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 ABSTRACT 

 In this paper, the stability of a conical shell panel in elastic-plastic 

domain is considered. The shell is made of an isotropic material 

(316L steel) with linear work hardening behavior. The shell is 

placed on simply supported end constraints and the acting loads are 

in the form of longitudinal compressive force and lateral pressure. 

The incremental Prandtl-Reuss plastic flow theory and von Mises 

yield criterion are used in the analysis. The problem is formulated 

based on classical shell theory and nonlinear geometrical strain-

displacement relations are assumed. The stability equations are 

derived using the principle of the stationary potential energy. Using 

Ritz method the equations are solved and the numerical results 

obtained for different values of semi vertex and subtended angles. 

The obtained results show that there is a distinct semi vertex angle 

in which the shell has the best stability conditions. Also, there will 

be a limiting condition for the semi vertex angels beyond which the 

instability will not occur. 

                          © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

ONICAL shell panels are one of the widely used geometrical shapes in engineering applications, especially in 

aerospace and marine industries. The stability of shell structures is a very significant problem in both linear and 

nonlinear analysis of these structures. To reach a good consideration of carrying capacity of the structures, 

comprehensive understanding of the critical equilibrium under combined loading is needed. The stability analysis of 

shells developed considerably during the years before. This development is mainly based on the computational 

techniques. A comprehensive review of works published before 1982 has been presented by Bushnell [1] in which 

elastic-plastic shell stability analyses and numerical methods were discussed. Zielnica [10] and [11] analyzed 

elastic-plastic stability problems of conical shells. Paczos and Zielnica [6] investigated the stability of conical panels 

made of two orthotropic layers. Jaskula and Zielnica [2] and Zielnica [12] presented an analysis for elastic-plastic 

stability of sandwich cylindrical and conical panels, based on deformation theory of plasticity. To the best 

knowledge of the authors, there are a few works in the literatures on elastic plastic analysis of conical shell panels. 
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However elastic buckling analyses of different conical shells can be found in the literature (Naderi et al. [5], 

Kouchakzadeh and Shakouri [3], Shakouri et al. [7]).  

The aim of present paper is to investigate the effects of vertex angle of the shell, as a geometric parameter, on its 

elastic-plastic stability. The shell is made of an isotropic elastic-plastic material (316L steel) with linear work 

hardening behavior. The end edges of the shell are simply supported and the acting loads are in the form of 

longitudinal compressive force and lateral pressure. The incremental Prandtl-Reuss plastic flow theory and von 

Mises yield criterion are used in the analysis. The problem is formulated based on classical shell theory and the 

geometrical strain-displacement relations are assumed to be nonlinear ones. The stability equations are derived using 

the principle of the stationary potential energy. Using Ritz method, the equations are solved and the numerical 

results obtained for different values of semi vertex and subtended angles. 

2    PROBLEM DEFINITION AND ASSUMPTIONS  

Fig. 1 shows an open conical shell and two different types of loadings acting on it. The acting loads are in the form 

of a longitudinal compressive force, N, and a uniform lateral pressure, q. According to Fig. 1, β is subtended angle, α 

is semi vertex angle, R1 and R2 are mid-plane smaller and larger radii of two curved ends, respectively, L is the 

length of the shell and the shell thickness is assumed to be h and constant through the length. 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometry of the conical shell and applied loading. 

3    FORMULATION  

3.1 Strain displacement relations 

According to classical shell theory (CST), the normal and shear strains of the conical shell are as follows (Soedel 

[8]): 
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where z denotes the shell thickness direction coordinate, 
s

0  and 0

  are normal strains at the middle surface, 
s

0

  is 

shear strain at the middle surface and 
s ,   and 

s  are curvatures of the middle surface which can be expressed 

in terms of the displacement components, as follows (Soedel [8]): 
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where u, v, and w represent the displacements of the middle surface of the conical shell in the s, θ, and z directions, 

respectively. In addition, the subscripts s and θ denote the meridional and circumferential directions, respectively. 

3.2 Stress-strain relations 

The material stress-strain curve is shown in Fig. 2. The stress-strain curve in infinitesimal strain range is presented 

by a bilinear model. According to von Mises yield criterion with associated flow rule, plastic strain increment is 

defined as (Washizu [9]): 
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where p  is the plastic strain, p

e

 

is the equivalent plastic strain, 
e  is the equivalent stress and S is the deviatoric 

stress. The changes in stresses for an isotropic material are defined by following equations (Jaskula and Zielnica 

[2]), 
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where E and ν are the Young’s modulus and Poisson’s ratio, respectively. For elastic deformation the equivalent 

plastic strain change, p

e , is set to zero, and with plastic deformation it can be determined according to hardening 

behaviour of material. Using linear strain hardening (see Appendix A) results as: 
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where Et is the tangent modulus in the plastic range and e is effective stress, defined by: 
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Substituting p

e from Eq. (5) into Eqs. (4) and solving the system of equations for stress variations leads to 

following equation, 
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In which the Cij (i, j= 1, 2, 3) are as follows: 
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The stresses resulted from the external loadings (Fig. 1) in pre-buckling state of stress are as follows: 
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It is assumed that the loading parameters, q and Na, are dependent. The following parameter η, is introduced as 

the ratio of lateral to longitudinal load 
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Fig.2 

Stress-strain curve for 316L steel (Lee et al. [4]) 
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4    STABILITY EQUATIONS AND SOLUTION PROCEDURE   

The principle of the stationary potential energy which is correct for both the pre- and post-critical deformation, 

states that, 
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where, U and W are the total potential energy, deformation energy and the work done by the external loadings, 

respectively. 

The deformation energy and the work done by the external loadings can be expressed as following (Washizu 

[9]), 
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Having on hand the U and W in terms of displacement components, one can establish the expression for the total 

potential energy. Implementing Eq. (11) following equation is obtained, 
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The terms in Eq. (14) are presented as Appendix B. As can be seen the obtained equations are highly nonlinear 

and a large computation effort is needed to solve these equations directly. However, an alternative solution 

procedure is used here to define unstable regions for conical shells, as presented here. 

Introducing approximate functions for the displacements with unknown coefficients Ai and using Ritz method, 

leads to the following equations, 
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Application of Eq. (15) on the obtained potential energy leads to a system of nonlinear equations in terms of 

unknown coefficients Ai. Solving these equations will give the displacement components in the considered shell. 

The shell is assumed to be simply supported at all the edges. Geometric boundary conditions for simply supported 

conical shell are as follows: 
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To satisfy the boundary conditions (16), based on Ritz method, the following approximate functions for the 

displacements are introduced (Paczos and Zielnica [6]): 
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where A1, A2 and A3 are unknown coefficients and m and n are axial and circumferential half-wave numbers, 

respectively. By comprising  the total potential energy and then using the minimization principle by Eq. (15) that 

is setting the partial derivatives of the total potential energy with respect to unknown coefficients Ai (i=1,2,3) to 

zero, a set of three nonlinear equations in terms of unknown parameters A1, A2 and A3, is obtained as follows: 
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where coefficients f11, f12, …, f38 and f 33
 are very lengthy and for the sake of brevity they will not be given here. 

These coefficients depend on geometrical and material parameters of the shell as well as the assumed half-wave 

numbers m and n. Solving the above set of equations for q leads to 
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where η is defined by Eq. (10). Note that the expressions for the coefficients ei (i=1,…,5) are very lengthy and for 

the sake of brevity they will not be given here. The coefficients in Eq. (19) depend on the loading parameters q and 

η. Therefore by using an iterative method the critical values of loading are obtained. To this aim, we implement an 

iterative procedure similar to one introduced by Paczos and Zielnica [6], which is described briefly in the following. 

Primarily, the geometrical parameters (R1, L, h, α, β) and materials constants are defined. Then the ratio of axial load 

to lateral pressure (η) is assumed. Now for sequential values of A3 the corresponding loadings are calculated by 

using an iterative method in which at k
th

 iteration, using Eq. (19) the value of q are calculated as follows: 
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Then the next iteration started by updating q and coefficients depending on it. The calculations are repeated until 

the convergence of q is achieved. The result of above procedure is the determination of external load values (q and 

Na) as functions of shell deflection. 

Note that the proposed method with appropriate modification can be applied to other types of loadings. For 

example for q=0, Eq. (19) can be replaced by following equation 
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Moreover, the above mentioned procedure can be repeated for finding Na as a function of shell deflection. It 

should be further noted that the principle of the stationary potential energy, and hence the presented analysis, is valid 

only if the loading is maintained constant during the deformation. 

Based on the above outlined procedure and by aids of the MATLAB program solver a self-developed computer 

program is written by which the external load values (q and Na) as functions of shell deflection, and the critical 

values of loading can be obtained. It should be emphasized that the presented procedure is an effective technique to 

define unstable regions for conical shells. 
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5    RESULTS AND DISCUSSIONS   

A conical shell panel made of 316L steel, whose stress-strain curve is shown in Fig. 2, was considered for numerical 

calculations. The assumed value of the yield strength of 316L steel is 196 MPa and other material parameters are E 

= 193 GPa, ν = 0.29 and Et = 1.5 GPa. The shell geometrical parameters are considered such that the instability 

occurs beyond the elastic limit of the shell material. It must be emphasized that the geometrical parameters also were 

chosen in a way that the instability occurs in the range of applicability of the infinitesimal theory of plasticity. In 

order to investigate the validity of the obtained results, a sample problem is solved using both the present solution 

method and finite element method (FEM). To this aim a conical shell panel made of 316L steel subjected to a 

uniform lateral loading (η = 0) is considered. The geometrical parameters are: R1 = 1.2 m, L = 0.4 m, h = 5 mm, α = 

45°, β = 20°. The variations of the lateral uniform loading versus the maximum lateral deflection of the considered 

shell panel are shown in Fig. 3 using both present formulation and FEM. The results show that there is a good 

agreement between FEM results and the obtained results using present formulation. 

It is to be mentioned that in constructing the FE model, the ANSYS software (version 16) has been used. The FE 

model comprises 3,990 3D 20-node brick type elements with total number of 28,618 nodes. Elastic linearly plastic 

material is defined for the material of the shell. The static analyses are done in the software. It is to be noted that the 

shell are modeled as a 3D solid, so that no restricting assumptions such as neglecting the out-of- plane stresses in the 

shell are imposed in finite element modeling. 
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Fig.3 

Lateral pressure versus deflection of the shell (calculated at 

s = (s1+s2)/2 and θ = β/2). Present study and finite element 

method (FEM). 

 

The assumed geometrical parameters for further studies are: R1 = 1.2 m, L = 0.4 m, h = 5 mm, α = 10°-60°, β = 

35°-45°. Based on these geometrical representations the variation of lateral pressure vs. shell deflection is shown in 

Fig. 4 for different ratios of axial load to lateral pressure (η). As shown in Fig. 4, for small η the instability does not 

occur. By gradually increasing the value of η, the instability initiates at a certain level of loading. As shown in Fig. 

4, by increasing the value of η to about 300 the instability occurs. The value of loading in which instability occurs is 

identified as critical value. The geometrical parameters including the semi vertex angle will affect the stability of the 

shell, which will be discussed in the following. Note that all the curves shown in Fig. 4 are representative of the 

elastic-plastic deformation of the shell, because the effective stress defined by Eq. (6) is greater than the yield stress 

beyond specific values of loadings in each case. 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Lateral pressure versus deflection of the shell (calculated at 

s = (s1+s2)/2 and θ = β/2). 

 

The result of axial load variation vs. shell deflection is shown in Fig. 5 for different values of η. Again, the 

instability appears by increasing value of η. This figure shows that the axial load, unlike the lateral pressure, will not 

severely change by increasing the value of η. Also for large values of η>6000 the undistinguishable changes can be 

seen in the equilibrium curve that is all curves will overlay on top of each others.  
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Fig.5 

Axial load versus deflection of the shell (calculated at s = 

(s1+s2)/2 and θ = β/2). 

 

The variation of critical lateral pressure versus variation of semi vertex angle for a shell with R1 = 1.2 m, L = 0.4 

m, h = 5 mm, β = 35° is shown in Fig. 6. As shown in this figure, for all values of η there is a distinct semi vertex 

angle in which the critical lateral pressure has a maximum value. That is the maximum critical pressure is obtained 

at semi vertex angle of about 23°. One can conclude that this semi vertex angle will give the best elastic-plastic 

stability for the shell panel with specified parameters and subjected to loading with large values of η. 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Critical lateral pressure versus semi vertex angle for 

different values of axial to lateral load ratio. 

 

For the same geometrical parameter given in the above case, the variation of the critical axial loads vs. variation 

of semi vertex angle for different values of η is shown in Fig. 7. The semi vertex angle related to the maximum 

critical axial load in this case again is 23° that is the same as in the case of critical pressure shown in Fig. 6. As 

shown in Fig. 7, for small values of η say 200, there is a limiting value for semi vertex angle (35°), beyond which 

the instability does not occur. 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Critical axial load versus semi vertex angle for different 

values of axial to lateral load ratio. 

 

The dependency of the critical loads to semi vertex angle for a shell with R1 = 1.2 m, L = 0.4 m, h = 5 mm, η = 

10000 under different values of subtended angle is shown in Fig. 8. As shown in this figure, by increasing the 

subtended angle the maximum value of qcr-α curve will shift to the right. In the case for the subtended shell angles 

of 35, 37, 40 and 45°, the maximum critical lateral pressure will be obtained for semi vertex angles of 23.0, 25.5, 28 

and 30.3°, respectively. In the results shown in this figure, for the subtended shell angles of 45° there will be a 

limiting condition for the semi vertex angels beyond which the instability will not occur. 
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Fig.8 

Critical lateral pressure versus semi vertex angle for 

different values of subtended angle. 

6    CONCLUSION 

The effects of vertex angle of the conical shell, as a geometric parameter, on its elastic-plastic stability are 

investigated. The shell is made of 316L steel which is an isotropic elastic-plastic material with linear work 

hardening behavior. The edges of the shell are simply supported and the acting loads are in the form of longitudinal 

compressive force and lateral pressure. The incremental Prandtl-Reuss plastic flow theory and von Mises yield 

criterion are used in the analysis. The problem is formulated based on classical shell theory (the Kirchhoff-Love 

assumptions) and the geometrical strain-displacement relations are assumed to be nonlinear ones. The stability 

equations are derived using the principle of the stationary potential energy. Using Ritz method, the equations are 

solved and the numerical results obtained for different values of semi vertex and subtended angles. Based on this 

study, it is concluded that there is a distinct semi vertex angle in which the shell has the best elastic-plastic stability 

conditions. Moreover, for specified shell geometrical and loading parameters there will be a limiting condition for 

the semi vertex angels beyond which the instability will not occur. 

APPENDIX A 

For a linear strain hardening material, equivalent stress 
e  is defined by: 

 
p

e y eH0          (A.1) 

 

where y 0  is the initial yield stress and H is the plasticity (or hardening) modulus. Then the plastic work increment 

δW
p
 is: 

 
p p

e eW         (A.2) 

 

From Eq. (A.1) it can be concluded that 

 

p e

e
H


        (A.3) 

 

On the other hand, the plastic strain increment can be obtained from additive decomposition, as follows: 

 

p e e e

e e e e

t tE E E E

1 1 
   

 
      

 

      (A.4) 

 

Substituting p

e  from Eq. (A.3) into Eq. (A.4) leads to following equation, for hardening modulus. 

 

t

t

E E
H

E E



      (A.5) 
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APPENDIX B 
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