
 

© 2020 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 12, No. 2 (2020) pp. 401-410 

DOI: 10.22034/JSM.2019.1870009.1451 

On Analysis of Stress Concentration in Curvilinear 
Anisotropic Deformable Continuum Bodies 

Theddeus T. Akano 
1,*

, Omotayo A. Fakinlede 
1
, Patrick Shola Olayiwola 

2
 
 

1
Department of Systems Engineering, University of Lagos, Akoka, Lagos, Nigeria 

2
Department of Mechanical and Biomedical Engineering, Bells University of Technology Ota, Ogun, 

Nigeria 

Received 9 March 2020; accepted 9 May 2020 

 ABSTRACT 

 In cylindrical continua, hoop stresses are induced due to the 

circumferential failure. This mainly happens when the cylinder is 

subjected to mechanical loads that vary in the circumferential 

directions. On the other hand, radial stress is stress in the direction 

of or opposite to the central axis of a cylindrical body. In the present 

study, the influence of curvilinear anisotropy on the radial and 

tangential stresses of the polar-orthotropic hollow cylinder is 

presented. The governing equations were derived to evaluate the 

radial and hoop stresses inside the material. A semi-analytical 

method through differential transform method (DTM) for the polar-

orthotropic hollow cylinder is implemented in the solution. The 

findings, based on polar-orthotropy, of the effect of the radial and 

circumferential loads on the radial and hoop stresses of the growing 

cylinders, show elastic responses that assist in identifying some of 

the outstanding properties of the curvilinear anisotropic continuums. 

It is also revealed that the characteristic response of various wall 

thicknesses of the cylindrical segment is influenced by the fibre 

orientation, radial and tangential stresses. This work has shown that 

the curvilinear anisotropy momentously affects the radial and hoop 

stresses on the polar-orthotropic hollow cylinder. 

 © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Curvilinear anisotropy; Differential transform; Polar-

orthotropy; Radial stress; Hoop stress. 

1    INTRODUCTION 

 NISOTROPY is the property of materials to exhibit variations in properties along various molecular axes 

[1]. This direction dependence affects the behaviour of the material. For instance, in fracture mechanics, the 

orientation of the microstructure of the material affects its stiffness and strength in various directions and 

consequently affects the direction of crack growth. Unlike isotropic materials that have material properties identical 

in all directions, anisotropic material’s properties such as Young’s Modulus, change with the direction along with 

the object. Common examples of anisotropic materials are wood and composites. Anisotropic materials have 
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become relatively prevalent and more significant useful beginning since the recent part of the twentieth century.  

The rapid advancement influenced the need for new composite fibre materials for metal replacement in the 

aerospace systems. By this, composite materials were obtainable, in which the weight, stiffness, strength of the 

materials could be modelled around the anticipated application. This is the desired operational optimisation in the 

case of aircraft where it is favourite to orient an increased stiffness in the direction of the load, at the same time, 

sustaining a desirable strength to weight ratio. Anisotropic materials are either natural or human-made and are 

applied in several areas of study. Besides the magnetic anisotropy where the magnetic field is oriented in the desired 

direction, anisotropic heat conduction that is dependent on the geometry is another example of anisotropy 

application. Anisotropic materials are also a result of manufacturing processes like rolling or deep-drawing process 

can also result in the production of anisotropic materials. Composites transformed for definite applications. 

Many engineering and biological materials have an anisotropic microstructure that would require a curvilinear 

anisotropic model. Natural examples may include wood with many cylindrical layers, tissues [2] and bones [3]. 

Many synthetic composite materials also exhibit such curvilinear microstructure. In consonant with rectilinear 

anisotropy, curvilinear anisotropy also occurs with some symmetries in material structure. When the material 

possesses a uniform cellular microstructure such that the properties have orthogonal symmetry with respect to the r 

and  , it is classified as polar-orthotropic material (Fig. 1). 

 
  

 

 

 

 

Fig.1 

Polar-orthotropic material structure. 

 

 

  

Major contributors in this field of study are few. Tarn [4], Galmudi and Dvorkin [5], and Horgan and Baxter [6] 

are very prominent in their contributions. The resulting partial differential equation is the solved by DTM that has 

successfully been applied to solve both linear and nonlinear systems of differential equations [7]–[17], and extended 

to biological equations [18]–[20]. 

The purpose of this work is to study the influence of material anisotropy and the thickness of a polar-orthotropic 

material structure on the radial and tangential stress concentrations on a curvilinear anisotropic body. This work will 

be limited to the two-dimensional case using a polar coordinate system model according to the curvilinear 

microstructure shown in Fig. 1. Here, the material is assumed to be of a cellular microstructure such that properties 

have orthogonal symmetry with respect to the r and y direction (Fig. 1). This assumption makes the material to be 

polar-orthotropic. 

2    PROBLEM FORMULATION 

The equations of equilibrium in polar coordinates could be expressed by applying a change of coordinates directly to 

the 2D Cartesian coordinate.  However, it could be derived through the first principle by considering a material 

element that is being subjected to the three stresses  , rr  and r  (see Fig. 2).  The dimensions of the element 

are dr in the radial direction, rd  representing the inner surface, and  r dr d  for the outer surface in the 

tangential direction. 

 
  

 

 

 

 

 

 

Fig.2 

Two-dimensional differential element in polar coordinates. 
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The equilibrium of a two-dimensional differential element in polar coordinates is shown in Fig. 2. The two-

dimensional equilibrium equations could explicitly be developed by the algebraic summation of the forces and 

moments. For the r coordinate, 0rF  , giving [5], 
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Equally, for   coordinate, 0F  , giving, 
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The strain-displacement relations in general form is given as, 
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where e  is the strain matrix and u is the displacement gradient matrix and  
T

u  is its transpose. The strain, e  is 

a symmetric (i.e. ij jie e ) and is written as: 
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The displacement, u  in polar coordinates is written as, r r z zu u u   u e e e with 
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 Giving the components of Eq. (7) as: 
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The constitutive law for the plane stress case could be written as: 
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Applying the strain-displacement equations, the Eq. (9) could be re-written as: 
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If axisymmetric is assumed, the stresses will be dependent on only the radial coordinate, making 0 r . As 

such, the equilibrium equation becomes, 
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   and n is an index for the measure of material anisotropy. When 1n  , isotropy is 

recovered. For 1n  , the material is circumferentially orthotropic [21], while for 1n   Horgan and Baxter [6] 

described the material as radially orthotropic. 

3    APPLICATION OF DTM TO EQUILIBRIUM EQUATION 

The present method is considered in the solution of Eq. (12). We will consider the situation when there is no radial 

force (i.e. 0rF  ). The exact solution of the resulting equation is   1 2
n nu r c r c r  , where 1c and 2c are 

constants which are unique to every boundary condition. Hence, the stresses could be expressed in this form: 
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Fig. 3 shows a thick-walled cylindrical boundary problem with both internal and external pressure loadings. The 

annular domain is defined with 1 2b r b  and the pressure loading, p will only be considered for 2b  (i.e. the outer 

boundary at 2r b ). 
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Fig.3 

Thick-walled cylinder problem. 

 

 

By applying the boundary conditions  1 0r b   and  2r b p   , the stresses now become 
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In order to overcome the difficulties encountered by the singularity at 0x  , we use the 

transformation  In tt r r e   . So that Eq. (12) becomes 
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with various conditions. By employing the fundamental operations of DTM in Table 1., the following recurrence 

relation were obtained for Eq. (15): 
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For different conditions, the values of  U k could be evaluated from the recurrence relation. With the 

conditions    1 0; ' 1 1u u  , the transformed initial conditions become    0 0; ' 0 1u t u t    . The differential 

transform becomes    0 0; 1 1U U  . We derived the remaining values of  U k  from Eq. (16) as: 
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Using Eq. (15), the closed form solution could be written as: 
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which upon making 0rF  , the exact solution becomes    1
2

n nu r r r
n

  while Eq. (18) reduces to 
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and after recalling that  Int r , then, 
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Table 1 

Comparison of the present method with exact solution for various N and n values. 
r u(exact) u(DTM) % error u(DTM) % error u(DTM) % error u(DTM) % error 

  N=2, n=1
 

N=5, n=1
 

N=8, n=1
 

N=10, n=1
 

2 0.75 0.748651 0.179828 0.75 1.363*10-5 0.75 5.94568*10-8 0.75 1.82976*10-10 

4 1.875 1.83033 2.38255 1.87495 0.00282846 1.875 4.91608*10-5 1.875 6.03704*10-7 

6 2.91667 2.75047 5.69814 2.91613 0.018519 2.91665 0.000535817 2.91667 1.09682*10-5 
8 3.9375 3.57805 9.12883 3.93542 0.0529354 3.93742 0.00205663 3.9375 5.65977*10-5 

10 4.95 4.33726 12.3785 4.94474 0.106344 4.94975 0.00505236 4.94999 0.0001702 

          
  

N=8, n=2
 

N=10, n=2
 

N=12, n=2
 

N=15, n=2
 

2 0.9375 0.9375 4.91608*10-5 0.9375 6.03704*10-7 0.9375 5.51323*10-9 0.9375 2.25862*10-13 
4 3.98438 3.9834 0.0245953 3.98433 0.00119646 3.98437 4.34279*10-5 3.98437 2.73109*10-8 

6 8.99306 8.97601 0.189576 8.99168 0.015269 8.99297 0.000920451 8.99306 1.60423*10-6 

8 15.9961 15.9057 0.564939 15.9864 0.0608069 15.9953 0.00491188 15.9961 1.54365*10-5 
10 24.9975 24.7127 1.13927 24.9602 0.149302 24.9938 0.0147201 24.9975 6.91746*10-5 

  
N=10, n=3

 
N=15, n=3

 
N=18, n=3

 
N=20, n=3

 

2 1.3125 1.3125 5.65977*10-5 1.3125 2.31834*10-10 1.3125 2.39145*10-12 1.3125 2.92541*10-14 

4 10.6641 10.6576 0.0608069 10.6641 1.5437*10-5 10.6641 6.31167*10-7 10.6641 2.14573*10-8 

6 35.9992 35.8061 0.536471 35.999 0.00061614 35.9992 0.000041875 35.9992 2.36913*10-6 

8 85.333 83.9234 1.65194 85.3292 0.00451294 85.3327 0.00041129 85.333 3.12364*10-5 
10 166.667 161.108 3.33485 166.639 0.0163901 166.663 0.00182423 166.666 0.000169365 

  
N=1, n=0.1

 
N=2, n=0.1

 
N=3, n=0.1

 
N=4, n=0.1

 

2 0.693702 0.693702 1.92231*10-5 0.693702 1.9223*10-5 0.693702 2.19888*10-9 0.693702 2.19888*10-9 

4 1.39074 1.39073 0.000306937 1.39073 0.00030694 1.39074 1.4042*10-7 1.39074 1.4042*10-7 

6 1.80136 1.80135 0.000854965 1.80135 0.00085497 1.80136 6.53311*10-7 1.80136 6.53311*10-7 
8 2.09446 2.09443 0.00154856 2.09443 0.00154856 2.09446 1.59362*10-6 2.09446 1.59362*10-6 

10 2.32299 2.32293 0.00232487 2.32293 0.00232487 2.32299 2.93327*10-6 2.32299 2.93327*10-6 

  
N=1, n=0.5

 
N=2, n=0.5

 
N=4, n=0.5

 
N=5, n=0.5

 

2 0.707107 0.707023 0.0118191 0.707023 0.0118191 0.707107 3.37604*10-5 0.707107 5.6288*10-8 

4 1.5 1.4973 0.179828 1.4973 0.179828 1.49997 0.00204733 1.5 1.36302*10-5 
6 2.04124 2.03144 0.480303 2.03144 0.480303 2.04106 0.00910547 2.04124 0.00010111 

8 2.47487 2.45409 0.839617 2.45409 0.839617 2.47434 0.0213796 2.47487 0.000319331 

10 2.84605 2.81125 1.22258 2.81125 1.22258 2.84497 0.038078 2.84603 0.000696533 

4    RESULTS AND DISCUSSIONS 

Attempts on limiting analysis for the anisotropic case (i.e. 1n  ) have proved abortive with non-converged solution 

[5]. This amazing effect is linked to the fact that the stresses will become unbounded when 1n  , as 2b  . For 

this problem, the internal radius of a thick cylinder is chosen such that the radial stress at its inner boundary is tuned 

to zero, i.e.  1 0r b  . At the outer boundary coinciding with the external radius, however, the radial 

stress  2r b p   , the external pressure that is everywhere compressive on the annular domain. On the other hand, 

the tangential (hoop) stresses,  1b  and  2b  become everywhere tensile. 

Figs. 4-7 show the dimensionless distribution plots of radial and hoop stresses for various values of n (i.e. 

0.4, 0.7,1.0,1.3,1.6n  ) when 2 1 6.5b b  and 2 1 2.5b b  . For values of 1n  , the magnitude of the radial stress 
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is less than that of the isotropic. This type of anomaly is referred to as refer stress shielding [5]. However, the 

reverse is noticed for values of 1n  , where the isotropic stress magnitude is less than that of the radial, thus causing 

stress amplification. These two effects can be regarded as being correlated to the decay of boundary conditions. It 

could also be observed that the hoop stress magnitude at 1r b  decreases as the values of n increases. It could be 

inferred that; the curvilinear anisotropy momentously affects the radial and hoop stresses. 

Fig. 4 illustrates the family of curves for the radial stress distribution against the radius within the annular 

domain of the thick cylinder. It is shown that before the critical point (which is about 6.5 times the value of internal 

radius), and for different values of index n, increasing the radius of annular domain  causes increase in the value of 

radial stress, but after this focal point, further increase in the domain radius results in decrease of the radial stress. 

In Fig. 5, the shown family of hyperbolas depicted the relationship between the tangential (hoop) stress 

distribution and the annular domain radius for various values of n. It is notable that increasing the radius causes a 

decrease in the value of tangential stress; however, after the critical value of about 3.5 times the internal radius of 

the cylinder, further increase of the radius gives increase in the value of the tangential stress. 

The family of curves shown in Fig. 6 demonstrates the radial stress distribution against the ratio of the external-

to-internal radius of the annular domain of the cylinder. The critical value is where 2 1b b is about 4.5. When 1n  , 

further increase in the value of 2 1b b results in decline of the value of radial stress, which is everywhere 

compressive. With 1n  , increasing the value of 2 1b b , causes increase in the radial stress value. At the point 

when 1n  , equal value of stress is maintained with further increase in 2 1b b . 

The hoop stress distribution profile of Fig. 7 is similar to that of Fig. 6, except that while tangential stress 

distribution is everywhere tensile, the latter is everywhere compressive. 

 
   

 

 

 

 

Fig.4 

Radial stress distributions for different values of n in a polar 

orthotropic annular domain, 1 2b r b  and pressure loading, 

p for 2 1 6.5.b b 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Hoop stress distributions for different values of n in a polar 

orthotropic annular domain, 1 2b r b  and pressure loading, 

p for 2 1 6.5.b b   

  

 
 
 
 
 
 

 

 

 

 

 

Fig.6 

Radial stress distributions for different values of n  in a polar 

orthotropic annular domain, 1 2b r b  and pressure loading, 

p for 1 2.5.r b 
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Fig.7 

Hoop stress distributions for different values of n in a polar 

orthotropic annular domain, 1 2b r b  and pressure loading, 

p for 1 2.5.r b   

 

As described by Figs. 8-10, the radial stress distribution profiles are families of parabolas that illustrate stress 

against the radius 1r b . It is observed that when 1n  , increasing the ratio gives rise to sharp increase in the value 

of radial stress to maximum points, then start to decline (Fig. 8), but when 1n  , increasing the radius results in 

initially increasing the radial stress value and after the peaks, indifference is recorded for further increase in radius 

of the annular domain (Fig. 9), however with 1n  , increase of the radius gives parabolic increase in the stress value 

(Fig. 10). 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Radial stress distributions for different values of 2 1b b  in a 

polar orthotropic annular domain, 1 2b r b  and pressure 

loading, p for 1.n   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Radial stress distributions for different values of 2 1b b  in a 

polar orthotropic annular domain, 1 2b r b  and pressure 

loading, p for 1.n   

  

 
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig.10 

Radial stress distributions for different values of 2 1b b  in a 

polar orthotropic annular domain, 1 2b r b  and pressure 

loading, p for 1.n   

 

 

Hoop stress distributions for various values of 2 1b b  against the annular domain radius, 1r b , are illustrated by 

Figs. 11 through 13. The families of hyperbolic curves for the case 1n   in Fig. 11 showed that the tangential 
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(hoop) stress increase with increasing ratio 2 1b b , but decrease with increasing values of the radius of the polar 

orthotropic annular domain. For the case 1n  , decreasing the values of the ratio 2 1b b increases the values of the 

hoop stress, but decreases it when the annular radius is increasing (Fig. 12). With 1n  , Fig. 13 showed that the 

value of hoop stress increases with decreasing values of the ratio 2 1b b  but initially decreases sharply as the domain 

radius 1r b increases and makes a turning point at about 1 1.5r b  to increase as the domain radius further 

increases. 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 

Hoop stress distributions for different values of 2 1b b  in a 

polar orthotropic annular domain, 1 2b r b  and pressure 

loading, p for 1.n   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12 

Hoop stress distributions for different values of 2 1b b  in a 

polar orthotropic annular domain, 1 2b r b  and pressure 

loading, p for 1.n   

  

 
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig.13 

Hoop stress distributions for different values of 2 1b b  in a 

polar orthotropic annular domain, 1 2b r b  and pressure 

loading, p for 1.n   

 

5    CONCLUSION 

The stress analysis in cylindrical segments has been studied. The analysis shows that the characteristic response of 

various wall thicknesses of the cylindrical segment is influenced by the fibre orientation, radial and tangential 

stresses. The measure of material anisotropy, n is another critical factor which greatly affects the curvilinear 

deformation of the fibre segments. The radial stress varies around the critical point at different values of n. 

Similarly, the tangential stress increases proportionately with the radius until the critical point is attained. The 

tangential stress tends to decrease again after the critical point showing that the curvilinear anisotropy significantly 

affects both the radial and tangential stresses on the polar-orthotropic hollow cylinder. Also, the differential 

transform method has been proven to be a viable approach towards the solution of problems in curvilinear 

anisotropy. 
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