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 ABSTRACT 

 A generalized thermo-elastic diffusion problem in a 

functionally graded isotropic, unbounded, rotating elastic 

medium due to a periodically varying heat source in the 

context of fractional order theory is considered in our 

present work. The governing equations of the theory for a 

functionally graded material with GNIII model are 

established. Analytical solution of the problem is derived in 

Laplace-Fourier transform domain. Finally, numerical 

inversions are used to show the effect of rotation, non-

homogeneity and fractional parameter on stresses, 

displacement, chemical potential, mass distribution, 

temperature, etc. and those are illustrated graphically. 
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1    INTRODUCTION 

 HE theory of generalized thermo-elasticity studied since the nineteenth century, now developed and achieved 

one of the most important roles due to its diverse application in various kinds of physical problems in 

engineering science and physics. The first generalization proposed by Lord and Shulman [1] involves one relaxation 

time parameter in Fourier’s law of heat conduction equation. In this theory, a flux-rate term has been introduced into 

Fourier’s heat conduction equation to formulate it in a generalized form that involves a hyperbolic-type heat 

transport equation admitting finite speed of thermal signals. Another model is the temperature-rate-dependent theory 

of thermo-elasticity proposed by Green and Lindsay [2], which involves two relaxation time parameters. The theory 

obeys the Fourier law of heat conduction and asserts that heat propagates with finite speed. Three models (Models I, 

II and III) for generalized thermo-elasticity of homogeneous and isotropic materials have been developed later by 

Green and Naghdi [3-5].The linearized version of Model II reduces to the classical heat conduction theory (based on 

Fourier’s law) and those of Models II and III permit thermal waves to propagate with finite speed. Applying the 

above theories of generalized thermo-elasticity, several problems have been solved on this field from which we may 

mention a few with references [6-13]. Functionally graded materials (FGM) as a new kind of composites were 
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initially designed as thermal barrier materials for aero-space structures, in which the volume fractions of different 

constituents of composites vary continuously from one side to another. These novel inhomogeneous materials have 

excellent thermo-mechanical properties and have extensive applications in aerospace structures, tubes, nuclear 

reactors and overall in generalized thermo-elastic materials structures. FGMs are frequently used in generalized 

thermo-elasticity. Many works are done on this field with FGMs from which a few are mentioned in references [14-

21]. Recently, Sur and Kanoria [22] studies on FGM with variable material properties with fractional order 

generalized thermoelasticity theory. In addition, Pal, Das and Kanoria [23] study on magneto-thermoelastic response 

in a functionally graded rotating medium due to a periodically varying heat source. The study of diffusion 

phenomena has aroused much interest in recent years because of its several applications in geophysics, electronics 

and metal oxide semiconductor (MOS) improvement in crude oil extraction from oil deposits. Diffusion can be 

regarded as the phenomena of random walk of an ensemble of particles from regions of high concentration to 

regions of low concentration until equilibrium is reached. The process of heat and mass diffusion play important 

roles in many engineering applications, such as satellites problems, returning space vehicles, and aircraft landing on 

water or land. There is now a great deal of interest in the process of diffusion in the manufacturing of integrated 

circuits and integrated resistors. In heat treatment of metals, the surface characteristics of metals such as wear and 

corrosion resistance and hardness can be improved by carburizing through diffusion. Diffusion is of fundamental 

importance in many disciplines of Physics, Chemistry and Biology such as sintering to produce solid materials, 

chemical reactor design and catalyst design in chemical industry and doping during production of semi-conductors. 

Thermo-elastic diffusion in an elastic solid takes place due to the coupling of the field of temperature, mass 

diffusion and strain. Heat and Mass exchange with the environment during the process of thermo-diffusion in an 

elastic solid. Nowacki [24-27] developed the theory of thermo-elastic diffusion within the context of classical 

coupled thermo-elasticity (CCTE) and studied some dynamical problems of diffusion in solids and then one by one 

several author work on this field from which some are given in references [6-8, 28-33].  Li et al [34-35] also work 

on that field. Youssefa and Al-Lehaibib [36] represent three dimensional generalized thermoelastic diffusion theory 

and apply it for a thermoelastic half-space subjected to rectangular thermal pulse. Recently, Paul and 

Mukhopadhyay [37] work on a two-dimensional generalized magneto thermoelastic diffusion problem for a thick 

plate under laser pulse heating with three-phase lag effect. 

The study of fractional calculus, the generalization of the concept of derivative and integral to a non-integer 

order, started in the 2nd half of the 19th century has been used in recent years successfully to modify many existing 

models of various physical processes in various areas, e.g., chemistry, biology and modeling and identification, 

electronics, wave propagation, visco-elasticity and classical mechanics [38-40]. Fractional calculus is used in oil 

industry specially for the best finding of oil reservoirs in the ground well rather than Euclidean geometry [54]. The 

first application of fractional derivatives was given by Abel who applied fractional calculus in the solution of an 

integral equation that arises in the formulation of the tautochrone problem. Among the few works devoted on 

fractional calculus to thermo-elasticity, we can refer to the works of Padlubny [41] for a survey of applications of 

fractional calculus and Povstenko who introduced a fractional heat conduction law and found the associated thermal 

stresses [42]. Sherief et al. [43] introduced a new model of thermo-elasticity using fractional calculus, proved a 

uniqueness theorem, and derived a reciprocity relation and a variational principle. Youssef [44] introduced another 

new model of fractional heat conduction equation, proved a uniqueness theorem and presented one-dimensional 

application. Ezzat [45-46] established a new model of fractional heat conduction equation by using the new Taylor 

series expansion of time-fractional order which developed by Jumarie [47]. Ezzat and Mohsen [48] work on 

fractional order theory of thermoelastic diffusion. Recently, a problem on thermo-viscoelastic interaction subjected 

to fractional Fourier law with three-phase lag effect is studied by Pal et al. [49]. Abbas [50] also represents an Eigen 

value approach on a fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with 

spherical cavity. 

Therefore, there are many ways to work on fractional order generalized thermo-elasticity. A one-dimensional 

generalized thermo-elastic diffusion problem of a functionally graded isotropic, unbounded, rotating medium due to 

a periodically varying heat source in the context of generalized fractional order thermo-elasticity with GNIII Model 

is considered in our present work. The governing equations of the theory for a functionally graded material with 

GNIII Model are established. Analytical solution of the theory is derived in Laplace-Fourier transform domain. 

Finally, numerical inversions by Honig and Hirdes [51] are used to show the effect of rotation, non-homogeneity 

and fractional parameter on stresses, displacement, chemical potential, mass distribution, temperature, etc. and 

illustrated graphically.  
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2    BASIC EQUATIONS 

The governing equations [29, 55] in the present problem based on GNIII model comprise of the following: 

( 1A ) Stress-displacement-temperature-chemical potential and mass concentration relations: 
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 ( 1B ) Equations of motion in terms of displacement components 
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 ( 1C ) Heat conduction and diffusion equations 
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For a functionally graded solid, the parameters
*

0 1 2 1, , , , , , , , ,K K l D n     and d are no longer constants but 

are space dependent. Thus, we replace 0 ,  ,
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1 2 1, , l  , 

0D , 0 0,D n and 0d assumed to be constants and ( )f x is a given dimensionless function of the space variable x= (x, 

y, z). Now, the Eqs. (1-2) and (4-6) take the following form:  

( 2A ) Stress-displacement-temperature-chemical potential and mass concentration relations:  
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  ( 2B ) Equations of motion in terms of displacement components 
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 ( 2C ) Heat conduction and diffusion equations 
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3    FORMULATION OF THE PROBLEM 

Let us consider a functionally graded isotropic thermo-elastic medium in x   whose state depends only on 

the variable x and time variable t which is rotating with a uniform angular velocity n  , where n is the unit 

vector in the direction of the axis of rotation.  If we take the coordinate axes fixed in the rotating medium, the 

displacement equation of motion in the rotating frame of reference has two additional terms—the centripetal 

acceleration ( )u   due to the time-varying motion only and the Coriolis acceleration 2 u , where u is the 

dynamic displacement vector measured from a steady state-deformed position, and the deformation is assumed to be 

very small. We shall consider the propagation of plane waves in the presence of periodically varying heat sources 

distributed over a plane area within the medium. Since we are dealing with an isotropic thermo-elastic medium, 

without any loss of generality, we may consider waves propagating in the x direction, and all the field variables are 

supposed to be functions of x and t only; i.e., we may assume that u =u(x, t),v = v(x, t),w =  0 and  ( , )x t   where     

( , )x t denotes the temperature above the reference temperature 0T . In order to examine the effect of rotation on the 

propagation of plane waves, we set, (0,0, )  , where is a constant. In view of the above assumptions, our 

problem will involve two displacement components u(x, t) and v(x, t). In this context we can mention the work of 

Sinha and Bera [52] and Rouchoudhuri [53].   

It is assumed that the material properties of a functionally graded material depend only on x co-ordinate. Also, it 

is assumed that medium is rotating with uniform angular velocity . So, in the context of the linear theory of 

generalized thermo-elasticity Eqs. (7), (8), (9), (10) and (11) take the following form: 

( 3A ) Stress-displacement-temperature-chemical potential and mass concentration relations: 
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 ( 3B ) Equations of motion in terms of displacement components: 
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 ( 3C ) Heat conduction and diffusion equations: 
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Now, we introduce the following non-dimensional quantities: 

 

0 0 0 0 0 01 1
1 00 0 2

11 0 1 0 1 0 0

(2 ) (2 ) (2 )
, , , , , , , ,

c cx l
x u u v v t t T T

l l l cT l T l c T

     
      

  

    
              

 
0

0 0 0 0 0 02
12 2 0 2 0

01 0 1 0 0 1 1 0 2

(2 ) (2 ) 2
, , , ,x x xxC C P P c

c c T c

     
 

    
 

   
     

 

l = some standard length 

 

 

By using non-dimensional quantities in Eqs. (12-17) and omitting primes, we obtain the following set of 

equations: 

( 4A ) Stress-displacement-temperature-chemical potential and mass concentration relations: 
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 ( 4B ) Equations of motion in terms of displacement components: 
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 ( 4C ) Heat conduction and diffusion equations: 
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We assume that the medium is initially at rest. The undisturbed state is maintained at reference temperature. 

Then, we have 

 

u(x,0)=u(x,0)=v(x,0)=v(x,0)= (x,0)= (x,0)=0   (24) 

 

Taking exponential variation of non-homogeneity as 1( )
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using it in Eqs. (18-23) we obtain the following sets of equations: 

( 5A ) Stress-displacement-temperature-chemical potential and mass concentration relations:  
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( 5B ) Equations of motion in terms of displacement components: 
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 ( 5C ) Heat conduction and diffusion equations:  
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 (30) 

4    SOLUTION OF THE PROBLEM IN LAPLACE-FOURIER TRANSFORM DOMAIN 

Applying Laplace-Fourier transformation [with p and s Laplace and Fourier parameter respectively] of both sides of 

the Eqs. (25-30) and arranging we obtain the following set of equations: 

( 6A ) Stress-displacement-temperature-chemical potential and mass concentration relations:  

 
* * * *

1 1 1 1 2 1( ) ( , ) (1 ) ( , ) ( , )xx i s in C u s in p i K p s in p C P s in p
           (31) 

 
* 2 * * *

1 1 6 1 5 1( ) ( , ) (1 ) ( , ) ( , )uC iC s in u s in p i K p C s in p C P s in p
           (32) 

 

( 6B ) Equations of motion in terms of displacement components: 

 
2 2 2 * * * *

1 1 1 1 2 1[ ] ( , ) ( )[1 ] ( , ) [ ( )] ( , ) 2 ( , ) 0C s in C s p u s p is n K p s p C is n P s p pv s p
              (33) 

 
* 2 2 2 2 *

3 1[2 ] ( , ) [ ( ) ] ( , ) 0p u s p C s in s p v s p       (34) 
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 ( 6C ) Heat conduction and diffusion equations:  

 
2 * 2 2 2 * 2 * *

1 0 4 0[ ] ( , ) [( )( ) (1 )] ( , ) [ ] ( , ) 0T Ti p s u s p in s s pk C p K p s p C p P s p Q
          (35) 

 
2 * 2 * 2 2 *

0 1 1 2[ ] ( , ) (1 ) ( , ) [ ] ( , )TiD P s u s p p K p s p pk s in D sp D p P s p
        (36) 

 

The above Eqs. (33-36) are system of linear algebraic equations with unknowns * * * *, , ,u v P . Solving these 

algebraic equations, we obtain the corresponding solutions in Laplace-Fourier transform domain and also the stress 

and mass concentration which are given below: 

( 7A ) Displacement components: 

 

* * 3
0 , 1 , 2

1
( , ) [ (1 )( )(2 )]

( , )
s p s pu s p pQ B K p is n D C p

R s p


      (37) 

 

* 2 2 * 3
0 , 1 , 2

1
( , ) [ 2 (1 )( )(2 )]

( , )
s p s pv s p p Q B K p is n D C p

R s p


      (38) 

 

 ( 7B ) Temperature and Chemical potential 

 

* * 2 2 2 3
0 , , , , 1 , , 2

1
( , ) [ [2 ( 4 ) ( )(2 )]]

( , )
s p s p s p T s p T s p s ps p pQ D A B s D B p is n isD B D C p

R s p
         (39) 

 

* 4 * 2 2 2
0 , , ,

1
( , ) [ (1 )( 4 )]

( , )
s p s p T s pP s p p Q K p A B s D B p

R s p


      (40) 

 

 ( 7C ) Stress and Mass concentration 

 

1 1 1

1 1 1 1

*
* 3 30

1 1 1 , 2 , , 2
1

2 2 2 3
, , 1 , 1 1 , 2

(1 )
( , ) [( )( 2 )(2 ) (2 )

( , )

( ( ) 4 ) ( )( 2 )(2 )]

xx s in p s in p s in p

s in p s in p T s in p T s in p

ipQ K p
s in p s in s in iD C p B D iC p

R s in p

A B s in D B p iD s in s in iD C p






  

   


      



      

 (41) 

 

1 1 1

1 1 1 1 1

*
* 3 2 30

1 1 1 , 2 , 6 , 5
1

2 2 2 3
, , 1 , 6 1 1 , 2 ,

(1 )
( , ) [( )( 2 )(2 ) (2 )

( , )

( ( ) 4 ) ( )( 2 )(2 ) ]

s in p u s in p s in p

s in p s in p T s in p T s in p s in p

ipQ K p
C s in p s in s in iD C p C B C D iC p

R s in p

A B s in D B p iD C s in s in iD C p B






  

    


      



      

 

(42) 

where, 

 
2 2

, 1 1( )s pA C s s in p     
 

2 2 2
, 3 1( )s pB C s s in p     

 
2 2

, 0 1[ ( )( ) (1 )]s p TC p s pk C in s p K p
    

 
2

, 1 1 2[ ( ) ]s pD p D s in s D  
 

3 3 6
1 , , , 2 , , 4

2 2 2
, , , 1 2 3 4 5 6 7 8

( , ) [ ( ) ( (1 ) )(2 ) ( (1 ))

( 4 )] ( )( )( )( )( )( )( )( ),

s p T T s p s p s p s p

T s p s p s p

R s p is s in B p K p D C D C p C D C p K p

s D B A B p r r r r r r r r r r r r r r r r

 
 

 

       

          
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1 1 1 1 1

1 1 1

3 3
1 1 1 , , , 2 , ,

6 2 2 2
4 1 , , ,

1 2 3 4 5 6 7

( , ) [ ( )( 2 ) ( (1 ) )(2 ) (

(1 ))(( ) 4 )]

( )( )( )( )( )( )( )(

s in p T T s in p s in p s in p s in p

T s in p s in p s in p

R s in p i s in s in B p K p D C D C p C D

C p K p s in D B A B p

s s s s s s s s s s s s s s s













    

  

       

    

         8 )s
 

2 2 2
1 3 0 1( )( ( 2) )T TD p C pk C C p p D      

4.1 Heat source  

We now take a periodic heat source term at x=0, so that we can write 0Q  as: 

 

0
0

( )sin( ),0

0,

t
Q x t

Q

t


 






  

 
 

 (43) 

 

In Laplace-Fourier transformation domain(43) becomes 

 

* 0
0 2 2 2

(1 )
.

2 ( )

ptQ e
Q

p



  

 



 (44) 

4.2 Fourier inversion  

To obtain the solutions in Laplace transform domain, we take Fourier inversion of the required functions. To 

compute Fourier inversion, we take the help of contour integration by considering the closed contour 1 2    , 

where 1 is the contour {Re(s): Re( )s   } and 2  is the upper half circle{ ,0 }is e     . It is observed 

that the singularities of the transform functions do not lie on the real line. Thus, in Laplace transform domain we get, 

 
8

30
, 1 , 22 2 2

Im( ) 0, 0, 1

(1 )(1 )
( , ) [ ( )(2 ) ]

2( )

j

j j

j

pt
is x

j s p j s p

s x j

pQ e K p
u x p A B n is D C p e

p


 

 




  

  
   


  (45) 

 
82 2

30
1 , 22 2 2

Im( ) 0, 0, 1

2 (1 )(1 )
( , ) [( )(2 ) ]

( )

j

j

j

pt
is x

j j s p

s x j

p Q e K p
v x p A n is D C p e

p


 

 




  

  
   


  (46) 
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j j j j
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p A B s D B p e


 


  




  

        
   
 

  (47) 
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where jA and jB are given by 
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4.3 Laplace inversion  

As the transformed functions of displacements, stress etc. are very complicated, the inverse functions can not be 

obtained directly as functions of x and t. We then take the help of numerical inversion of Laplace transformation. 

There are various methods of numerical inversion of Laplace transformation out of which we apply here the method 

adopted by Honig and Hirdes [51]. Let, ( )g p
 
is the Laplace transform of g(t), then inverse Laplace transform can 

be written as ( ) ( ) ,
2

ct
i te

g t e g c i d  






  where c is an arbitrary number greater than real part of all the 

singularities of ( )g p . Fourier series expansion of ( ) ( )cth t e g t in the interval [0,2T] gives the approximate 

formula ( )Ng t of g(t) given by [51], ( ) ( ) ,D N T Dg t g E g t E E     where, 

1

( )
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2

ik t

L
N

k

g c ik
g t g c e

L








  
 

Here, DE and TE  represents the discretization error and truncation error respectively. The values of c and L are 

chosen according to the criterion outlined in [51]. With the suitable choice of L, we have computed the values of the 

functions with the help of computer software and drawn the graphs accordingly.  

5    NUMERICAL RESULTS AND DISCUSSION 

The copper material is chosen for the purposes of numerical evaluations for which following material constants are 

taken [8, 31]: 

 
10 1 2 10 1 2 2 1 1

0 0 0 0 07.76 10 , 3.86 0 , 293 , 8954 , 383.1 , 1,Ekgm s kgm s T K kgm C Jkg K Q                
 

4 3 1 5 1 2 4 2 2 1 5 5 1 2
1 0 01.98 10 , 1.78 10 , 2, 1, 1, 1.2 10 , 9 10 .c t Tm kg K C l a m s K b m kg s                   

 
 

 

We have shown the effect of rotation, fractional coefficient and non-homogeneity on displacements, stress, 

temperature, chemical potential and mass concentration with the variation of distance graphically from Fig. 1 to Fig. 

13. All the associated graphs are drawn at fixed time t = 0.2.  

Fig.1 and Fig.4 highlight the effect of fractional parameter   on displacement u and v respectively when GNIII 

model is considered whereas Fig.3 and Fig.4 show the effect of diffusive parameter 1D on u and v when both the 

models GNII and GNIII are considered. Change of displacement u with the changing value of rotational parameter 

  and non-homogeneity parameter 1n  can be obtained from Fig.2. 
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Fig.5, Fig.6 and Fig.7 describe the change of temperature   with various values of the parameters. 

Fig.8 and Fig.9 show the change of stress xx with the changing values of parameter   and diffusive parameter 

1D  respectively. Effect of 0k ,  and 1n  on stress xx can be observed from Fig.10. 

Fig.11 describes the effect of  on mass concentration C whereas Fig.12 and Fig.13 describe the effects of 0k , 

1n and  on mass concentration and chemical potential respectively. 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Displacement distribution versus x at different . 

  

 

 

 

 

 

 

 

 

 

 

Fig.2 

Displacement distribution versus x at different n1 and . 

  

 

 

 

 

 

 

 

 

 

 

Fig.3 

Displacement distribution versus x at different D1, k0 and . 

  

 

 

 

 

 

 

 

 

 

 

Fig.4 

Displacement distribution versus x at different D1, k0 and . 
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Fig.5 

Temperature distribution versus x at different . 

  

 

 

 

 

 

 

 

 

 

 

Fig.6 

Temperature distribution versus x at different D1. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Temperature distribution versus x at different n1 and . 

  

 

 

 

 

 

 

 

 

 

 

Fig.8 

Stress distribution versus x at different . 
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Fig.9 

Stress distribution versus x at different D1. 

  

 

 

 

 

 

 

 

 

 

Fig.10 

Stress distribution versus x at different k0 ,n1 and  . 

  

 

 

 

 

 

 

 

 

 

Fig.11 

Mass concentration distribution versus x at different . 

  

 

 

 

 

 

 

 

 

Fig.12 

Mass concentration distribution versus x at different k0 ,n1 
and  . 

  

 

 

 

 

 

 

 

 

 

Fig.13 

Chemical potential distribution versus x at different k0 ,n1 and 

 . 
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5.1 Observations from the graphs 

1. It is seen from Fig.1 to Fig.4 that in each case magnitude of displacement increases with increasing value of 

x, reaches a peak value and then decay gradually and finally converges to the zero value, which is expected. 

2. It is also seen from the graphs that effect of all the parameters are significantly present. 

3. It is clear from the Fig.1 that the peak of the displacement u occurs at x = 0.36 for GNIII model for different 

values of   and the peak value is increasing with increase of . 

4. Fig.2 clarifies the effect of non-homogeneity parameter 1n on displacement u with and without rotation for 

GNIII model. The peak of the displacement occurs at x = 0.3 and the peak increases in present of 1n in both 

the cases. 

5. Fig.4 classifies the effect of fractional parameter   in presence and absence of diffusive parameter 1D for 

both GNII and GNIII models. Modulus of the peak of displacement u with the variation of   occurs at x = 

0.33 when GNII model is considered and 0.35, 0.4 when GNIII model is considered. Significantly, the peak 

is increasing with the increase of   and in the presence of 1D .  

6. It is also observed that two different models yield two different peak points. 

7. The nature of the graphs of temperature, stress, chemical potential and mass concentration is similar. All 

the variables occurs maximum magnitude at x = 0 and then decay gradually with the increasing values of x 

and finally converges to zero. Effect of all parameters 1 1, ,n D  and clearly observed from the figures. 

6    CONCLUSIONS 

This article studies the fractional order thermoelastic interaction in a functionally graded isotropic unbounded 

rotating medium in the context of the linear theory of generalized thermoelastic diffusion with energy dissipation 

(GNIII) and without energy dissipation (GNII). The material properties under consideration are assumed to vary 

exponentially with distance. The analysis of the results permits some concluding remarks: 

1. The diffusive parameter, non-homogeneity parameter, fractional parameter has a significant effect on the 

solutions of displacements, temperature, stress, mass concentration and chemical potential, which can be 

visualized from the figures. 

2. From the graph, it is clear that the magnitude of the displacement u always take greater value for a rotating 

medium than that for a non-rotating medium. 

3. Temperature, stress, chemical potential and mass concentration approaches to zero after traversing some 

distance, which is expected for physical problems. 

4. The problem reduces to a problem for elastically homogeneous medium for zero value of the non- 

homogeneity parameter. 
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