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 ABSTRACT 

 In this paper, the torsional free vibration of solid and hollow 

rotating shafts with non-uniform tapered elements are investigated. 

To this end, the exact solution and also transfer matrix for the free 

torsional vibration of a hollow tapered shaft element with uniform 

thickness and also solid element are firstly obtained. Then, the 

natural frequencies are determined based on distributed and lumped 

modeling technique (DLMT). This technique is similar to transfer 

matrix method (TMM) but the exact solution is employed to obtain 

the transfer matrixes of the distributed element, therefore, there is 

no approximation and the natural frequencies and mode shapes are 

the exact values. To confirm the reliability of the presented 

method, the simulation results are compared with the results 

obtained from the other methods such as finite element method. It 

is shown that the proposed method provides highly accurate results 

and it can be simply applied to the complex torsional systems.         
                          © 2022 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

HE rotary systems are very important part of industrial machinery. These systems are mostly used in milling 

machines, machine tools, gear systems, axial pumps and turbines. All of these systems have a rotary shaft with 

an arbitrary number of concentrated elements, such as gear, disks, fans and spindles. Different harmonic and non-

harmonic loads in the form of axial, transversal, and or torsional are imposed on its different components. Many 

researchers have investigated and analyzed torsional vibration of rotary systems. For example, Qing and Cheng [1] 

investigated the coupled torsional and flexural vibrations of rotor systems using finite element method (FEM). Koser 

and Pasin [2] proposed an analytical approach for analyzing torsional vibrations of shafts having variable inertia. 

Tabassian [3] analyzed the free torsional vibration of shafts by employing the adomian decomposition method 

(ADM). Boukhalfa et al. [4] analyzed free vibration of rotating composite shafts contains rigid disks using the p-

Version of the finite element method. Chen et al. [5] studied the torsional vibration of a rotating shaft with multiple 
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disks and elastic support. Many studies have been done to investigate the torsional vibration of uniform shafts, 

however, dynamic of non-uniform cross section shafts are rarely investigated in the literature. For example, Chen [6] 

studied free torsional vibrations of a varying cross section cylinder with an adhesive mass. Wu [7] presented the 

exact solution for free torsional vibration of a linear conic shaft containing several concentrated elements. Typically, 

it is difficult or not possible to get the exact analytical solution for torsional free vibration of complex shafts 

containing several uniform and non-uniform elements along the shaft. The approximate methods such as finite 

element and transfer matrix method are capable for solving complex torsional system. For example, Nagaraj and 

Sahu [8] studied the torsional vibrations of non-uniform rotating blades by using FEM. Wu [9] presented a tapered 

shaft element and determine the torsional vibration characteristics of a damped rotating shaft system by using FEM.  

The simplest approach which has been used extensively, is transfer matrix method (TMM). This method firstly 

proposed by Myklestad [10] and later extended by Prohl [11]. Wu and Yang [12] examined torsional and transversal 

vibration of rotary shafts by using TMM. Hsieh et al. [13] modified TMM for the coupled lateral and torsional 

vibrations of rotor-bearing systems. As is well known, the transfer matrix method [10- 14] and finite element 

method [8, 9] are two of the most popular methods for analyzing torsional vibration of non-uniform rotating 

systems. However, these methods are not accurate and so, the vibration characteristics obtained using these methods 

are approximate. On the other hand, the existing analytical methods [6, 7] are very accurate but they are limited to 

only to simple cases. Based on distributed lumped modeling technique, this paper presents an analytical formulation 

for free torsional vibration of hollow and solid non-uniform tapered shafts containing several concentrated elements. 

Distributed and lumped modeling technique (DLMT) is an efficient analytical method, which is based on the 

transfer matrix method. This method was described by Whalley for the second order systems [15]. The DLMT 

applied by Aleyaasin et al. [16] to analyze the flexural vibration of a rotating shaft. Recently, DLMT is implemented 

to modelling and compute the longitudinal, transversal and torsional vibration analysis. This technique is similar 

TMM but the exact solution is employed to obtain the transfer matrixes of the distributed element, therefore, there is 

no approximation and the natural frequencies and mode shapes are the exact values. DLMT can be easily applied to 

more complex systems, the results are very accurate and no approximation is used.  

This paper is organized as follows. In section 2, the Distributed and lumped modeling technique is introduced. In 

section 3, the exact solution and also transfer matrix for the free torsional vibration of hollow and solid tapered shaft 

elements are calculated and used in DLMT. To verify the accuracy and reliability of proposed method, section 4 

gives the comparison between the results obtained with proposed method and those obtained from the other 

methods. 

2    THE DISTRIBUTED AND LUMPED MODELING TECHNIQUE  

In this section, distributed and lumped modeling technique for torsional vibration of rotary shafts is introduced [17, 

18]. A rotary shaft is considered as a combined set of distributed and lumped elements. Distributed elements are the 

shaft with various shapes, and the lumped elements are the components and parts which are mounted on the shaft, 

such as fans, disks and gears. The response of each element is an input for the next element as shown in Fig. 1. 

  

 

 

 

Fig.1 

Distributed and lumped element. 

 

For each element the transfer matrix are expressed in general form as: 

 

   ii i
Z H Z

1
[ ]


  (1) 

 

 
i

Z and  
i

Z
1
 are called state vectors in nodes i

th
 and i-1

th
, respectively. Square matrix iH[ ] is transfer matrix 

for i
th

 element. Components of state vectors {Z} are torsional angle θ, and torsional torque T. for the first element, 

the relationship between the state vector in node 1 and 0 can be expressed as: 
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   Z H Z11 0
[ ]   

 

For the second and third elements: 

 

     Z H Z H H Z2 2 12 1 0
[ ] [ ] [ ]   

     Z H Z H H H Z3 3 2 13 2 0
[ ] [ ] [ ] [ ]   

(2) 

 

Finally, the relationship between the state vector in node n and state vector in node 0 can be expressed as: 
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where [H] is total transfer matrix of the entire structure obtained from multiplication of all transfer matrices. This 

system is expressed as relation between boundary condition at two ends of system, node 0 and n. The vibration 

characteristics of system such as natural frequencies can be obtained by applying the boundary conditions. In the 

next section, transfer matrix for the free torsional vibration of hollow and solid distributed tapered elements is 

derived and then used in DLMT. 

3    TRANSFER MATRIX FOR HOLLOW AND SOLID DISTRIBUTED TAPERED ELEMENTS  

In this section the exact solution and also transfer matrix for free torsional vibration of hollow and solid distributed 

tapered shaft elements are derived. For free torsional vibration of non-uniform shaft, the dynamic equation can be 

expressed as [17]: 

 

 
 

 x t x t
GJ x I x

x x t

2

2

, ,
( )

   
 

    
 (4) 

 

where, ρ is mass density, G is shear modulus, I(x) and J(x) are mass and area moment of inertia, respectively. (𝑥, 𝑡) 
is the torsional angle of the shaft element at position 𝑥 and time t. Fig. 2 shows a schematic of a hollow tapered shaft 

element. The tapered element has a length of L and the thickness of t. DLo and DRo are denote the outer diameters of 

the left and right side of the shaft, while the inner diameters of the left and right side of the shaft are DLi and DRi , 

respectively. For this tapered element the diameter D(x) at position 𝑥, can be obtained as: 
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Fig.2 

Schematic of a hollow tapered shaft element.   
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The area and mass moment of inertia for the considered element are varying with the coordinate x and are given 

as: 

 

Lo Li
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J x D x D x

l
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where, m(x) is the mass per unit length. To obtain the solution of Eq. (4), separation of variables is employed. 

 

x t x q t( , ) ( ) ( )   (8) 

 

Assuming the harmonic motion one can conclude that: 
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where, ω is natural frequency. Substituting Eq. (9) and Eq. (8) in Eq. (4) yields: 
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By algebraic manipulation, the above equation is reduced to: 
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where G2 2  and X l x(( ) )    . This equation is Bessel differential equation. Its general solution is 

represented as:  
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The torsional torque can be obtained as:  
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Eq. (13) and Eq. (14), can be written in the matrix form as: 
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or in the compact form: 

 

   htdZ x H x C( ) ( ) .   
        

 (16) 

 

where {Z} and {C} are state and coefficient vectors, respectively. Using the boundary conditions at nodes i-1, where 

x = 0, {Z(0)}= {Zi-1}, Eq. (16) can be expressed as: 
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The coefficient vector {C} can be obtained as: 
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Then, substituting {C} in Eq. (16), the following matrix equation is obtained: 
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At node i, where x = l, state vector will be {Z (l)}= {Zi}. Therefore, the relationship between the state vector in 

node i and node i-1, can be expressed as: 
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where, the square matrix [Hhtd]i, is transfer matrix for hollow tapered distributed element in DLMT. Substituting 

(DLi=0) in Eq. (20), the transfer matrix for a solid tapered element ([Hstd]i) can be obtained. For a uniform 

distributed element, and also lumped element the transfer matrix can be expressed as: [17, 18, 19]  
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(22) 

where, c0 and ci are damping coefficient of discs and shafts, respectively. m  represent an excitation torque of the i
th
 

element. [Hud]i and [Hl]i are transfer matrixes for uniform distributed and lumped element, respectively. 

4    NUMERICAL RESULTS AND DISCUSSIONS  

In this section, in order to confirm the capability and accuracy of the presented method in torsional vibration 

analysis of shafts with non-uniform tapered elements, some examples are presented. The simulation results are 
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compared with those obtained from the FEM and analytical method. 

Case 1: Cantilever hollow tapered shaft (Clamped– Free) 

As first case, a clamp hollow tapered shaft which right ends of the shaft is free (see Fig. 3) is studied. The geometry 

and material properties of the shaft are given in Table 1. This shaft is modeled by only one distribute hollow tapered 

element. The boundary condition can be expressed as: 
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T T T
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(0) 0
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        

       
        

  

 

 

 

 

 

Fig.3 

A cantilever hollow tapered shaft. 

 
 

Table 1 

Physical properties of the shaft. 

shear modulus G N m10 28.01 10 /   

density  kg m7820 /   

total shaft length l m1.8   

outer diameter of left end Dlo=0.045 m 

outer diameter of right end Dro=0.03686 m 

thickness of element  t=0.01 m 

 

Using Eq. (20), the relationship between the state vector in node 1 and state vector in node 0, can be obtained. 

Frequency equation can be achieved by applying the boundary condition. 

 

       htd
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.
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      
        

 (23) 

 

The natural frequencies could be obtained by solving Eq. (23). The first five natural frequencies are listed in 

Table 2. Based on FEM, the first five natural frequencies of the shaft are obtained by using 5, 50, 100 and 200 

elements. The comparison results of the frequencies are summarized in Table 2. One sees that the natural 

frequencies obtained from DLMT are very close to the results obtained using the FEM, and confirm the accuracy of 

the presented method. Also, the results show that the difference of the frequency between FEM and DLMT is 

decreased with increase the number of element. The dimension of mass and stiffness matrixes in the FEM are 

(n+1)×(n+1), n is number of elements, while in the present modeling the final matrix is 2×2. As a consequence, the 

computational required by the proposed methods can be reduced significantly as compared with FEM. On the other 

hand, the DLMT is efficient and accurate. 

 
Table 2 

Comparison of the first five natural frequencies of the cantilever hollow tapered shaft. 

Difference (%) 
FEM 

DLMT mode 
Frequency (rad/s) Number of elements 

0.005619149 3278.60 5 

3260.28 1 
5.21428E-05 3260.45 50 

1.22689E-05 3260.32 100 

0 3260.28 200 
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0.039003035 8890.51 5 8556.77 2 

0.000384491 8560.06 50 

9.58306E-05 8557.59 100 

2.22046E-05 8556.96 200 

0.104609155 15545.01 5 

14072.86 3 
0.001043853 14087.55 50 

0.000260786 14076.53 100 

6.46635E-05 14073.77 200 

0.183393799 23227.76 5 

19628.09 4 
0.002032291 19667.98 50 

0.000507946 19638.06 100 

0.000126859 19630.58 200 

0.184445101 29844.25 5 

25196.82 5 
0.003349629 25281.22 50 

0.000836217 25217.89 100 

0.000208757 25202.08 200 

Case 2: Free tapered shaft (Free– Free) 

Fig. 4 shows a freely supported solid tapered shaft. The left and right diameter of the shaft are Dl =0.041 m and 

Dr=0.05125 m. The other material properties and geometries are similar to the case 1. This shaft is modeled by only 

one distribute solid tapered element, so transfer matrix can be expressed as: . Frequency equation can be 

obtained by applying the boundary condition.  
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a a a al l
Z H Z Z

a a a a

11 12 11 12
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( ) ( )
.
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      
        

 (24) 

 

 

 

 

Fig.4 

Freely supported tapered shaft. 

 

The first five natural frequencies are listed in Table 3, and compared with the results obtained from other 

methods. It is seen that the results obtained from the proposed method are very close to the results reported by Ref. 

[9], and confirm the accuracy of the DLMT. To further investigation, mode shapes are also obtained. The first four 

mode shapes obtained from the presented method and FEM are shown and compared in Fig. 5. The accuracy of the 

results shows that the DLMT can be potentially used for the analysis of torsional systems. 

 
Table 3 

The first five natural frequencies of the freely supported tapered shaft. 

5  4  
3  2  

1   

27946.28 22364.66 16785.84 11214.02 5669.49 DLMT 

28026.28 22405.64 16803.15 11219.16 5670.15 Reference [9[ 
27949.48 22366.29 16786.53 11214.21 5669.51 FEM  

 

 

 

 

 

Fig.5 

The first four normalized mode shapes of freely supported 

shaft. 1st ( ), 2nd (  ), 3td (  ) and 4th ( ) 

mode shape obtained from the DLMT and 1st (*), 2nd (+), 

3td (∘) and 4th (�) mode shape obtained from the FEM.   
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Case 3: Cantilever tapered shaft with a lumped mass at the end 

The third tapered shaft model is depicted in Fig. 6, which a disk is attached at one end. The mass moment of inertia 

is J=3.904×10
-3

 kgm
2
. The other material properties and geometries are similar to the first case. The tapered shaft is 

regarded as a distributed element and the end mass as a lumped element, so transfer matrix can be expressed as:  

   stdp H
2 1
.  . Frequency equation can be obtained by applying the boundary condition. 

 

         std

a a a al
Z p H Z Z

a a a a T

11 12 11 12

2 0 02 1
21 22 21 22

( ) 0
.

0 (0)

      
         

      
        

 (25) 

 

The first five natural frequencies are listed in Table 4. It is seen that the natural frequencies obtained from the 

presented method are in good agreement with results reported by Ref. [9].  

 

 

 

 

 

Fig.6 

Cantilever tapered shaft with end mass. 

 

 
Table 4 

The first five natural frequencies of the cantilever tapered shaft with end mass. 

5  4  
3  2  

1   

22441.19 16887.52 11365.03 5956.81 1573.36 DLMT 

22482.24 16904.89 11370.22 5957.49 1573.39 Reference [9] 

22442.82 16888.21 11365.42 5956.84 1573.35 FEM  

Case 4: Free tapered shaft with a lumped mass at the middle of length 

Fig. 7 shows a freely supported solid tapered shaft carrying a rigid disk at the middle of length. The left and right 

diameter of the shaft are Dl =0.041 m and Dr=0.04497 m. The total shaft length and mass moment of inertia of the 

disk are L=2.4 m and J=4.583×10
-3

 kg.m
2
, respectively. The other material properties and geometries are similar to 

the first case. Transfer matrix for this case can be expressed as:       std stdH p H
3 2 1
. . . The first five natural 

frequencies calculated for this case are presented in Table 5, and compared with those reported by Wu [9]. It is 

obvious that the results calculated by the two methods are in good agreement. 

 

 

 

 

 

Fig.7 

Freely supported tapered shaft with a mass at the middle of 

length. 

 
 

Table 5  

The first five natural frequencies of the free tapered shaft with a lumped mass at the middle of length. 

5  4  
3  2  

1   

20947.59 13289.82 12569.20 5719.46 4191.43 DLMT 

21006.86 13289.91 12581.13 5698.64 4189.94 Reference [9] 

20948.39 13291.89 12568.58 5720.57 4189.72 FEM  
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Case 5: Transfer shaft of a generator  

In order to show efficiency and the engineering application of proposed method, two generator transfer shafts are 

investigated. Fig.8 shows the schematic diagram of these transfer shafts. The material properties and geometries are 

given in Table 6. The transfer matrix of these shafts are obtained by DLMT. Also, the generator shafts are simulated 

in ANSYS. The first five natural frequencies are listed in Table 7, and compared with those obtained from DLMT. 

A very good agreement is shown between these results. The successful implementation of the DLMT for these cases 

further confirms the capability of the proposed method in vibration analysis of complex systems.  

 

 
(a) 

 
(b) 

Fig.8 

The schematic diagram of generator transfer shafts. 
 

 
Table 6 

Physical properties of the transfer shafts. 

shear modulus G N m10 28.01 10   

density  
s kg m 37820   

mass moment of inertia for disk 1,2,3,4 J J J J kgm 2

1 2 3 4 0.0308     

mass moment of inertia for disk 5 J kgm 2

5 1.4322  

mass moment of inertia for disk 6 J kgm 2

6 0.0279
 

mass moment of inertia for disk 7 J kgm 2

7 0.4894  

 

Table 7 

The first five natural frequencies of two transfer shafts.  

 
Transfer shaft (a) Transfer shaft (b) 

DLMT Ref [9] FEM DLMT FEM 

1  510.45 510.41 510.14 783.97 784.07 

2  2845.35 2845.85 2845.46 8465.39 8466.64 

3  6208.84 6211.09 6204.45 16054.64 16058.56 

4  7596.52 7617.05 7600.14 17697.11 17706.64 

5  9287.71 9320.98 9295.97 25296.88 25308.77 

5    CONCLUSION 

In this paper, the distributed lumped modeling technique has been employed to present an efficient analytical 

method and exact solution for analyses of the free torsional vibration of shaft with uniform and non-uniform tapered 

elements. Numerical example has been done and shows the reliability and accuracy of the proposed method. The 

proposed method is efficient and accurate technique and therefore it is recommended for vibration analysis of 

complex torsional systems. 
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