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 ABSTRACT 

 A Mathematical model has been considered to study the 

reflection and refraction phenomenon of plane wave at the 

interface of an isotropic liquid medium and a triclinic 

(anisotropic) half-space. The incident plane qP wave generates 

three types of reflected waves namely quasi-P (qP), quasi-SV 

(qSV) and quasi-SH (qSH) waves in the triclinic medium and 

one refracted P wave in the isotropic liquid medium. 

Expression of phase velocities of all the three quasi waves have 

been calculated. It has been considered that the direction of 

particle motion is neither parallel nor perpendicular to the 

direction of propagation in anisotropic medium. Some specific 

relations have been established between directions of motion 

and propagation. The expressions for reflection coefficients of 

qP, qSV, qSH and refracted P waves with respect to incident qP 

wave are obtained. Numerical computation and graphical 

representations have been performed for the reflection 

coefficient of reflected qP, reflected qSV, reflected qSH and 

refraction coefficient of refracted P wave with incident qP 

wave.                 © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE fundamentals of seismic wave propagation are developed using a physical approach and then teleseismic 

techniques are used to study reflection and refraction phenomena in the composite structure related to the 

problem. Study of Seismic waves investigate the plate tectonic processes that cause earthquakes. From recordings of 

the earthquake-generated waves, information about the structure of the Earth may be derived. It is well accepted that 

the Earth is anisotropic, but from the seismological and mineralogical point of view, this anisotropy is sometimes 

difficult to measure and interpret. In an anisotropic medium, physical properties depends on the direction of 

propagation. When Seismic waves travel through such a medium the velocities vary as functions of polarization and 

direction of propagation. The study of wave propagation in anisotropy medium have attracted the researchers over 

past few decades. Keith and Crampin [2] studied the reflection and transmission of plane waves in anisotropic 

medium, following the same media some milestone works have been carried out by Chattopadhyay [3-4] and [5]. In 
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order to understand the phenomenon better Chattopadhyay and Michel [6] studied the reflection and refraction of 

wave in anisotropic media. Carcione [7] investigated that materials displaying anisotropy must have its effective 

elasticity constants arranged in some form of crystalline symmetry. Crampin [8] showed that the surface waves 

propagating through a layer of anisotropy material with certain symmetric relations have distinct particle motion. 

Some possible application of reflection and refraction of elastic waves in seismology has been discussed by Knott 

[9]. The phenomenon of reflection and transmission of seismic waves may help to understand the internal structure 

of the Earth. Particularly, refraction tends to cause P and S waves to become vertically orientated as they approach 

the surface. Reflection of plane wave at the free surface of an anisotropic half-space has been studied earlier by 

many authors. Particularly, the work done by Ditri and Rose [10], Zilmer et. al. [12] and Singh and Khurana [11] has 

remarkable impact on the field of seismology. Chatterjee et. al. [3] obtained the solution for a three dimensional 

wave scattering phenomenon between two dissimilar anisotropic half spaces under initial stress.  Paswan et. al. [14] 

derived the amplitude ratios and showed the energy conservation in a two dimensional model of fluid layer 

sandwiched between two monoclinic half-spaces. Singh et. al. [15] studied similar type of problem considering an 

intermediate layer lying between two semi-infinite media. 

In this paper, we have studied the reflection and refraction of quasi-P wave at the interface between an isotropic 

homogeneous liquid half-space and a triclinic half-space.( Relations between directions of motion and propagation 

have been expressed.) The incident qP wave gives rise to three reflected waves, namely qP, qSV and qSH waves in 

triclinic (anisotropic) medium and one refracted qP wave in homogeneous isotropic liquid medium. The expression 

for the phase velocities of reflected qP, qSV and qSH waves in triclinic medium have been derived. The amplitude 

ratios of reflected qP, qSV, qSH waves and transmitted P wave with respect to incident qP wave have been obtained. 

Numerical example has been given and variations of amplitude ratios with the incident angle have been illustrated 

graphically. It has been observed that triclinic medium plays a significant role in case of reflection and refraction. 

2    FORMULATION OF THE PROBLEM  

 

 

 

 

 

 

 

 

Fig.1 

Geometry of the problem. 

 

The stress-strain relations for a homogeneous triclinic medium with twenty-one elastic constants are 
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and iu i 1, 2, 3( )  are the displacement components.                                         

We have considered the plane of symmetry as the  x x
2 3
, plane and x

2
axis vertically downwards. For plane 

wave propagating in the  x x
2 3
,  plane, we have  

 

x 1

0





 (3a) 

 

The equations of motion without body forces are 

 

iij j
u i

,
1, 2, 3.,   (3b) 

 

Using Eqs. (1), (3a) and (3b), the equations of motion reduces to 
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(4a) 
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(4b) 
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(4c) 

 

Let us assume 

 

 i iu u x x t i2 3 1, 2,3., , ,   (5a) 

 

Let
    n n

p p p
2 3

0, , denote the unit propagation vector, nc is the phase velocity and 
n

k  is the wave number of 

plane waves propagating in the  x x
2 3
,  plane. 

Consider plane wave solution of Eqs. (4a), (4b) and (4c) as: 
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Substituting Eqs. (5a) and (5b) in Eqs. (4a), 4(b) and 4(c), we have 

 

       n n n
S c d Td Pd2

1 2 3 0     (6) 

 
       n n n

Td Q c d Rd2

1 2 3 0     (7) 
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where c P Q R S T W2
and, , , , , are given in Appendix A.      

From Eqs. (6), (7) and (8), we have 
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Now d can be calculated in terms of p
 
using the Eq. (9). 

Eliminating
 n

d1
,

 n
d 2  and 

 n
d 3  form Eqs. (6), (7) and (8), we have 
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Solving the above determinant, we get 
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Three real roots of c 2
for qP, qSV and qSH may be obtained from Eq. (11). The largest root is for the phase 

velocity of quasi-P (qP) waves. The second largest root is for the phase velocity of quasi-SV (qSV) waves and the 

smallest root for the phase velocity of quasi-SH (qSH) waves.  

The phase velocities are as follows [Chattopadhyay [3]] 
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(16) 

 

Form Eqs. (14) and (15), it is clear that the phase velocities of quasi-transverse waves (qSV and qSH) are not 

identical in the case of triclinic medium. 

For isotropic case 
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where  and   are Lame’s constants for the isotropic medium, all other elastic constants are zero.  

Substituting Eq. (17) in Eqs. (13), (14) and (15), we have 
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The wave propagation is along x 3
 axis, so there will be no components along x 2 axis. 

Unit propagation vector becomes  p 0,0,1 ,  i.e.    n n
p p2 3 10,       

  
 

Using above values of S, Q, R, W in Eq. (12) and 
     n n

p p
2 2

3 2 1   

We get  
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 
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Substituting the above parameters in Eqs. (13), (14) and (15), we obtained the expression for the compressible 

wave velocity 
Lc  and same value for the repeated roots for shear wave velocities (i.e. 

SVc  and 
SHc ) as: 

 

L

SV

SH

c

c

c

2

2

2

2
,

,

.




 











  
  

 

 
  

 

 
  
 

 (18) 

3    SOLUTION OF THE PROBLEM  

Consider X 3 - axis along the interface of two half-spaces. The lower half-space is of triclinic nature and the upper 

half-space is isotropic homogeneous liquid medium. The elastic constants of the lower medium are given in Eq. (1) 

and the density is 
 
occupying the region X 2 0  (lower medium). The homogenous liquid half-space with Lame’s 

constants  and  (where 0  ), density  is occupying the region X 2 0 (upper medium). The X 2 -axis is 

directed vertically downwards (Fig.1.) A quasi-P wave is incident on the interface at X 2 0 will generate reflected 

qP, reflected qSV, reflected qSH waves and also refracted P wave, as shown in Fig.1. Form Eqs. (4a), (4b) and (4c), 

it is inferred that all the displacement components are coupled for triclinic medium. Assuming n=0, 1, 2, 3, 4 for the 

incident qP wave, reflected qP, reflected qSV, reflected qSH, refracted P waves respectively. The angle made by 

incident qP wave, reflected qP, reflected qSV, reflected qSH, refracted P waves with the normal to the interface are 

0 1 2 3, , ,     and 4 respectively. 

For incident qP wave (n=0):    0 0

2 3 Lp p c c
0 0 0cos , sin , .    

 

For reflected qP wave (n=1): 
   1 1

2 3 Lp p c c
1 1 1 1cos , sin , .     

For reflected qSV wave (n=2): 
   2 2

2 3 Tp p c c
2 2 2cos , sin , .     

For reflected qSH wave (n=3):    3 3

2 3 Tp p c c
3 3 3 1cos , sin , .     

For refracted P wave (n=4):    4 4

2 3
d d

4 4
cos , sin ,   

   4 4

2 3 Lp p c c4 4 4cos , sin , .


 



    


 

where L L T T
c c c c

1 1
, , ,  and Lc  are the phase velocities of the incident qP, reflected qP, reflected qSV, reflected 

qSH, refracted P waves, respectively. 

In the plane X 2 0, the displacements and stresses of incident, reflected waves may be expressed as follows: 



Wave Reflection and Refraction at the Interface….                               924 

 

© 2019 IAU, Arak Branch 

n

n n

j n j iu A d( ) ( )
exp( ),  for  j=1,2,3.
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n

n n n
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n n n

n

n n n

i
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R ik A

( )

12

( )

22

( )

23

exp( )
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exp( )

,

,

.



















 
(19) 

 

where 

 
    n n n

k x x c t
n n

2 2 3 3
p p ,     for  n=0,1,2,3. (20) 

 

Thus for n 0, 1, 2, 3 = .  
 

 n n n n n n n n n n n n

nP C p d C p d C p d p d C p d C p d( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

26 2 2 36 3 3 46 3 2 2 3 56 3 1 66 2 1 ,       (21) 

 

 n n n n n n n n n n n n

nQ C p d C p d C p d p d C p d C p d( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

22 2 2 23 3 3 24 3 2 2 3 25 3 1 26 2 1 ,       (22) 

 

 n n n n n n n n n n n n

nR C p d C p d C p d p d C p d C p d( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

24 2 2 34 3 3 44 3 2 2 3 45 3 1 46 2 1 ,       (23) 

 

For the refracted waves in liquid medium we have 0.  In the plane X
2

0, the displacements and stresses of 

the refracted waves may be expressed as follows: 

 

n

n

n n
nj j i

u

u A d

( )
1

( ) ( )
2,3for j = .

0

exp( )

,

,




 (24) 

 

n

n

n
n n n

n

iQ ik A

( )
12

( )
22

( )
23

exp( )

0,

,

0.















 (25) 

 

and 

 

 
n

n n n n
n

n

P

Q p d p d

R

( ) ( ) ( ) ( )
2 2 3 3

0,

0.

,



 



 (26) 

 

where, 

 
    n n nk x x c t
n n

2 2 3 3p p ,     for  n=4.  

4    BOUNDARY CONDITIONS  

The boundary conditions at the interface  x 2 0 are 

 

u u u u u(0) (1) (2) (3) (4)
2 2 2 2 2 ,     (27) 
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u u u u u(0) (1) (2) (3) (4)
3 3 3 3 3 ,     (28) 

 
(0) (1) (2) (3) (4)
22 22 22 22 22 ,         (29) 

 
(0) (1) (2) (3)
23 23 23 23 0.        (30) 

 

From the boundary conditions (27) to (30) and Eqs. (19) to (26), we get  

 

i i i i iA d A d A d A d A d
0 1 2 3 4

(0) (1) (2) (3) (4)

0 2 1 2 2 2 3 2 4 2exp exp exp exp exp( ) ( ) ( ) ( ) ( ),         (31) 

 

i i i i iA d A d A d A d A d
0 1 2 3 4

(0) (1) (2) (3) (4)

0 3 1 3 2 3 3 3 4 3exp( ) exp( ) exp( ) exp( ) exp( ),         (32) 

 

i i i i iQ k A Q k A Q k A Q k A Q k A
0 1 2 3 40 0 0 1 1 1 2 2 2 3 3 3 4 4 4exp( ) exp( ) exp( ) exp( ) exp( ),         (33) 

    

and  

 

i i i iR k A R k A R k A R k A
0 1 2 30 0 0 1 1 1 2 2 2 3 3 3exp( ) exp( ) exp( ) exp( ) 0.        (34) 

 

The above equations are valid for all values of X3 and t, therefore we have 

 

0 1 2 3 4.          

       

or we can write 

 

   

   

 

L L

T T

L

k x x c t k x x c t

k x x c t k x x c t

k x x c t

0 2 0 3 0 1 2 1 3 1 1

2 2 2 3 2 3 2 3 3 3 1

4 2 4 3 4

cos sin cos sin

cos sin cos sin

cos sin .

   

   

 

      

     

  

 
(35a) 

 

At the interface we get from Eq. (35a) 

 

       

 
L TL T

L

k x c t k x c t k x c t k x c t

k x c t

0 1 2 3

4

0 3 1 3 1 2 3 3 3 1

4 3

sin sin sin sin

sin

   



       

 

 
(35b) 

 

which gives 

 

L T LL Tk c k c k c k c k c0 1 1 2 3 1 4 ,      (36) 

 

and 

 

k k k k k
0 0 1 1 2 2 3 3 4 4
sin sin sin sin sin           (37) 

 

where k  and   are the apparent wave number and circular frequency, respectively. Displacement and traction are 

continuous along the interface x 2 0 . We must relax the condition for continuity of displacement for qSH waves as 

the upper medium has no effect of SH wave. The only boundary condition of the traction may be considered. This 

traction condition leads to A A3 0 form Eq. (34), as: 

 

A A A
e e

A e A A

3 1 2

1 2

0 3 0 0

1
1
 

   
 

 (38) 
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where  

 

i i i

i i

R k R
e R

R k C0 0 44

, ,  for i 1, 2,3.  (39) 

 

Now substituting Eq. (38) in Eqs. (31), (32) and (33) we get 

 

d

e d

A d e d A d e d A d

A e A e Ad d d d d
3

(3) (1) (3) (2) (3) (4)

2 1 2 1 2 2 2 2 2 4 2

(0) (0) (0) (0) (0) (0)

0 3 0 3 02 2 2 2 2 2

1
1
     

         
     

 (40) 

 

d d d d d dA e A e A

e A e A e Ad d d d d d

(3) (1) (3) (2) (3) (4)

3 3 3 3 3 31 1 2 2 4

(0) (0) (0) (0) (0) (0)

3 0 3 0 3 03 3 3 3 3 3

1
1
     
          

     
 (41) 

 

and  

 

f A e A e A
f f f f f

e A e A e A
3 1 1 2 2 4

1 3 2 3 4

3 0 3 0 3 0

.1
     
     
          
       (42) 

 

where i i i

i i

Q k Q
f Q

Q k C0 0 44

 ,,  for i=1,2,3,4,

 

and the values of i
e can be obtained from Eq. (39). 

The amplitude ratios of reflected qP, qSV and qSV waves and refracted (transmitted) P waves are denoted by 

AA A

A A A

31 2

0 0 0

, ,

 

and 

 

A

A

4

0

. Solving the Eqs. (40) to (42), we get 

 

i iA D
i

A D0 0

1, 2, 4, ( )   (43) 

 

where  

 

a a a

D b b b

c c c

1 2 3

0 1 2 3

1 2 3

  (44) 

 

and the determinant  iD i 1,2,4 can be obtained by replacing all three elements of the thi column of D0  by a b0 0,  

and c0  respectively.  

The values of i i i i i i ia b c i e R i f Q ifor 0,1,2,3 for 1,2,3 and for 1,2,3,4, , ( ) , ( ) , ( )   are given in Appendix B.  

The amplitude ratio A A3 0/ (for the reflected SH wave) may be obtained from Eq. (38).   

5    PARTICULAR CASES   

Case 1  

When the lower medium is isotropic, the elastic parameters are taken as   and 
 
and the density is  . For the 

isotropic medium the polarization vectors and phase velocities are given in the following Table 1. 
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Table 1 

Polarization vectors and phase velocities of incident and reflected waves. 

          Wave type                                       Polarization vector                                Phase velocity 

For incident P wave (n=0)                 d d d0 0

(0) (0) (0)
1 2 3

0, cos , sin    
                

Lc c0

2 




   

For reflected P wave (n=1)                d d d1 1

(1) (1) (1)
1 2 3

0, cos , sin   
                

Lc c1 1

2 




   

For reflected SV wave (n=2)              d d d2 2

(2) (2) (2)
1 2 3

0, cos , sin   
                 

Tc c2




   

For reflected SH waves (n=3)            d d d3 3

(3) (3) (3)
1 2 3

0, cos , sin   
                 

Tc c3 1




   

  

Hence from Eqs. (36) and (37), we get k k k k 0 1 2 30 1 2 3 and , .,       
 

For incident qP wave (n=0): 
   0 0

2 3 Lp p c c0 0 0cos sin, , .     

For reflected qP wave (n=1): 
   1 1

2 3 Lp p c c1 1 1 1cos sin, , .     

For reflected qSV wave (n=2): 
   2 2

2 3 Tp p c c2 2 2cos sin, , .     

For reflected qSH wave (n=3):    3 3

2 3 Tp p c c3 3 3 1cos sin, , .     

For refracted P wave (n=4):        4 4

2 3

4 4

L2 3d d p p c c4 4 4 4 4cos , sin , cos , sin , .   



     


 


 

In this case, qSH and qSV waves in the lower medium coincide with SV wave. Thus incident wave will generate 

reflected P wave, reflected SV wave and refracted P wave only. So, by using Eqs. (40), (41) and (42) and above 

values of  
     i i i

1 2 3p p p, , and 
     i i i

1 2 3d d d, ,  for i=0,1,2,3,4 and considering Q Q4 4 , for liquid medium, we get 

the following: 

 

 

 

T

L

T

L

L

c
A A A

c

c
A A A

c

c
A A

01
0 1 0 3 4 4

3

01
0 1 0 3 4 4

3

2 2
0 3 0 3

0 12 2
3 30 0

sin 2
cos cos cos 0,

sin 2

sin 2
sin sin sin 0,

sin 2

sin 2 2 cos sin 2 2 cos
1 1

sin 2 sin 22 cos 2 cos


  




  



       

      

  
 
  

  
 
  

   
   
      

   

   

 
   

  L

A
c

42
0

0.
2 cos

 

  




 

 
(45) 

 

where 

 

i i i

i i

R k R
e R

R k C0 0 44

, ,  for  i i i

i i

Q k Q
i f Q

Q k C0 0 44

1, 2,3, , ,    for  i 1,2,3,4  and 
R Q

R Q
C C

0 0

0 0

44 44

, .    

 

Eq. (45) may be written as: 

 

T T

L

T

L

L

L

c c

c
A

c
A A

c
A

c

c

01 1
0 3 4 0

3

1

01
0 3 4 2 0

3
4

2
0 3

2 2
3 0 0

sin 2
cos cos 0 cos cos

sin 2

sin 2
sin sin 0 sin

sin 2

sin 2 2 cos
1 0

sin 2 2 cos 2 cos


   




  



     

      

  
     
   
    
     
    

   
      

    

  

 
 

 

L

T

L

c

c

c

0
3

3

01
0 3

3

2
0 3

2
3 0

sin 2
cos

sin 2

sin 2
sin sin

sin 2

sin 2 2 cos
1

sin 2 2 cos







 



   

   

  
     
 

  
   
  

  
      

 


 



 

(46) 
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Case 2  

Consider the case of normal incidence, which is defined by 0 0.   

Thus from Eq. (46), we get 

 

L

L

c

c

A

A A

A

4

14

2 0

3

11 cos

sin

1
1

2

0

0 0 0

0





 

 














 
 

   
 

   
     
 

      
  

            

A
2

0.   

 

Then from the remaining equations we get 

 

L

L

L L

L L

c

A A c

c cA A

c c

A A A
e e e

A AA

4

4 1

0 0
4 4

3 1 2
1 2 3

0 00

cos
22

, , 1 .

cos cos
2 2

 


 

   
 

   




 
    

  
  

     (47) 

6    NUMERICAL EXAMPLES AND DISCUSSION  

Numerical calculations have been performed using data of Vosges sandstone material which exhibits triclinic 

anisotropy [1]. The elastic constants of Vosges sandstone are: 

 

C11 = 16.248 GPa, C22 = 11.88 GPa, C33 = 12.216 GPa, C12 = 1.48 GPa, C13 = 2.4 GPa, C14 = −1.152 GPa, 

C15 = 0.0 GPa,C16 = −0.561 GPa, C23 = 1.032 GPa, C24 = 0.912 GPa, C25 = 1.608 GPa,C26 = 1.248 GPa,  

C34 = −0.6724 GPa, C35 = 0.216 GPa, C36 = −0.216 GPa,C44 = 5.64 GPa, C45 = 2.16 GPa, C46 = 0.0 GPa,  
C55 = 5.88 GPa,C66 = 6.912 GPa, C56 = 0.0 GPa, ρ= 2.40 g/cm

3
. 

 

 

The upper layer is isotropic homogeneous liquid medium having Lame’s constants 1.5 0,    

and 31.23 g/cm=  . The amplitude ratios for the reflected qP, qSV, qSH waves and refracted qP wave have been 

computed and depicted by means of graphs. Figs. 2 to 4 represent the variation in reflection coefficients of qP, qSV 

and qSH waves with respect to incident angle ranging from to0 60
 

, whereas the variation in refraction coefficient 

with respect to incident angle is represented by Fig. 5. 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Variation of  A A1 0/  with the angle of incidence due to 

incident qP waves. 

 

Fig. 2 shows the variation of the reflection coefficient ( PPR A A1 0/ ) of an incident qP wave reflected as 

another qP wave. The coefficient Rpp increase with increment in incidence angle. A significant increment in Rpp 

can be observed when the angle increases from 35
0 
to 52

0
.
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Fig.3 

Variation of A A2 0/  with the angle of incidence due to 

incident qP waves. 

 

 

Fig.3 represents the variation of the reflection coefficient (
PSVR A A2 0/ ) of an incident qP wave reflected as 

qSV wave. The coefficient RPSV increases for the incidence angle from 0
0
 to 35

0
 but decreases for 35

0 
and onwards. 

Particularly the increment from 11
0
 to 35

0
 is very rapid in compare to the initial increment. The incident angle 35

0
 

may be considered as the critical point of the graph as the nature of curve reverses after this value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Variation of  A A3 0/  with the angle of incidence due to 

incident qP waves. 

 

Fig. 4 shows the variation of the reflection coefficient (
PSHR A A3 0/ ) of an incident qP wave reflected as qSH 

wave. Very small change in RPSH can be observed when the angle of incidence (θ) lies between 0
0
 and 10

0
. The value 

of RPSH decreases continuously from 11
0 

to 34
0
 and then increases sharply from 35

0
 to 40

0
. RPSH increases gradually 

from 40
0
 to 57

0
 but after 57

0
 a rapid increase can be observed. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Variation of  A A4 0/  with the angle of incidence due to 

incident qP waves. 
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 Fig. 5 shows the variation of the refraction coefficient ( PP
T A A

4 0
/ ) of an incident qP wave refracted as qP 

wave. The values of the refracted coefficient Tpp increases steadily as the angles of incidence (θ) lie between 0
0
 and 

13
0
. The values increase sharply from 13

0
 to 15

0
. The refracted coefficient Tpp increases uniformly as the incidence 

angle increases between 15
0
 and

 
43

0
 but from 43

0
 and onwards the values increases at a high rate. 

7    CONCLUSIONS 

The reflection and refraction phenomenon of plane wave at the interface of an isotropic liquid medium and a 

triclinic (anisotropic) half-space has been studied. Phase velocities have been obtained for all three waves generated 

by incident plane qP wave. Expressions for reflection coefficients of qP, qSV, qSH waves and refracted qP wave 

have been obtained. More precisely the outcomes of the present study may be concluded as:  

At the smooth interface between triclinic and homogeneous media, the displacement components and stress 

components, aligned to the direction of wave propagation are consistent.  

The amplitude ratios of reflected qP and refracted P waves have incremental variation with respect to incident 

angle.  

The variation in amplitude ratios of reflected qSV wave and reflected qSH wave are almost opposite to each 

other. In particular the amplitude ratio of reflected qSV waves increases up to a certain value of incident angle and 

decreases onward, whereas the amplitude ratio of reflected qSH waves decreases initially and then rises afterwards.
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    
      

         

    
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 
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  
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  

   

 

         n n n n
W C p C p p C p

2 2

33 3 34 2 3 44 22 .    
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d d e d d e d d
a a a a

e e ed d d d d d

d d d d de e
b b b

e e ed d d d d

(3) (1) (3) (2) (3) (4)

2 2 1 2 2 2 2 2

0 1 2 3(0) (0) (0) (0) (0) (0)

3 3 32 2 2 2 2 2

(3) (1) (3) (2) (3)

3 3 3 3 31 2

0 1 2(0) (0) (0) (0) (0)

3 3 33 3 3 3 3

1
1

1
1
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     
             

     

   
         

   
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i i ii

R k R Q k Q
R f Q for i

R k C Q k C

d
b

d

f e e
c c f f c f f c f

e e e

e
0 0 44 0 0 44

(4)
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