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 ABSTRACT 

 It is well known that it is very difficult to manufacture perfect thin 

cylindrical shell. Initial geometrical imperfections existing in the 

shell structure is one of the main determining factor for load 

bearing capacity of thin cylindrical shell under uniform lateral 

pressure. As these imperfections are random, the strength of same 

size cylindrical shell will also random and a statistical method can 

be preferred to find the allowable load of these shell structures and 

therefore a In this work the cylindrical shell of size R/t = 228, L/R = 

2 and t=1mm is taken for study. The random geometrical 

imperfections are modeled by linearly adding the first 10 eigen 

mode shapes using 2k full factorial design matrix of DoE. By 

adopting this method 1024 FE random imperfect cylindrical shell 

models are generated with tolerance limit of ± 1 mm. Nonlinear 

static FE analysis of ANSYS is used to find the buckling strength 

of these 1024 models. FE results of 1024 models are used to predict 

the reliability based on MVFOSM method. 

                                  © 2019 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

HIN cylindrical shell structures are one among the important structural parts which have wide applications in 

many engineering fields such as in mechanical, civil, aerospace, nuclear and marine structures etc., owing to 

high effective specific load bearing ability. In operation these shells are subjected to external pressure loading and 

may fail due to buckling is uncontrollable in nature.  Hence accurate prediction of ultimate load carrying capacity is 

significant for safe design of these structures. Generally, the load bearing capacity of plain cylindrical shell 

structures under pressure loading alone can be increased by stiffening them along circumferential direction using 

stiffeners called ring stiffeners. These ring stiffened cylindrical structures under external lateral pressure loading fail 

with any one or combination of the following modes of buckling failure: a) shell-stiffener combined failure called 
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general instability failure mode, b) Failure of bare cylindrical shell portion in between stiffeners called local shell 

instability failure mode, and c) Stiffener tripping. Since the collapse of bare cylindrical shell in between stiffeners is 

a basic failure mode, it has been taken for the present study. 

Thin cylindrical structures acquire different types of imperfections either during manufacturing or in the course 

of their service life. Out of the different types of imperfections (namely geometrical, material and structural 

imperfections), geometrical imperfections plays a leading role in determining the load bearing capacity of thin 

cylindrical structures, which in turn depends on the form and amplitude of the imperfections [1, 2]. Hence for the 

accurate determination of the ultimate strength of thin cylindrical structures, it is imperative to model the 

geometrical imperfections accurately. Also a probabilistic approach is required to arrive at a safe load bearing 

capacity of shell structure. Therefore reliable method is to be adopted to find the collapse pressure and modelling of 

initial imperfections which is highly random in nature. As given in reference Ranganathan [3] the structural 

reliability calculation methods can be categorized into level 1, 2 and 3 methods. Since in present case collapse load 

of the cylindrical shells are scattered widely from the theoretical value level2 method is adopted.  

2    LITERATURE REVIEW 

Two approaches are followed for modelling distributed geometrical imperfections namely deterministic approach 

and random approach. In deterministic approach there are two ways of computing the imperfections such as by (i) 

assuming imperfection pattern and by (ii) actual measurement (for example Paor et al [4]; Sadovsky et al, [5,6]; 

Athiannan and Palaninathan, [7]; Singer, [8]; Scheneider, [9]; Arbocz and Hol, [10]; and Kirkpatrick and 

Holmes,[11]). The assumed imperfection pattern may be first eigen mode shape pattern (Featherston, [12]; Kim and 

Kim, [13]; Khelil, [14]; Teng and Song, [15]) or harmonic pattern (Ikeda et al, [16]; Khamlichi et al, []17]; and 

Pircher et al,[18]). There are two methods of obtaining random modeling of imperfections. One way is to vary the 

nodal locations of the model randomly and the other way is the stochastic FE approach. Each manufacturing method 

possess unique characteristic imperfection shapes of imperfection and these shapes can be represented by 2D 

random surface defined by double Fourier series. In earlier studies (for example Paor et al, [4]; Athiannan and 

Palaninathan, [7];  Chrysanthopoulos, [19]) coefficient of Fourier series were randomly varied to generate more 

number of initial random geometrical imperfection models. Monte Carlo simulation technique based reliability 

method was proposed by Elishakoff [20] and illustrated the method taking finite column buckling problem assuming 

geometrical imperfections as Gaussian random fields. Elishaoff et al [21] used mean and standard deviation of the 

measured geometrical imperfections to generate random geometrical imperfections and compared the safe load 

obtained from MVFOSM (Mean Value First Order Second Moment) method with Monte Carlo simulation results. 

Chryssanthopoulos et al [22] adopted RSM – Response Surface Methodology to evaluate the safe load of axially 

compressed  stiffened plate and cylindrical shells considering the weld induced residual stresses and initial 

geometrical imperfections. Sadovsky and Bulaz [23] proposed inverse reliability method based on FORM. One 

important conclusion arrived was that by considering the real imperfections, marginally conservative design can be 

achieved and proved this by applying the reliability calculations for unstiffened thin plates and girders under 

compression and bending. In reference Warren [24] random geometrical imperfections were generated by adding 

eigen buckling mode shapes following design matrix of 2
k
 factorial design. Taking the framed structure as an 

example random models are generated keeping the variance of nodes within manufacturing tolerance. The stochastic 

finite element method was proposed by Náprstek [25] considering the larger displacements as cause for non-

linearities and analyzed to find the response of the structures with random imperfections. A simulation method was 

used by Bielewicz and Gorski [26] to generate random geometrical imperfections using random nonhomogeneous 

random regular nets of 2D fields. Schenk and Schueller [27] developed geometrical imperfection models using 

Karhunen-Lo`eve expansion method with the help of imperfection databank available at Delft University of 

Technology. Papadopoulos and Papadrakakis [28] carried out structural stability analysis of composite shell 

structure using the developed triangular element. The initial imperfections are described as uni-variate 2D 

homogeneous random field. Craig and Roux [29] used the Karhunen–Lo`eve expansion method to include random 

general geometrical imperfections in FE nonlinear analysis and verified the buckling analysis result with published 

experimental and numerical results. In the work of Sadovsky et al [30] safe laod was determined as a function of two 

variables namely shape factor and integral energy measure. Applying this variable for a rectangular plate under 

longitudinally compressed plate and showed that this approach leads to less conservative design.  Papadopoulos et al 

[31] in their work assumed distribution of modulus of elasticity and shell thickness variations as 2D-IV 

homogeneous non-Gaussian stochastic fields based on mean and standard deviation obtained from actual 
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measurement and it was illustrated that the selection of material and thickness variability distributions were critical 

for reliability calculations.. Rzeszut and Garstecki [32] in their work modeled the initial geometrical imperfection 

with summation of eigen modes with scale factor computed from actual measurement and carried out the stability 

analysis of column made of cold formed thin walled steel structures. Jalal et al [33], in their work determine the 

reliability of cylindrical shell with interacting localized geometric imperfections (either a triangular or a wavelet 

form) subject to axial compression by adopting FORM method. Brar et al [34], in their work concluded that in the 

negligence of initial geometric imperfections, thickness variation would be the important factor in predicting 

buckling load reduction.  Hence in their work, they studied about safe buckling load reduction factor of externally 

pressurized cylindrical shell assuming random shell thickness employing the Monte Carlo technique.  In the present 

work initial random imperfections are generated using first 10 eigen modes of cylindrical shell as recommended by 

Chryssanthopoulos and Poggi [35], Arbocz and Hol [10] etc., and by adding linearly he mode shapes considered 

following the design matrix of 2
k
 factorial design [24]. All FE imperfect cylindrical shell models are generated such 

that the maximum nodal deviations are kept within the manufacturing tolerance of ± 1 mm. Through deterministic 

FE analysis, distribution of strength is obtained and safe load of the structure is determined using MVFOSM 

method. 

3    FE MODELLING 

Since it is required to model both shell and dent accurately, a 8 noded SHELL281 is selected for analysis. It has 

capability to compute effect of membrane, bending and transverse shear effect. It can also support plasticity, stress 

stiffening effect, greater strain effects and large deflection in addition. 

 

3.1 Thin cylindrical shell  

 

The cylindrical shell structures under external loading are often used in the offshore construction. The thin steel 

cylindrical shell considered for analysis is [36]: Length /Radius (L/R) = 2, Radius (R) = 228 mm, Radius /Shell 
thickness (R/t) = 228, Density (ρ) = 8000 kg/m

3 
, Yield stress (σY) = 240 N/mm

2
, Young’s modulus (E) = 2.1×10

5 

N/mm
2
, Poisson’s ratio (γ) = 0.3. In analysis zero strain hardening effect is assumed. 

 

3.2 Loading condition (LC) and boundary condition (BC) 

 

Since rigid ring type boundary condition is to be applied at both ends, nodes at both ends are restrained to move 

radially at both end planes. Further, in order to prevent rigid body motion of cylindrical shell axial displacement of 

all the nodes at one end is restraint in addition.  

3.3 Model validation  

FE model taken for study is validated for both linear (perfect cylindrical shell model) and non-linear (imperfect 

cylindrical shell model) buckling analysis by comparing with experimental and other published numerical results for 

the boundary and loading conditions taken for study. 

3.3.1 Eigen buckling analysis  

To verify the boundary conditions effect and eigen buckling analysis, results published in Ref. Combescure and 

Gusic [37] are considered and present FE result comparison is shown in Table 1., with corresponding first eigen 

mode shape of shell C in Fig. 1. 

 
 

 

 

   (a) Front view                           (b) Isometric view 

 

 

 

Fig.1 

Mode shape of the cylindrical shell C (Combescure and 

Gusic [37]). 
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         (a)Front view                           (b) Isometric view 

 

 

 

 

 

Fig.2 

Mode shape of model 53 (Windenburg and Trilling [38]). 

 

 
To verify the present FE results, numerical results are validated with published experimental results of model 53 

and 57 (suitable to the present work) given in Ref. Windenburg and Trilling [38] and the results are presented in 

Table 2. From this it is clear that both number of circumferential lobes and critical buckling pressure are matches 

with each other. Fig. 2 presents the first eigen mode shape of model 53. 

 
Table 1  

Validation of critical buckling pressure of the cylindrical shells with published results in Ref. Combescure and Gusic [37].  

Cylindrical shell t, mm L, mm R, mm Z Poisson’s ratio (γ) E   105 N/mm2 FE eigen buckling 

pressure (MPa) 

Present study Ref. [37] 

A 0.15  20      50   51    0.3 2 0.2927 0.2936 

C 0.247 113.8 100 500   0.3 2 0.0619 0.0624 

D 0.247 508.5 100 5000 0.3 2 0.0135 0.0136 

 

Table 2  

Validation of experimental critical buckling pressure with published results in Ref. Windenburg and Trilling [38].  

Model number t, mm L, mm R, mm Z Poisson’s ratio (γ) E   105 N/mm2 Critical Buckling Pressure 

(MPa) 

  Present study Ref. [38] 

53 0.8   406.4 203.2 969 0.3 1.93 0.108(8) 0.096(8) 

57 0.78 406.4 203.2 994 0.3 2.06 0.109(8) 0.103(8) 

 

Bracketed number indicates number of circumferential lobes and Z - Batdorf parameter 
L R

Z v
R t

2

21
   

     
   

 

3.3.2 Nonlinear FE analysis  

For non linear FE analysis validation, the results obtained from eigen buckling analysis (first eigen mode shape) of 

the cylindrical shell t = 1 mm, R = 228 mm, L = 456 mm, n (circumferential lobe) = 8 and m (longitudinal lobe) =1, 

critical pressure = 153412.73 N/m
2
 is added on the surface nodes of perfect cylinder model by varying maximum 

amplitude of imperfection between 0.001 mm and 1 mm to form different imperfect cylinder models. These models 

are analyzed using non-linear static FE analysis including both material and geometrical non-linearities. Snap 

through non-linear FE analysis approach with arc tangent option is employed to find the highest load bearing 

capacity of the structure (Forde and Stiemer [39]). Maximum and minimum arc lengths adopted for the analysis are 

1 and 10E-6 respectively. Default force and moment convergence tolerance are adopted. Fig. 3 shows the results 

calculated from this nonlinear analysis. Buckling Strength Ratio (ratio between collapse pressure of imperfect shell 

to eigen buckling pressure of perfect shell) represented as BSR is used to denote the critical buckling pressure. From 

the Fig. 3 it can be observed that as the imperfection amplitude reduces, collapse pressure approaches to eigen 

buckling pressure. Thereby non linear analysis is validated for accuracy and boundary conditions. 

 
  

 

 

 

 

Fig.3 

BSR vs Maximum amplitude of imperfections. 
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4    MODELING OF IMPERFECT THIN CYLINDRICAL SHELLS 

To incorporate randomness in the model i.e., variation in imperfection at a point in FE cylindrical model except the 

boundary edge node, the first ten eigen buckling modes of cylindrical shell are added linearly following design matrix 

of 2
k
 factorial design. Ten linear buckling  modes obtained from FE cylindrical shell model having 32 elements along 

longitudinal direction and 100 elements along circumferential directions respectively are used to develop random 

imperfection models as shown in Fig. 4 with their critical pressure. 

The assumptions incorporated in achieving the modeling of the initial random imperfections is listed below. 

 Δ – Nodal imperfection amplitudes of all nodes except boundary nodes need to be normally distributed. 

 Mean value of nodal imperfection amplitude from all the models must be equal to zero. 

 All eigen mode shapes are given equal chance in analyzing random imperfection modeling. 

Implementing above assumptions, the nodal imperfection amplitude vector of entire model is given by 

 

i i j jM1 1      (1) 

 

where,   

Δ - Nodal amplitude of imperfection vector 
φ - The matrix of normalized mode shape vectors containing the modal imperfection amplitudes of all nodal 

points.  

M - Modal vector of model imperfection magnitude  

i – node number 

j - eigen mode shape number 

If the nodal imperfection amplitude vector is known, the modal vector of modal imperfection values can be 

arrived using  relationship (2) 

 

j j i iM *
1 1     (2) 

 

where, *  is the pseudo-inverse matrix of φ and it can be calculated using the method of least squares as the 

equation given below 

 

 T T
1

*   


   (3) 

 

If nodal imperfections i  are considered as variables having independent normal distribution random then the 

mean and variance of all modal magnitudes are given by 

 
i

Mj ji i
*

1
    (4) 

 

 
i

Mj ji i

2
2 * 2

1
    (5) 

 

where,  

 i
2  & i  - variance & mean of the nodal imperfection amplitude respectively. 

Mj
2  &  Mj  - variance & mean of the modal imperfection value respectively. 

Similarly, variance & mean of all the nodal amplitudes can be obtained from Eqs. (6)-(7). 

 
j

i ij Mj1
     (6) 
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 
j

i ij Mj

2
2 2

1
     (7) 

                                     

when the nodal amplitude ( i ) of any node i of the structure follows normal distribution so that the mean of modal 

imperfection amplitude (  ) becomes zero, as per Eq.(4) the value of mean of modal imperfection magnitude 

( M ) also becomes zero. The next step is to obtain the amplitude of imperfections of all nodes for each model for 

which the model magnitude of every model has been calculated utilizing the Eq. (5). With the results of these modal 

magnitudes calculated as above, the nodal amplitudes of imperfections can be computed with the help of Eq.(1). 

Using these values it is possible to generate random geometrical imperfection models by varying the modal 

magnitudes of imperfections in a random manner by making use of 2
k 
factorial design matrix of DoE. 

 

 
(a) Mode 1 (m=1, n=8) 1.53441E5 N/m2 

 
(b) Mode 2 (m=1, n=9) 1.60408E5 N/m2 

  

   
(c) Mode 3(m=1, n=7) 1.75986E5 N/m2 

    
(d) Mode 4 (m=1, n=10)1.81363E5 N/m2 

  

          
(e)  Mode 5(m=1, n=11) 2.10357E5 N/m2                                                           

     
(f) Mode 6 (m=1, n=12)2.44900E5 N/m2 

  

           
 (g) Mode 7 (m=1, n=6) 2.73329E5 N/m2                                                           

  
(h) Mode 8 (m=1, n=13)2.83821E5 N/m2 

  

                                                                      
(i) Mode 9 (m=2, n=11) 2.89821E5 N/m2 

    
(j) Mode10(m=2,n=10)2.97695E5 N/m2 

Fig.4 

Ten eigen affine modes of perfect cylindrical shell considered for random modeling of imperfections (amplitudes enlarged by 

50 times). 
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5    PROCEDURE FOLLOWED TO GENERATE RANDOM GEOMETRICAL IMPERFECTION  

In first step variance of vector of modal imperfection magnitude was assumed as: 

 

M
2

1

1

1

1

1

1

1

1

1

1



 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
(8) 

      

In second step utilizing the Eq. (7), vector of 2  was calculated. 

In third step every element of 2   vector attained from first step was normalized with the   highest value in that 

vector and tol
2 is multiplied with that value.  

In fourth step with the value of 2   vector arrived from third step, revised M
2  vector was found with the help 

of Eq. (5). 

Modal imperfection magnitude vector M, was calculated utilizing revised vector M
2   with the condition 0  , 

M 0  such that MM   . 

In final step by utilizing 2
k
 factorial design, every column in design matrix was chosen and corresponding 

element in the M vector arrived from earlier step is multiplied. With the help of new design matrix, 1024 (2
10 

= 

1024) random geometrical imperfection models are generated. 

 

( x  new design matrix ) (9) 

 

 
(a) Initial amplitude of imperfection in m 

 
(b)  Initial amplitude of imperfection in m 

 

Fig.5 

Normal distribution of radial amplitudes of imperfections from all 1024 random imperfection models (keeping RMS = 0.33 

mm) of a node (a) 1000 (x = 227.9 mm, y = -7.2 mm and z = 57 mm) and (b) 4000 (x = 227.9 mm, y = -7.2 mm and z = 270.8 

mm) on the surface of the cylindrical shell. 
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By substituting the value of M  in Eq.(1), Δ is calculated. The value of modal imperfection is determined by 
element value in the design matrix (+1 or -1). The Δ matrix arrived from Eq.(1) has 1024 rows. Each row 

corresponds to imperfect nodal displacements of all nodes of a random model. By applying the steps given above 

1024 random geometrical imperfect cylindrical shell models are generated maintaining SD (Standard Deviation) or 

RMS (Root Mean Square) of imperfections = 0.33 mm. Fig. 5 shows nodal initial displacement distribution of some 

sample nodes taken from all 1024 models and it indicates that nodal initial displacement is random by following 

normal distribution.  This modeling procedure results in 512 pairs of mirror image random imperfect models. Fig. 6 

shows some pairs of imperfect cylindrical shell models. 

 

                                                                 
(a)Model No.1 

  
 (b)Model No.1024 (Mirror to 1) 

  

                                                       
(c) Model No.512 

   
 (d) Model No.513 (Mirror to 512) 

  

                                                                 
(e)  Model No.101 

  
(f) Model No.924 (Mirror to 101) 

  

Fig.6 

Samples of random imperfection cylindrical shell models (amplitude enlarged by 50 times). 

6    RESULTS AND DISCUSSION 

Non-linear FE analysis is used to determine BSR. As a sample, von Mises stress contour and deformations on 

cylindrical shells at various LSS (Load Sub Step is ratio of between pressure applied and eigen buckling pressure) 

for the cylindrical shell of FE model no.696 are presented in Fig. 7.  From this figure it can be noted that the stress 

value and deformations are different at different locations of cylindrical shell and it can also be noted that these 

stress value and deformations enhances with increase in pressure on the cylindrical shell. Fig. 7(d) shows formation 

of lobes and von Mises stress contours at the limit load condition and this further indicates that cylindrical shell fails 

before reaching elastic limit.  Fig. 8 shows the curve of radial displacement vs LSS for node 62 (Location of this 

node is x = 0 mm, y = -228 mm and z= 228 mm).  Fig.8 also reveals that when the LSS is 0.81845 (at ‘a’ in Fig. 8) 

the cylindrical shell reaches the limit load condition and the slope of that point on the curve becomes zero. Fig. 9 

shows the scatter of BSR values of the cylindrical shell taken for study obtained from 1024 model. 

From Fig. 10(a) it is understood that the distribution is not exact normal distribution but it is a skewed one. Since 

the normal distribution is simple, well developed and well known [40] the skewed strength distribution is converted 

into equal normal distribution by following the procedure of Verderaime [40]. As per this method the mode of actual 

distribution is taken as mean of equivalent distribution i.e., right side of skewed distribution mirrored about the 

mode to get equivalent normal distribution (Fig. 10(b)).  
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(a) 0.27829 
                                                 

(b) 0.49798 

  

  
 (c) 0.77788 

  
(d) 0.81845 

 
Fig.7 

Front and pictorial views of von Mises stress contours of thin cylindrical shell taken for study for various LSS (with 

enlargement scale of 15 times). 

  

 

 

 

 

 

 

 

 

 
 
 
 
 

Fig.8 

Radial displacement in mm vs LSS. 

  

 

 

 

 

 

Fig.9 

Model number vs BSR. 

  

 
 
 
 
 
 
 
 
 

BSR 

Mode of distribution =0.82369 
Mean of distribution =0.83124 

 

 

 

 

 

 

BSR 

Mode of distribution = 0.82369 

Mean of distribution = 0.82369 

 

Fig.10 

Actual skewed strength distribution (b) Equivalent normal distribution of strength of the cylindrical shell. 
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As per MVFOSM the index of reliability is given by, 

 

s L

s L
2 2

 


 





 (10) 

 

s  = strength distribution mean L  = load distribution Mean s = strength distribution S.D, L  = load 

distribution S.D. 

Therefore, the failure probability can be calculated as below,  

 

Pf ( )    (11) 

 
where, φ = function of cumulative normal distribution.  

The structural reliability can be calculated by, 

 

fR P1   (12) 

 

In the present work, applied load is considered as deterministic single value. Therefore, L  = 0 and then β can 

be modified as, s

s

loadinBSR





  

The reliability of the structure is calculated by varying the applied load. Fig. 11 shows the survival probability 

for various loads. The change in reliability vs BSR is shown in Fig. 12. From this figure it is noticed that reliability 

is maximum of 100% for BSR of 0.74 and minimum of 0 % for BSR of 0.9 if the random imperfect cylindrical shell 

models having tolerance value of imperfection= ± 1 mm. 

 

 

 
(a) Probability of survival = 0.85612 for load =  0.7951 

 
(b) Probability of survival = 0.17235 for load = 0.8491 

 

Fig.11 

Survival probability at different loads. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12 

Reliability vs BSR. 
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7    CONCLUSIONS 

The following conclusions are arrived from the work carried out for thin cylindrical shell taken for study. 

1. It has been demonstrated that design matrix of 2
k
 factorial design can be used to generate random imperfect 

cylindrical shell model giving equal importance to all the eigen mode shapes of cylindrical shell taken for 

study, maintaining the mean of nodal imperfections of a model equal to zero and nodal imperfection value 

within the tolerance limit. 

2. The mirror image of random imperfect cylindrical shell models have different buckling pressure value. 

3.  By adopting MVFOSM reliability method recommended by Verderaime [40], it is found that the reliability 

of shell considered for analysis is 100% below 0.74 times the eigen buckling pressure of thin cylindrical 

shell and it reduces to 0% when the applied pressure exceeds 0.9 times the eigen buckling pressure of thin 

cylindrical shell under external pressure loading. 
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