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 ABSTRACT 

 According to the great importance of safety in aerospace industries, 

identification of dynamic parameters of related equipment by 

experimental tests in operating conditions has been in focus. Due to 

the existence of noise sources in these conditions the probability of 

fault occurrence may increases. This study investigates the effects of 

noise in the process of modal parameters identification by Output 

only Modal Analysis (OMA) method using Singular Value 

Decomposition (SVD) algorithm. The study case is the horizontal 

tailplane of the aircraft; therefore, at first, the modal parameters of 

the tailplane are obtained numerically. Then a cantilever beam is 

used to perform experimental tests with regard to the high aspect 

ratio of the modeled tailplane. The modal parameters of the beam are 

obtained nonparametrically by Experimental Modal Analysis (EMA) 

and OMA. In order to investigate the effects of noise in a controlled 

manner, the artificial excitation namely the shaker with the random 

force is used. Then, the effects of noisy measurements on the 

specifications of the system in EMA and OMA methods are 

investigated. The results indicate that: 1. The OMA method has more 

resistance against the noise for extracting natural frequencies. 2. The 

results of the Modal Assurance Criterion (MAC) values by EMA 

method, in the condition of noise existence in output data, are worse 

than the noise existence in input data. 3. The average of MAC values 

in general condition of EMA method by noisy input & output data is 

worse than the OMA method. 

                                    © 2019 IAU, Arak Branch. All rights reserved. 

 Keywords: Output only modal analysis; Frequency domain 

decomposition; Finite element; Singular value; Noise measurement. 

1    INTRODUCTION 

 N today's industrialized world, optimum designing of the complex mechanical, civil or urban spatial structures is 

very important. The design procedures must meet the mechanical and civil engineering requirements so that the 
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final constructed structures have high strength and elasticity, and low weight [1]. Dynamic analysis is one of the 

main requirements for structural design, repair, and maintenance of structures; in this respect, different methods and 

approaches have been developed at various levels to investigate the smallest effects on the above-mentioned 

systems, even at nanoscale levels [2-9]. One of the most fundamental sections of dynamic analysis is the 

determination of the dynamic characteristics of the structures. The modal analysis methods are powerful tools to 

achieve this purpose, which are divided into two categories of experimental modal analysis and output only modal 

analysis. According to the importance of aviation and aircraft structural safety, many researchers focused on this 

subject and performed many studies regarding the modal parameters extraction [10]. Neu et al. studied the influence 

of the attack angle and the wind velocity on the modal parameters of a composite cantilever by using the OMA [11]. 

In another research they used different methods to extract the modal characteristics of a wing, which was excited by 

transonic flow in a wind tunnel; the results indicated that the stochastic subspace identification (SSI) algorithm has 

an excellent identification capability [12]. They also proposed a new algorithm in OMA that can be effective to 

identify the dynamic parameters of highly damped structures, as well as the low signal to noise ratio situations [13]. 

Jelicic et al. monitored the frequencies and damping ratios during a flight test via OMA by using the SSI and Least-

square complex frequency domain (LSCF) algorithms to extract the modal parameters [14]. Jia et al. conducted 

numerical simulation and experimental modal test on the deployable-retractable wing to identify the modal 

parameters using LMS PolyMAX solver [15]. Moaveni et al. investigated the uncertainty in three methods of OMA 

under the different conditions of uncertainty sources; the results indicated that the amplitude of stimulation has the 

most influence on modal parameters identification, especially on the natural frequencies [16]. Mellinger et al. 

developed a new method based on the variance approach to computing the uncertainty of modal parameters, which 

are identified by four different modal analysis methods consist of output only, input-output, data-driven, and 

covariance driven algorithms [17].  

However, despite all the improvements in modal analysis methods (both the EMA and the OMA), existence of 

noise in the measured data have been a great disturbance and limiting factor, which may cause some errors and 

inaccuracy of the results; this problem has prompted researchers to investigate the various aspects of noise, and 

eliminate its effects. One assumption in this regard is that the characteristics of the measurement noise are already 

known, such as the variance and the mean value; then the maximum likelihood method can be used to optimize the 

results [18]. In another technique, it is assumed that the level of noise is limited, and then the transfer function can 

be approximated by using the Markov parameters [19]. Bai and Raman estimated the real and imaginary parts of the 

transfer function separately instead of the magnitude and phase; as a result, they proposed a noise-resistant algorithm 

[20]. Other techniques were also provided, which are based on the estimation of measurement noise and using them 

to approximate the transfer function [21]. Schoukens et al. compared the performance of Taylor approximation with 

the Coherence approximation to provide a nonparametric noise model, in order to eliminate the output measurement 

noise of a linear dynamic system. The results indicated that the Taylor approximation can eliminate the leakage 

errors better than the Coherence approximation [22]. In another research, they proposed a nonparametric model for 

output measurement noise from the raw data. They succeeded in eliminating the transient portion because of their 

smooth treatment [23]. Schoukens et al. demonstrated that the frequency and time domain identifications present 

equivalent results for the finite data records in the standard conditions; they discussed the non-parametric noise 

models and explained that such models simplify the identification process in parametric plant models [24]. Juang 

and Pappa investigated the effects of noise on the process of modal parameters identification by using the 

eigensystem realization method. They utilized the singular values and modal amplitude coherence to discriminate 

the noise from the information of the system [25]. Li et al. expressed that the singular value decomposition (SVD) 

method is one of the best techniques for estimating the modal parameters from the noisy data, which can be used in 

order to separate the noise from the information of the system [26]. Dorvash and Pakzad introduced the important 

parameters which can affect the modal identification process and their effects on the accuracy of the results; they 

also identified the modal parameters of the Golden Gate Bridge by the data which were acquired by wireless sensors 

and investigated the accuracy of the results by the introduced parameters [27]. Brinker et al. proposed the Frequency 

Domain Decomposition (FDD) method to identify the modal parameters of a system, which is an OMA method and 

uses the SVD of the power spectral density (PSD) of the acquired data from the system; they expressed that the FDD 

method is able to identify the modal parameters from the data which its properties are similar to the white Gaussian 

noise [28]. This method has been developed and now is one of the conventional OMA methods [29]. 

As comprehensively explained above, several studies have performed in order to identify the modal parameters 

of aerospace equipment and structures, and also the problem of the noise existence in the measurement data has 

considered by researchers and scientists, which eventually resulted in some methods of noise elimination and 

mathematical noise models; but the great effects of noise in the process of system identification is a critical issue in 

aerospace industries and aviation safety. One of the main structural components of aircrafts is their horizontal 
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tailplane, which controls the stability of the aircrafts; accordingly, this paper investigates the effects of the 

measurement noise in the process of modal parameters identification of the horizontal tailplane of aircrafts, and 

different conditions of measurement noise in the EMA and OMA are considered and compared with each other. For 

this purpose, at first the tailplane is modeled and its modal parameters are obtained numerically. To perform the 

experimental tests, a cantilever beam is used with regard to the high aspect ratio of the modeled tailplane, and the 

modal parameters of the beam are obtained by EMA (rational fraction polynomial method) and OMA (singular 

value decomposition algorithm); the results of tests are compared with the results of theoretical and numerical 

methods, which confirmed that the tailplane can be simplified and modeled by the beam; then 15% random noise is 

added to the signals which were acquired by tests, and the effects of noisy measurement data on the specifications of 

system in EMA and OMA methods are investigated and compared with each other. 

2    NUMERICAL MODELING OF THE TAILPLANE 

Three-dimensional finite element model of the tailplane with details of its skeleton is designed by commercial 

software. By taking advantage of this model, it is possible to extract the modal parameters of the system. The model 

of tailplane is presented in Fig. 1. 

 

 

 

 

 

 

Fig.1 

Finite element model of the horizontal tailplane of an 

aircraft. 

Considering that the system will be simulated experimentally by a cantilever beam, the model of the system 

scaled to two sizes, namely the actual size of the tailplane and the laboratory size of the cantilever beam. Mechanical 

characteristics of the tailplane which is made by aluminum are presented in Table 1. 

 
Table 1 

Mechanical characteristics of the tailplane [30] 

Parts involved Density (Kg/m3) Young’s modulus (GPa) Poisson’s ratio 

shell 2800 70 0.33 

rib 2800 70 0.33 

beam 2800 70 0.33 

 
After analyzing the system, the first three natural frequencies of the actual size and the laboratory size of the 

model are presented in Table 2. 

 
Table 2 

Natural frequencies of the tailplane which are obtained by numerical method. 

 First mode (Hz) Second mode (Hz) Third mode (Hz) 

Actual size of the tailplane 14.12 56.45 116.4 

Scaled size of the tailplane 65.1 293.8 720.12 

 
The first three mode shapes of the tailplane related to its first three natural frequencies are presented in Fig. 2. It 

should be noted that the mode shapes of the actual size of the model are similar to the laboratory size. 

 

 

 

 

 

 

Fig.2 

First three mode shapes of the tailplane which are obtained 

by numerical method. 
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3    MATERIAL AND METHODS 

The first step in the nonparametric methods of EMA is obtaining the frequency response function (FRF), which can 

be achieved by applying specific input excitation signals to the system and measuring the output response signals, 

and then post-processing the acquired data.  

In order to stimulate the all vibrational modes of a system, a specific excitation force should be used, which 

involves all the frequencies of the desired frequency range. For this purpose, and in order to simulate the noise and 

investigate its effects, the random force is used in this study; on the other hand, researchers have shown that the 

correlation function of random and noisy data can improve the accuracy of the results instead of using the data itself 

[31]. The correlation function shows the similarity between the signals in specific time periods; the correlation of a 

random wave has a small amount at each moment because the signal is changing at any moment with regard to its 

nature. The relation between the input and output random signals in the time domain can be represented as [32]: 

 

     R h t R
yy xx

    (1) 

 

In this equation the asterisk (*) indicates the convolution of  h t  and  R
xx

 , the  h t  is the response 

function in the time domain,  R
xx

  and  R
yy

  are autocorrelation of the input and the output signals 

respectively, and are represented by following relations: 

 

      R E x t x t
xx

     (2) 

 

      yyR E y t y t     (3) 

 

Eq. (1) can be converted to the following equation by applying Fourier transform on it. 

 

     G H G
yy xx

.    (4) 

 

where  G
xx

  and  G
yy

  are PSD matrixes of the input and output signals respectively, which can be 

achieved by Eqs. (5) and (6). 
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xx xx


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
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Finally, the FRF can be obtained by Eq. (7). 

 

 
 

 

G
yy

H
G

xx







 (7) 

 

This relation plays a key role in most of EMA methods. After obtaining the FRFs, various methods can be used 

to estimate the modal parameters; in this essay, the rational fraction polynomial method (RFP) [33] is employed and 

the natural frequencies and the mode shapes of the system are extracted, which are presented in the following 

sections.  
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Unlike the process of EMA, in the process of OMA, only the measured output response signals can be used to 

extract the modal parameters. The procedure of nonparametric methods of OMA which are based on the SVD 

algorithm is as follows [29]:  

1. Measuring the output response signals. 

2. Calculating the PSD of the response signals. 

3. Applying the SVD on the response PSD. 

4. Extracting the mode shapes and natural frequencies. 

As mentioned in the introduction, if the excitation force has the characteristics similar to the white Gaussian 

noise, the excitation PSD will be in the form of    xxG C I , accordingly, it can be proved that just some limited 

modes participate in the response at each frequency. Around the natural frequencies, only one mode plays a role in 

the response of the system, therefore, the response at this frequency will be very similar to the mode shape of the 

related frequency. 

Based on mentioned points, the response PSD matrix yyG  in Eq. (4) can be decomposed to its singular vectors 

and singular values matrices at each frequency by using the SVD method, which is expressed in Eq. (8): 

 

     TG U S U
yy

 


  
  (8) 

 

In this equation, [U] and [S] are the singular vectors matrix, and the singular values matrix of the system 

respectively. If  yyG    is m×n matrix we have: 

 

         1 2 3        rU u u u u     (9) 
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where 

 

 r m nmin ,  (11) 

 

According to the relation between the singular values of the response PSD matrix and the vibrational modes of 

the system, the number of nonzero singular values indicates the number of vibrational modes. The frequency of the 

maximum singular values indicates the natural frequencies of the system, and the singular vectors corresponding to 

the maximum peaks of the first singular values achieve the estimation of mode shapes [34].  

4    EXPERIMENTAL MODAL ANALYSIS OF THE BEAM 

In order to investigate and verify the results of the numerical model by experimental tests, a cantilever beam is used 

which is inspired by the tailplane. In vibration analysis of the tails and wings of an aircraft, they can be taken as 

cantilever beams which are fixed at the base and does not experience any deflection in three directions of the 

coordinate system. To simulate the physical behavior of the tailplane with a beam, some prerequisites must be 

observed; therefore, the assumptions for modeling the tailplane with a beam are as follows: [35, 36] 

1. The aspect ratio of the tailplane must be high enough to be able to express the deflection of the tailplane as 

one variable function. 

2. The elastic axis of the tailplane must be straight to avoid coupling between the bending and torsional 

modes. 
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3. The ratio of thickness to chord in the cross-section of tailplane must be small to avoid bending in the 

direction of the chord. 

The above-mentioned requirements have been investigated and ensured that there is the possibility to simplify 

the tailplane to a cantilever beam, therefore, in this study an aluminum beam with the rectangular cross-section is 

used to carry out the experimental tests, which is anchored at one end by rigid components (see Fig. 3). In order to 

stimulate the beam in EMA test, a shaker is used to apply a random force with regard to the aforementioned 

requisites in material and methods section; the response of the beam is measured by three accelerometers which are 

installed to the beam. 

On the other side, in order to extract the modal parameters of the system by OMA method, one can use natural 

and environmental excitations, but in order to investigate the effects of noise in a controlled manner, and to be able 

to compare the results of EMA and OMA in the same condition, the artificial excitation namely the shaker with the 

random force is used. The sampling frequency of the applied random force is 2000 Hz with regard to the Ref. [12] 

for extracting the modal parameters in the frequency range of 0-1000 Hz. The hardware equipment of tests setup 

consists of B&K 48 N electromagnetic shaker model 4809, B&K piezo-electric accelerometer 100 mV/g sensitivity 

model 4508, B&K data acquisition model 3560C, B&K amplifier model 2706, anti-noise transfer cables. The setup 

of the laboratory beam for modal tests is presented in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

Fig.3 

Setup of the beam for modal test. 

4.1 Modal parameters extraction  

By applying auto spectral density and cross spectral density on the acquired data in the frequency domain, the FRFs 

will be obtained with regard to the mentioned points in the material and methods section. The diagrams of FRFs 

related to three accelerometers are depicted in Fig. 4(a). As previously mentioned, the modal parameters are 

extracted by the RFP method [33] through the acquired FRFs (see Table 3). In the next step, the modal parameters 

are achieved by employing the SVD algorithm using the output data. As previously noted, the singular values and 

singular vectors of the PSDs should be obtained with this technique. The diagrams of singular values are depicted in 

Fig. 4(b); the peaks of these diagrams indicate the natural frequencies of the system. It should be noted that in this 

figure each line corresponds to each accelerometer’s data. In the next section, the mode shapes of the system which 

are estimated by the singular vectors of PSD are presented.  
 

 
(a) 

 
(b) 

Fig.4 

a) Diagrams of FRFs achieved by EMA method b) Diagrams of singular values of the response PSD matrix. 

 

The obtained natural frequencies of the beam presented in Table 3. 
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Table 3 

Obtained natural frequencies for the beam. 

Mode Shape Analytical EMA OMA 

First mode 44.12 46.08 50 

Second mode 278.39 277 278 

Third mode 778 640 621 

4.2 Comparison of results  

In this section, the natural frequencies and the mode shapes which were presented in previous section are compared 

with each other. The errors of natural frequencies which obtained experimentally versus the analytical method are 

presented in Table 4. 

 
Table 4 

Errors of the natural frequencies versus the analytical method (in percent). 

Mode Shape EMA OMA Scaled tail 

First mode 4.44 13.13 47.55 

Second mode 0.5 0.14 5.5 

Third mode 17.7 20.17 7.43 

Average 7.54 11.14 20.16 

 
By considering the errors of the test’s results, it can be seen that the average percentage of errors in the OMA 

method is greater than the EMA method.  

According to the results which were obtained for the beam and the scaled tailplane, it can be observed that the 

results of scaled tailplane by the numerical method are at an acceptable level and the numerical model of the 

tailplane is validated. On the other side, in order to compare the mode shapes which are obtained by analytical and 

experimental methods, the modal assurance criterion (MAC) is used, which is defined by Eq. (12). 

 

 
   

       

T

Analytical i Experimental j

T T

Analytical i Analytical i Experimental j Experimental j

MAC i j

2

_ _

_ _ _ _

, 


 

   

 (12) 

 

 

where  
Analytical i_

  is the ith analytical mode shape, and  
Experimental j_

  is the jth experimental mode shape. 

MAC values represent the cosine of the angle between the mode shape vectors, which means if this value equals 

1, the compared mode shapes are completely similar, but if the result equals 0, there is not any similarity between 

them [37]; therefore, the MAC values are calculated for two groups of analytical and experimental mode shapes 

pairwise such that the results of OMA and EMA methods are compared with the analytical method; the results are 

depicted in Fig. 5. 

 

 
(a) 

 
(b) 

Fig.5 

Comparison of the two sets of estimated mode shapes by employing the MAC indicator a. analytical method and EMA 

method b. analytical method and OMA method. 

 

As it can be seen in Fig. 5, the diagonal values are approximately 1, and the other values are less than 0.3, which 

are at an acceptable level, furthermore, the average of MAC values are presented in Table 5., which indicate that the 
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mode shapes which are estimated by EMA method are more accurate than those which are estimated by OMA 

method. 

 
Table 5 

The average of MAC values in different conditions without any noise. 

Mode Shape EMA OMA 

Diagonal values 0.987 0.9555 

Non-Diagonal values 0.074 0.209 

4.3 Noise effects on modal parameters  

In practice, based on the quality of the setup or environmental conditions, the data of the tests contain some noise, so 

the input excitation or output response signals or both of them may be noisy; accordingly, the effects of noisy 

signals on the results is investigated in the following sections. For this purpose, firstly, it is described how to deal 

with this problem theoretically, and then 15% random noise is produced by coding and it is added to the input and 

output signals at each step by using Eq. (13). 

 

 S gN S C N *  1   *     (13) 

 

where 
SN is the noisy input or output signal, 

gS is the input or output signal without any noise, C is the noise 

coefficient and N is the noise signal. 

4.4 EMA method by noisy data  

For the case of noisy output, it is assumed that there is not any noise in the input, and the noise in output has not any 

correlation with input, then the response will consist of the genuine response with regard to the force inputs and the 

noise as [1]: 

 

          
L P LL P

y ω H x N
1 1 1  
       (14) 

 

where  y ω  is the response of the system,  x  is the exciting force,  H  is the FRF,  N  is the noise in 

output, L is the number of response points and P is the number of excitation points.  

Multiplying both sides of the Eq. (14) by   
H

x  , which is the Hermitian transpose of the exciting force 

vector, results in the estimation of the FRF matrix: 

 

     yx xxL P P PL P
H G G

1

1



 
            (15) 

 

Based on the above theory, 15% random noise is added to the output signal, then the analysis of EMA method is 

performed again and the FRFs are extracted. In Fig. 6(a) the diagrams of FRFs related to three accelerometers are 

depicted. The obtained natural frequencies are presented in the following sections. 

For the case of noisy input, similar to the previous section, it is assumed that there is not any noise in output, and 

the noise in input has not any correlation with the output. The input and output spectra follow: 

 

          
L P LL P

y ω H x M
1 1 1  
       (16) 

 

where  M   is the noise in the input. Multiplying both sides of the Eq. (16) by  
H

y ω   , which is the Hermitian 

transpose of the response, results in: 

 

     
L PL L

y xy
P L

yG H   G
 

             (17) 
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which yields the new estimate of the FRF matrix as:  

 

     yy xyL P L LL P
H G G

1

2




 
              (18) 

 

This solution is correct, only when the inverse of  xyG   exists. When the number of excitation points (P) is 

less than the response points (L), the inverse of  xyG  does not exist. A pseudo-inverse has to be used to derive the 

FRF matrix. 

Just like the previous step, 15% random noise is added to the input signal, then the analysis of EMA method is 

performed again and the FRFs are extracted. In Fig.6(b) the diagrams of FRFs related to three accelerometers are 

depicted. The obtained natural frequencies are presented in the following sections. 

In the worst case, if both input and output signals are noisy, the reasonable way to find the estimate of FRF is the 

geometrical average of  H1[ ]  and  H 2[ ] , which can be defined as: 

 

     
 

 
yy

xx

G
H H H

G
1 23  


  


 (19) 

 

For investigating the noise effects in this condition, after adding 15% random noise to the input and output 

signals, the diagrams of FRFs are extracted. In Fig. 6(c) the diagrams of FRFs related to three accelerometers are 

depicted. The obtained natural frequencies are presented in the following sections.  

4.5 OMA method by noisy data   

The only condition that should be investigated in the OMA method is the effects of noisy output on modal 

parameters identification. Just like the previous section, 15% random noise is added to the output signal and then the 

diagrams of singular values is extracted, which are depicted in Fig. 6(d). 

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

Fig.6 

Diagrams of noisy data in frequency domain a. FRFs achieved by EMA method in the case of noisy output b. FRFs achieved 

by EMA method in the case of noisy input. c. FRFs achieved by EMA method in the case of noisy input and output d. singular 

values in the case of noisy output. 
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The natural frequencies which are obtained from EMA and OMA methods with noisy data in different conditions 

are listed in Table 6. 
 

Table 6 

Natural frequencies obtained from EMA and OMA modal analysis methods with noisy data. 

 Mode Shape 
EMA by the noisy 

input 

EMA by the noisy 

output 

EMA by the noisy input 

& output 

OMA by the noisy 

output 

First mode 46 46.08 47.08 50.25 

Second mode 277 277 270.8 279 

Third mode 642 641.5 632.1 621 

 
It is observed that adding noise in the measurement data results in the reduction of the accuracy of estimated 

natural frequencies. For further investigation, the increasing of errors in the estimated natural frequencies values 

with noisy data is evaluated in different conditions. The results are presented in Table 7. 

 
Table 7 

The error values of natural frequencies estimated by noisy data in different conditions (in percent). 

Mode Shape 
EMA by the noisy 

input 

EMA by the noisy 

output 

EMA by the noisy input 

& output 

OMA by the noisy 

output 

First mode 4.26 4.44 6.7 13.9 

Second mode 0.5 0.5 8 0.2 

Third mode 17.48 17.48 18.75 20.17 

Average 7.41 7.47 11.15 11.42 

 
Investigating and comparing of calculated errors in different conditions of measurement noise with respect to the 

values of Table 4., demonstrates that the error values in EMA by noisy input and EMA by noisy output is negligible, 

but in the case of EMA by noisy input and output, the average error increases about 4%; on the other side, the 

increasing of errors in OMA by noisy output is inconsiderable. The comparison of the mode shapes by MAC 

indicator are presented in Fig. 7.  

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

Fig.7 

Comparison of the two sets of estimated mode shapes by employing the MAC indicator a. analytical method and the EMA 

method by noisy output b. analytical method and the EMA method by noisy input c. analytical method and the EMA method 

by noisy input and output d. analytical method and OMA method by the noisy output. 
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By analyzing the average of MAC values which are presented in Table 8., it is observed that the accuracy of 

mode shapes which are obtained by EMA method with noisy input and output reduced considerably, whereas in the 

case of OMA method by noisy output, the mode shapes affected far fewer. Therefore, it can be concluded that if a 

system is tested in a high noise environment, using the OMA method will lead into the more accurate results. 
 

Table 8 

The average values of the MAC estimated by noisy data in different conditions.  

Mode Shape 
EMA by the noisy 

input 

EMA by the noisy 

output 

EMA by the noisy input 

& output 

OMA by the noisy 

output 

Diagonal values 0.9124 0.902 0.8664 0.8964 

Non-Diagonal values 0.2127 0.237 0.37 0.284 

5    CONCLUSIONS 

In this study, the effects of measurement noise on the process of modal parameters identification of the horizontal 

tailplane of aircraft using the singular value decomposition algorithm were investigated, and the findings were:  

a) Increase rate of errors of obtained natural frequencies by OMA method was less than EMA method.  

b) The obtained MAC values by EMA method, in the condition of noise existence in output data, were worse 

than the noise existence in input data, while the noise effects were almost negligible on obtained natural 

frequencies, in associated conditions. 

c) The average of MAC values in general condition of EMA method by noisy input & output data was worse 

than the OMA method. 
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