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 ABSTRACT 

 Finite element formulations based generally on classical beam theories 

such as Euler-Bernoulli or Timoshenko. Sometimes, these two 

formulations could be problematic expressed in terms of restrictions of 

Euler-Bernoulli beam theory, in case of thicker beams due to non-

consideration of transverse shear; phenomenon that is known as shear 

locking characterized the Timoshenko beam theory, in case of thin 

beams; problem of slow of convergence in regards to the element of 

Timoshenko beam. In responding to this problematic, a new beam 

finite element model is developed to study the static bending of 

functionally graded beams. The originality of this model lies in the use 

of a deformation approach with the consideration of a central node 

positioned in the middle of the beam. The degrees of freedom of this 

node are subsequently eliminated by the method of static condensation. 

In addition, this model is suitable for all linear structures regardless of 

L/h ratio. Functionally graded material beams have a smooth variation 

of material properties due to continuous change in micro structural 

details. The mechanical properties of the beam are assumed to vary 

continuously in the thickness direction by a simple power-law 

distribution in terms of the volume fractions of the constituents. A 

simply supported beam subjected to uniform load for different length-

to-thickness ratio has been chosen in the analysis. Finite element 

solutions obtained with the new finite element model are presented, 

and the obtained results are evaluated with the existing solutions to 

verify the validity of the present model.                                

                                       © 2020 IAU, Arak Branch. All rights reserved. 

 Keywords: Deformation approach; Static condensation; Functionally 

graded beam; Finite element formulation.  

1    INTRODUCTION 

 UNCTIONALLY graded materials (FGMs) are a class of composite materials that have a gradual variation 

of material properties from one end to another. This gradual change of properties solves the weak points of layer 
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composite materials (discontinuity of layers causes stress concentration and makes the layers susceptible for crack 

propagation, delimitation problem) and also provides very important capabilities for designers. FGM’s find their 

applications in various fields such as the aerospace, aircraft, medicine, defense industries, automobile and most 

recently electronics sectors. Many studies for analysis of FGM beams, plates and shells are available in literatures. 

A new beam element based on the first order shear deformation theory was developed to study the thermo elastic 

behavior of FGM beam structures by Chakraborty and Gopalakrishnan [1]. Kadoli et al. [2] proposed a fined 

element based on a third-order approximation of the axial displacement and constant transverse displacement for the 

static analysis of beams made of metal-ceramic FGMs. Components’ volume fraction was supposed to vary 

according to a power-law function. A discrete layer approach was adopted to account for material gradation. 

Kapuria et al. [3] presented a finite element model for static and free vibration responses of layered FG beams using 

an efficient third order zigzag theory for estimating the effective modulus of elasticity, and its experimental 

validation for two different FGM systems under various boundary conditions. Pindera and Dunn [4] evaluated the 

higher order theory by performing a detailed finite element analysis of the FGM. They found that the HOTFGM 

results agreed well with the FE results. Ziou et al. [5] developed an exact element based on the first order shear 

deformation theory, a cantilever beam subjected to a concentrated force at the free end for different length-to-

thickness ratio has been chosen for the analysis. The influences of the volume fraction index, length-to-thickness 

ratio and the Poisson’s ratio on the mid plane deflections, stresses distribution and strain energy along the thickness 

of FGM beam are examined. It has been confirmed also with an energetic method that no significant variation on 

deformation with respect to variation in Poisson ratio. Nguyen and Gan [6] studied the large deflections of tapered 

functionally graded beams subjected to end forces by using the finite element method. Nguyen [7] is investigated by 

the FEM the large displacement response of tapered cantilever beams made of axially FGM. Kutiš et al. [8] 

presented a finite element procedure for modelling a FGM beam with spatial variation of material properties. Murin 

and Kutiš [9] introduced a new 3D-beam Euler-Bernoulli finite element for an analysis of beams with an arbitrary 

continuous smoothly varying cross section. A new higher order shear deformation model is developed for static and 

free vibration analysis of functionally graded beams by Lazreg et al. [10] with considering porosities that may 

possibly occur inside the functionally graded materials (FGMs) during their fabrication. Various micromechanical 

models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously 

across the thickness according to a simple power law, after that they compared the presented results with the existing 

solutions available in the literature. The static behavior of non-prismatic sandwich beams composed of functionally 

graded (FG) materials was first investigated by Rezaiee-Pajand [11].A new sinusoidal shear deformation theory 

based on the neutral surface concept was developed to study the static analysis of simply supported functionally 

graded plate by Benferhat et al. [12], the shear correction factor is not necessary in this study. Lazreg et al. [13] 

proposed a new first shear deformation plate theory based on neutral surface position for the static and the free 

vibration analysis of plates made of metal-ceramic FGMs. The mechanical properties of the plate are assumed to 

vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of 

the constituents. They found that the presented results agreed well with the existing solutions. Guenfoud et al. [14] 

developed a consistent triangular thin flat shell finite element based on strain approach, they considered that the 

geometry of shells can be approached by superimposing a membrane element and a plate element. The performance 

and efficiency of this model were evaluated through validation tests. Alshorbagy et al.[15] presented the dynamic 

characteristics of FGM beam with axial and transversal variation of material properties based on the power low, 

Eltaher et al.[16,17] studied static, stability and free vibration behaviors of FGM size-dependent nano-beams using 

finite element model, by using the model of Eringen. Mahmoud et al.[18]  investigated a nonlocal bending behavior 

of nano-sized Euler-Bernoulli beam including surface effects. The surface layer is assumed elastic and isotropic, 

Gurtin-Murdoch’s theory is employed. The vibration characteristics of both nonlinear symmetric power and sigmoid 

functionally graded nonlocal Nano beams was developed by Hamed et al.[19]. The most cited references are based 

on the displacement approach. Therefore, based on the above discussion there is a strong encouragement to 

understand the mechanical behavior of FGM beams but in another way by using another approaches. 

In the present paper, a new finite element formulation is developed to study the static bending of functionally 

graded beams. The novelty of this formulation is the use of a deformation approach and consideration of a central 

node located in the barycenter of the beam. The degrees of freedom of this node are subsequently eliminated by the 

method of static condensation. The material constituents of beams assumed to be varying through the thickness 

direction according to a simple power law.  The model has been verified with the existing solutions and found a 

good agreement with them. Numerical results are presented in both tabular and graphical forms to figure out the 

effects of different slenderness ratios and material distribution, on the static analysis. 

http://www.inderscience.com/info/inarticle.php?artid=93673
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2    MATERIAL PROPERTIES OF FGM BEAM 

Fig.1 shows a FGM beam composed of ceramic and metal of length L, width b and thickness h. Material properties 

vary continuously and non-uniformly in the z direction.  

 

   

 

 

Fig.1 

Geometry of FGM beam and the possible variation of ceramic 

and metal through thickness. 
 

 

Topmost surface consists of only ceramic and bottom surface has only metal. In between volume fraction of 

ceramic cV and metal mV are obtained by power law distribution in conjunction with simple law of constituent 

mixture as follows: 
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where, p
 
is the power law index, a non-negative variable parameter which dictates the material variation profile 

through the thickness of the FGM beam. For 0p   volume fraction of ceramic becomes one and homogeneous 

beam consisting only ceramic is obtained, when value of p is increased, content of metal in FGM increases.  

It is assumed that material properties of the beam, such as Young’s modulus  E  and mass density   vary 

continuously through the beam thickness according to power-law form, which can be described by 
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 (2) 

 

where, 
mMP  and 

cMP  stands for material properties of metals and ceramics respectively. Thus, the modulus of 

elasticity effE , Poisson’s ratio eff and shear modulus effG , of FGMs can be given by 
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3    FINITE ELEMENT FORMULATION 

3.1 Kinematic  

By considering a straight beam of length L and axis x linking the gravity center G of all cross-sections with xz being 

a principal plane of inertia. The axial and vertical displacements of a point A of the beam section are expressed as: 
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where  
0

  denotes the displacements of the beams axis. 

The axial and transverse strains are deduced from Eqs. (4) as: 
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Eq. (5) can be written in matrix form as: 
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where   is the strain vector, ̂  is the generalized strain vector containing the elongation of the beam axis 0u

x


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, the 

curvature 
x




 and the transverse shear strain 0w

x
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



 and S  is a strain-displacement transformation matrix 

depending on the thickness coordinate z. 

3.2 Stresses and results stresses  

The axial and shear stresses are expressed from Eq. (5) as: 
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where  ;E E x z  and  ;G G x z are the longitudinal Young modulus and the shear modulus of the FGM 

beam. 
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: Normal stress generated by forces along the axis of the beam. 
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: Normal stress generated by forces in the plane of the beam. 

Eq. (7) can be written in matrix form using Eq. (6a) as: 

 

 

 

0
ˆ

0

x x

xz xz

E z
D DS

G z

 
  

 

    
       
          

 (8) 

 

where D is the standard constitutive matrix relating stresses and strains at a point in the transverse cross section. 

The axial force N, the bending moment M and the shear force Q in a beam section are obtained as: 
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where ̂  is the resultant stress vector and A is the area of the cross-section. 

For an unloaded FGM beam with constant section, the two equilibrium equations are 

 

0 0
w

x x


  
  

        

 (10a) 

 

 
2

0

2
ˆ 0b z

w
D G z A

xx


 

  
   

        

 (10b) 

 

 

 

 

/ 2

/ 2

/ 2

2

/ 2

/ 2

/ 2

ˆ

ˆ

ˆ

h

a

h

h

b

h

h

ab

h

D b E z dz

D b E z z dz

D b E z zdz























 








     

 (10c) 

 

where b is the width of the beam. ˆ
aD Is the axial stiffness ˆ

bD  is the bending stiffness, ˆ
abD  is the coupling axial-

bending stiffness.  

3.3 Structure of the beam 3_MS element  

The beam element "Beam_3_MS" is a linear element with three nodes, the third one located in the barycenter of the 

element as shown in Fig. 2. Each node "i" has three degrees of freedom
0iu , 

i   and
iw . 

Thus, it is an element with two independent transformation functions: 

 Fields induced by the membrane behaviour whose interpolation polynomials have 03 parameters: α1, α2 and 

α3. 

 Fields induced by the flexional behaviour whose interpolation polynomials have 06 parameters: a1, a2, a3, 

a4, a5 and a6. 

 

   

 

 

 

Fig.2 

Structure of the "Beam_3_MS" beam element. 

3.3.1 Fields of transformations and shape functions 

The process based upon the deformation approach implies the use of the interpolation parameters to describe the 

deformation field. In addition, the displacement field is obtained by integrating the corresponding deformation. 

a. Membrane behavior 

 

 

 
 

   

0

0

0 0

xx

xx

u x
x

x

u x x x









  
 

    

 (11) 

 

Thus, for rigid body movements (RBM), deformation is null 
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Integrating Eq. (12) yields 
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 (13) 

 

For the other modes, the axial deformation field has a polynomial form, it constructed around the remaining 
parameters α2 and α3. 
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Integrating Eq. (14), we obtain the axial displacement field for the other modes as: 
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In matrix form, the final fields are written, as follows: 
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For a beam of length L, the nodal displacements vector is given as follows: 
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The expression of the interpolation parameters is given as a function of the nodal displacements 
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Eqs. (16) and (17) are respectively, the displacements fields and the deformations fields defined as: 
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The shape functions describing the membrane behaviour can be obtained as following 
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b. Flexional behavior 

The only nonzero strain is given by 
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Deformations are null for the Rigid Body Movements (RBM),  
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By integrating Eq. (26), we obtain the displacement field of rigid body mode  
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Always the deformation field has a polynomial form for the other modes. It constructed around the remaining 

parameters 3 4 5a ,a ,a  and 6a and satisfying the equilibrium conditions given in Eqs. (10). 
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After integrating Eq. (28), the displacement field for the other modes is expressed as: 
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The final fields has the following matrix form 

 

 

 
   

1

2 3 4 5 2
2 3

0 3

42 3 4 2

5

6

1 3 31
2 3 4 5

0 1 6 9AM

a

a
x x x x

x x x xw x a

azx
x x x x x x

a

a

  


 

 
 
       

              
          

            
 
  

    

 
(30) 

 

 

 

   

1

2

2 3

3

4

5

6

0 0 1 2 3 6 4 181

0 0 0 0 0

fxx

xz

a

a

x ax x x x

azx

a

a

  

 

 
 
 

            
     

       
 
 
  

    

 
(31) 

 

For a beam of length L, the nodal displacements vector can be written as: 

 

2 3 4 501
2 3

1

02 2 3 4 2

2 2 3 4 2 5 3

03

3
2 3 4 2

1 0 0 0 0 0

0 1 0 0 0 0

1 3 3
2 3 4 5

1
0 1 6 9

1 3 3
2 8 24 2 64 4 160 8

0 1 3 9
2 4 8 16 4

w
L L L L

L L L L

w
L L L L L L

z
L L L L L L L L

w

L L L L L
L

  

 


  



 



 
              

       
  

   
 

              
       
  

 
  

 



1

2

3

4

5

6

a

a

a

a

a

a


 
 
 
   
   
   
       
   
   
   
    
 
 
 
 



    

 

(32) 

 

Eq. (32) can be rewritten as: 
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 

01 1

1 2

02 3

2 4

03 5

3 6

1

w a

a

w a
A

az

w a

a







   
   
   
      

   
   
   
   
      

    

 (33) 

 

[A] is the nodal coordinate matrix which is given in Eq. (32). The expression of the given interpolation 

parameters as a function of the nodal displacements is given by 

 

 

1 01

2 1

13 02

4 2

5 03

6 3

a w

a

a w
z A

a

a w

a









   
   
   
      

   
   
   
   
      

    

 (34) 

 

Eqs. (30) and (31) are respectively the corresponding displacements fields and the deformations fields,  

 

 

 
   

 

01

2 3 4 5 1
2 3

10 02

22 3 4 2

03

3

1 3 3
2 3 4 5

0 1 6 9

w

x x x x
x x x xw x w

A
x

x x x x x x
w



  


 





 
 
       

              
          

            
 
  

    

 (35) 

 

 

 

   
 

01

1

2 3
1 02

2

03

3

0 0 1 2 3 6 4 18

0 0 0 0 0

fxx

xz

w

x wx x x x
A

x

w



  

 





 
 
 

            
     

       
 
 
  

    

 (36) 

 

The right hand side of Eq. (32) represents the shape functions,            1 2 3 4 5 6N x N x N x N x N x N x , 

with a higher degree of interpolation. In addition, the right hand side of Eq. (33) represents the deformation matrix. 

 

3.4 Stiffness matrix 

 

The stiffness matrix can be divided into sub-matrices as follows:  

 Membrane rigidity  

The stiffness matrix is obtained from the elementary virtual work, given by this expression 

 

            
/ 2

0

int

/ 2 0

e

h LT T Te n e e m m e

xx x
V

h

W x x dV q b E z dz B B dx q    




             
    

 (37) 

 

  01 02 03

T
eq u u u  is the nodal displacements vector.  
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The elementary stiffness matrix, before static condensation, can be written as: 

 

 
/ 2

/ 2 0

h L
e T

m m m

NC

h

K b E z dz B B dx





           
    

 (38) 

 

where            ' ' '

01 02 03 2 2 2

1 1 1
3 4 4 4 8mB N u x N u x N u x L x L x L x

L L L

 
              

 
 

After few manipulations, we obtain 

 

7 1 8
ˆ

1 7 8
3

8 8 16

e
m a

NC

D
K

L

 
       
   

    

 (39) 

 

The elementary stiffness matrix after static condensation is defined as: 

 

ˆ 1 1

1 1

e
m a

C

D
K

L

 
            

 (40) 

 

 Flexural and shear rigidity 

The stiffness matrix of the bending behaviour is obtained from the discretized elementary virtual work, given by 

the following expression 

 

 
 

 
 

 
 

 
 

0

int

0

0

0
e

xy

T
p L

T Te xx x e e f f e e

V
xy

x x E z
W dV q B B dV q

x G z

 
  

 

      
           

      
 

    

 (41) 

 

  1 1 2 2 3 3

T
e

z z zq v v v    is the vector of nodal displacements. 

Before static condensation, we get the following elementary stiffness matrix 

 

 

 
 

   

/ 2

2 1

0 / 2

1

0

0

0

1 0

1
0

L h
e T T

f f f e

NC

h

L
T

f f

E z
K B B dV b z E z dz A

G z

Q x Q x dx A











 
                

 

  
                 

 


    

 (42) 

 

where  

 

 
   2 30 0 1 2 3 6 4 18

0 0 0 0 0

f x x x x
Q x

 



      
    
        

   0

0

1 0

1
0

TL
e f f

K Q x Q x dx



 
            
  


  

 

 

 

Eq. (42) can be simplified as follows: 

 

1 0 1ˆ
e T e

f

NC bK D A K A               
    

 (43) 
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 Coupling rigidity 
The virtual work done by a stress field σ on a virtual stain field ε can be represented by 

 

     int
e

e T e

m f

V

W dV    
    

 (44) 

 

Knowing that 

 

       
1m e

m m mQ x A q
 

 
    

 (45a) 

 

     
2

2

h

f f

h

b E z zdz 





 
    

 (45b) 

 

By substituting Eqs. (45a) and (45b) into (44) yields  

 

             
2

11

int

0 2

hL
TT Te m fe

m m f f

h

W q Q x A b E z zdz Q x A q dx 






            
    

 (46) 

 

The elementary stiffness matrix, from the expression (46) can be written as: 

 

       
2

11

0 2

hL
T Tm fe

c m f

h

K Q x A b E z zdz Q x A dx






               
    

 (47) 

or 

 

       
1 11 1

0

0

ˆ
L

TT Tm fe c

c m ab f m fK A Q x D Q x dx A A K A
                         

    

 (48) 

 

The evaluation of the expression 
0

e

K   and 0

e
cK   are established by analytical integration of the different 

components resulting from the matrix product      
2

2

2

1 0

1
0

h
T

f f

h

b E z z dz Q x Q x







 
    

    
  

  and 

     
2

2

h
T

m f

h

b E z zdz Q Q





 respectively. Which are defined in Appendix. 

4    NUMERICAL RESULTS AND DISCUSSIONS 

In order to demonstrate the efficiency of the present approach (deformation approach), various numerical examples 

are presented and discussed, after that the present results are compared with the data available in literature. For this 

purpose of verification, An Al/Al2O3 beam composed of aluminum (metal) and alumina (ceramic) is considered. The 

material properties of aluminum are: 70 , 0.3m mE GPa   . And those of alumina are 380 , 0.3m mE GPa   . 

The non-dimensional quantities used in the present analysis are defined as: 

 

 
3

4
100 , , , 0,0

2 2 2

m

xx x xz xz

E h L h L h h
w w

qL qLqL
   

   
     

        
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Non-dimensional deflections and stresses of FGM beams under uniform load for different power law index and 

different length-to-thickness ratio are given in Table 1. The calculated values based on the present approach are 

obtained, it can be observed that the values obtained using the deformation approach are in good agreement with 

those given by Li et al. [20] for all values of power law index and length-to-thickness ratio. 

It is worth noting that the values of Li et al. [20] are calculated based on the analytical solutions (see Appendix in 

the Ref Li et al. [20]). 

 
 

Table 1  

Non-dimensional deflections and normal stresses of FGM beams under uniform load.  The material properties of glass fiber and 

ester resin matrix. 

L/h p 
    w      xx      xz  

Li et al. [20] Present Li et al. [20] Present Li et al. [20] Present 

5 

0 

1 

2 

5 

31.65 

62.59 

80.60 

97.80 

31.66 

62.55 

80.19 

96.33 

38.02 

58.83 

68.81 

81.03 

37.60 

58.13 

67.88 

79.67 

7.50 

7.50 

6.78 

5.79 

7.50 

7.51 

6.38 

5.12 

20 

0 

1 

2 

5 

28.96 

58.04 

74.41 

88.15 

29.01 

58.09 

74.40 

88.06 

150.13 

232.05 

270.98 

318.11 

150.41 

232.57 

271.52 

318.66 

7.50 

7.50 

6.78 

5.79 

7.50 

7.51 

6.38 

5.12 

 

To depict the effect of the power law index on the bending response of FGM beams, non-dimensional transverse 

deflection, and axial normal stress are plotted in Fig. 3. The present approach is used only in these figures. As 

expected, the increasing of power law index leads to an increase in the deflection and axial stress, this is due to the 

fact that an increase in power law index p results in a decrease in the value of elasticity modulus, and thus makes 

FGM beams more flexible. It is cleared shown also that the highest values of transverse deflection and axial normal 
stress are obtained for full metal beams (p→∞ ), while the lowest values are obtained for full ceramic beams (p=0).  

Fig. 4 depicts the variation of the non-dimensional shear stress across the thickness of FGM beam under uniform 

load, with the present approach at x=0. The power law index p of the FGM beam shifted from 0 to 5. With 

increasing of the power law index, the tip of shear stress increases. The maximum value of shear stress occurs at the 

neutral axis not at mid-plane unless for an isotropic beam. 
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(a) Transverse deflection 
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(b) Axial normal stress 

 

Fig.3 

Variation of non-dimensional transverse deflection and axial normal stress with respect to the power law index for FGM beams 

under uniform load. 
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Fig.4 

Depthwise shear stresses distribution under uniform load q at x = 0. 

5    CONCLUSION 

In this paper, a finite element procedure for static analysis of functionally graded material (FGM) beam is presented. 

The novelty of this procedure is the use of a deformation approach and consideration of a central node positioned in 

the middle of the beam. The degrees of freedom of this node are subsequently eliminated by the method of static 

condensation. The present approach, the development concepts and the techniques used in this paper allowed us to 

obtain competitive, robust and efficient finite element model to treat both thin and thick linear structures whatever 

L/h ratio. The material properties of the beam are assumed to vary continuously along the beam thickness by a 

power-law distribution. A  FORTRAN code is constructed to compute to predict the static responses. A simply 

supported beam subjected to uniform load for different length-to-thickness ratio has been chosen. The influences of 

material composition and aspect ratio on the mid plane deflections, normal stress and shear stress distributions along 

the thickness of the beam are examined and highlighted. The obtained results are compared with the data available 

in the literature using analytical solutions to verify the validity of the developed model. 

APPENDIX 

The elementary stiffness matrix before condensation (flexural and shear rigidity) 

 

 

 
     

/ 2

1 2 1

0 / 2 0

1 0
0

1
0 0

L h L
Te T T f ff f f e

NC

h

E z
K B B dV A b z E z dz Q x Q x dx A

G z




 



  
                                       

  
    

  

 

Where 

 

   0

0

1 0
ˆ 1

0

TL
e f f

bK D Q x Q x dx



 
             
  


    

  

 

Formulation of matrix 
0

e

K    
 

 

 

   2 3

0

0
2

3

0 0

0 0
1 01 0 0 1 2 3 6 4 180

ˆ 12
0 0 0 0 0 0

3 6 0

04 18

L
e

b

x x x x
K D dxx

x

x x

 

 




 
 
 

                            
 
 
 

 


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Before integration 

 

   

     

       

       

2 3

0
2 3 4 2

2 3 4 2 2 5 3 2

3 4 2 5 3 2 6 4 2 2

0 0 0 0 0 0
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0 0 1 2 3 6 4 18

ˆ
0 0 2 4 6 12 8 36

0 0 3 6 6 12 9 36 36 12 78 108
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e

b

x x x x

K D
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After integration 
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b
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 
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7 5
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 
 
 
 
 
 
 
 
 
 
 
 
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Formulation of matrix 
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   0

0

ˆ
L
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m fc
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Before integration 
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      
 

    

  

 

After integration 
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