave. For the complex velocity ( = R IV V iV ), phase velocity and attenuation 

coefficient are defined as 
2 2

2
= R I

R

V V
V

V


 and 

2
1

2

(1/ )
=

(1/ )

img V
Q

Re V


 respectively. 

The computation has been done using MATLAB (R2016a) software and results are presented graphically. Only 

the parameters whose values differs from reference value are indicated in figures. The selected referenced value for 

phase velocities and attenuation coefficients are given in the Table 1.  
 

Table 1 

Tissue parameters and constants 

Parameters   Units   Values  

 Density     3.kg m     1060  

Specific heat c   
1 1. . .J kg K 

   4192  

Thermal conductivity k   1 1. .W m K     0.613  

Thermal expansion coefficient     1C     41 10   

Young’s modulus E    Pa  40.1 10   
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Poisson’s ratio        0.48 

Blood perfusion rate b    3 1.Kg m s      0.5  

Arterial temperature bT    C    37 

Blood specific heat bc    1 1Jkg C     3600 

Phase lag time q ,    s   8,16 

    
Fig. 1 shows the phase velocity and attenuation quality coefficient of 1PV  and 2PV  waves. From Fig. 1(a) it is 

clear that phase velocity has slight change as frequency ( ) increases but significant effect of b  has observed on 

phase velocity. As the value of b  increases phase velocity profile decreases. The phase velocity of () wave is much 

slower than the 1PV  wave as in Fig. 1(b). As frequency   increases phase velocity () also increases and effect of 

blood perfusion parameter ( b ) is observed. Fig. 1(c) shows the attenuation coefficient 1( )AQ  decreases for  and 

for > 0.5  it increases. In Fig. 1(d) attenuation coefficient 2( )AQ  is depicted. It is clear that it shows oscillating 

behavior for small value of frequency ( ), but for large value of frequency ( )  it shows constant behavior. 

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

Fig.1 

Effect of blood perfusion rate b  on phase velocities and attenuation coefficients. 

 

Fig. 2 shows the variation in phase velocities ( 1 2,PV PV ) and attenuation coefficients ( 1 2,AQ AQ ) for different 

values of lagging times. From Fig. 2(a) and Fig. 2(b) it is clear that as the value of phase lag parameter q  increases 

phase velocity profile of 1PV  and 2PV  waves decreases. Fig. 2(c) shows that the profile of attenuation coefficient 

1AQ  decreases as the lagging time ( )q  increases. Fig. 2(d) shows that profile of attenuation coefficients 2AQ  

remains stationary for 2  , for 2 < < 4  it shows oscillatory behavior and for > 4  it again shows stationary 

behavior when <q T  . When =q T   and >q T   the profile of attenuation coefficient 2AQ  is almost a straight 

line. Thus, we observed the significant effects of phase lag on phase velocities and attenuation coefficients of both 

the longitudinal waves. 
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(a) 

 
(b) 

  

 
(c) 

 
(d) 

Fig.2 

Variation in phase velocities and attenuation coefficients along frequency ( ) for different values of lagging time. 

 

Fig. 3 shows the variation in phase velocities ( 1 2( ),PV PV ) and attenuation coefficients ( 1 2,AQ AQ ) along 

Young’s modulus  for different value of Poisson’s ratio ( ). From Fig. 3(a) it is clear that phase velocity 1( )PV  

increase monotonically as the value of Young’s modulus increases and as the value of Poisson’s ratio increases 

phase velocity increases. Phase velocity ( 2PV ) has oscillatory behavior as Young’s modulus E increases as shown 

in Fig. 3(b). Fig. 3(c) shows that attenuation coefficient 1( )AQ  decreases as the value of Young’s modulus 

increases and attenuation coefficient is greater for smaller value of Poisson’s ration ( ). Fig. 3(d) shows oscillatory 

behavior of attenuation coefficient 2( )AQ . Thus, it is clear that phase velocities and attenuation coefficients are 

affected by Young’s modulus and Poisson’s ratio. 

   

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig.3 

Variation in phase velocities and attenuation coefficeints along Young’s modulus (E) for different values of Poission’s ratio 
(υ). 

 

Fig. 4 shows the variation in energy ratio along the incident angle ( ) for different values of Poisson’s ratio ( ).    

The value of energy ratio 1E  increases as Poisson’s ratio   increases. As Poisson’s ratio increases the value of 1E  

gets closer to each other. Also for all angle of incidence the value of 1E  decreases. For initial angle of incidence 

value of 2E  are very close to each other and as the angle of incidence increases >15  it increases monotonically 

for all values of the Poisson’s ratio. The value of 3E  increases monotonically for all values of Poisson’s ratio with 

all angle of incidence. The value of 2E  and 3E  get decreased as Poisson’s ratio increases with all angle of 

incidence. 

 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

Fig.4 

Variation in energy ratios ( 1 2 3, ,E E E ) for different values 

of Poission’s ratio ( ). 

 

It is noticed that from Fig. 5 and Fig. 6 that only energy ratio 2E  is affected by blood perfusion rate ( b ) and 

phase lag parameters ( ,q T  ).  
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(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

 

 

Fig.5 

Variation in energy ratios ( 1 2 3, ,E E E ) for different values 

of blood perfusion rate ( b ). 

 

 
(a) 

 
(b) 

  

 
(c) 

 

 

 

 

 

 

 

 

Fig.6 

Variation in energy ratios ( 1 2 3, ,E E E ) for different values 

of phase lag parameters q  and T . 

7    CONCLUSION 

The fundamental solution of the system of equations in the theory of bio-thermo-elasticity in case of steady 

oscillations in terms of elementary function has been constructed. The fundamental solution ( , )x   of the system 

(11) make it possible to investigate three dimensional boundary value problem of bio-thermomechanics by potential 
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method Kapradze et al. [30]. This type of study is useful due to its application in biomedical and bioengineering. In 

later part of the paper study of waves in tissues is investigated which is a significant problem. The existence and 

propagation of three waves is found. From these waves we found that one is transverse wave and two are 

longitudinal waves. The effects of blood perfusion parameter, lagging time, frequency and Young’s modulus is 

observed.  In the last section of the paper a mathematical treatment has been presented to explore the angle of 

incidence on wave propagation in a two dimensional model of bio-thermoelasticity with DPL . The problem has 

been solved theoretically and explained through a specific model. Though the figures are self explanatory in 

depicting the different peculiarities which occur in the propagation of waves. Yet the following remark may be 

added: 

It is concluded that the behavior and variation of 1E  and 3E  are opposite to each other for considered value of 

Poisson ratio and only energy ratio 2E  is effected by the blood perfusion rate and phase lag parameters. The 

problem assumes great significance when we consider the real behavior of material characteristic with appropriate 

geometry of the model. Thus, it is concluded that the problem discussed will provide useful information for 

experimental researchers working in the field of biomedical, geophysics and earth-quack engineering. 
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APPENDIX  
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