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 ABSTRACT 

 Vibration response of a two-dimensional magneto-electro-elastic plate 

is investigated in this paper. The considered multi-phase plate is 

rectangular and simply-supported resting on an elastic foundation. The 

plate is under aerodynamic pressure and subjected to temperature 

change. It is also assumed that the magneto-electro-elastic body is 

poled along the z direction and subjected to electric and magnetic 

potentials between the upper and lower surfaces. The nonlinear 

vibrational analysis of the described plate is considered as an 

innovation of the present paper, which had not been done before. To 

model this problem, third-order shear deformation theory along with 

Gauss’s laws for electrostatics and magnetostatics, first-order piston 

theory, and Galerkin and multiple times scale methods are used. After 

validating the presented method, effects of several parameters on the 

natural frequency, time history, backbone curve, and phase plane 

diagram of this smart composite plate are obtained. It is found that for 

plates with constant a/h ratio, electric and magnetic potentials have 

noticeable effects on the time histories, phase plane diagrams and 

backbone curves of the plates with smaller thicknesses. In addition, the 

numerical results of this research indicate that some parameters have 

considerable effect on the vibration behavior of presented plate. Elastic 

parameters of the foundation, applied electric and magnetic potentials, 

and environment temperature are important parameters in this analysis. 

                                     © 2021 IAU, Arak Branch. All rights reserved. 

 Keywords: Magneto-electro-elastic; Two-dimensional plate; Third-

order plate theory; Nonlinear vibration; Aerodynamic loading.  

1    INTRODUCTION 

 HE piezoelectric materials show coupling between mechanical and electrical fields whereas the piezomagnetic 

materials show coupling between mechanical and magnetic fields. However, Magneto-Electro-Elastic (MEE) 
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composites made with piezoelectric and piezomagnetic phases not only have the piezoelectric and piezomagnetic 

properties, but also exhibit magnetoelectric (ME) coupling effect which is not present in its constituents, which is 

why these materials have found a large application as sensors and actuators, medical ultrasonic imaging, etc. [1]. 

Pan [2] studied multilayered MEE plates analytically for the first time. Pan and Heyliger [3] determined the free 

vibration response of this smart plate. Ebrahimi et al. [4] presented a shear deformable plate model for free vibration 

analysis of FG MEE plates. Jiang and Heyliger [5] used a semi-analytical approach to evaluate thickness effects in 

the free vibration of laminated MEE plates under various lateral boundary conditions. Vinyas and Kattimani [6] 

studied the effect of hygrothermal environment on the free vibration characteristics of MEE plates based on a 

higher-order finite element method (FEM). Vinyas et al. [7] presented a TSDT-based FE model to study the free 

vibration behaviour of circular and annular MEE plates. Free vibration response of skew MEE plates using a third-

order shear deformation plate theory (TSDT)-based FE model has also been studied [8]. Vinyas [9] evaluated the 

effect of active constrained layer damping on the linear frequency response of skew MEE plates based on a three-

dimensional (3D) FE formulation. Zhou et al. [10] presented a cell-based smoothed FE model to simulate the 

transient responses of MEE structures. Daga et al. [1] studied the harmonic response of three-phase MEE beam 

under mechanical, electrical, and magnetic loads based on a FEM. Shooshtari and Razavi [11] obtained the vibration 

response of a MEE plate subjected to harmonic forces. Zhang et al. [12] presented closed-form solutions for 

vibrations of a MEE beam with variable cross section based on Timoshenko beam theory. MEE nano-structures 

have also been studied and their dynamic responses have been obtained. Mohammadimehr et al. [13] obtained the 

free vibration response of MEE curved panels reinforced by carbon nanotubes (CNTs) based on the first order shear 

deformation theory (FSDT). Kiani et al. [14] carried out the vibration response of MEE nanoplate made of 

functionally graded materials based on TSDT. Farajpour et al. [15] presented a scale-dependent continuum model to 

investigate the effect of initial in-plane edge displacement on the nonlinear vibration of MEE nanofilms. Vinyas [16] 

analyzed the free vibration of carbon nanotube-reinforced MEE plates based on a higher-order FEM. Xue et al. [17] 

obtained an analytical expression for the large deflection of a MEE thin plate for the first time. Razavi and 

Shooshtari [18] and Shooshtari and Razavi [19] studied the nonlinear vibrations of MEE rectangular plate and 

doubly-curved shell, respectively, for the first time. Shabanpour et al. [20] presented a nonlinear analytical model 

for the transverse vibration of laminated MEE plate based on the TSDT. Ansari et al. [21] used variational 

differential quadrature (VDQ) method to investigate the nonlinear free vibrations MEE plates under thermal 

environment.  

Thin-walled structures are widely used in various branches of engineering, in particular in the aerospace 

industry. Therefore, one of the key factors in the design of these structures is the aerodynamic considerations. So, 

reliable mathematical modeling is crucial for understanding such phenomena and aiding aerospace structural design. 

Responses of thin-walled isotropic and composite structures subjected to aerodynamic loading have been discussed 

extensively. Carrera and Zappino [22] investigated the aeroelastic behaviour of pinched plates in supersonic flow 

changing with altitude by a finite number of points. Zhao and Zhang [23] presented the analysis of the nonlinear 

dynamics for a composite laminated cantilever rectangular plate subjected to the supersonic flow and the in-plane 

excitations using the third-order piston theory. Meijer and Dala [24] developed an aeroelastic prediction framework 

for cantilevered plates in supersonic flow using local piston theory and quasi-steady aerodynamic methodology and 

obtained good accuracy of flutter prediction at significantly reduced computation times. Chen et al. [25] carried out 

numerical simulations on the post-flutter response of a flexible cantilever plate by establishing a nonlinear 

aeroelastic model. Eugeni et al. [26] studied a nonlinear elastic plate in a supersonic unsteady flow forced by a 

dynamic excitation and a biaxial compressive load by using the piston theory including nonlinearities up to the third 

order. Pacheco et al. [27] employed a more realistic model for FE analysis of fluttering plates reinforced by flexible 

beams using the Mindlin and linear piston theories. Smart structures have also been studied and their responses to 

aerodynamic and electromagnetic loadings have been determined. Raja et al. [28] used multilayer piezoelectric 

actuators and sensors for constructing a linear quadratic Gaussian controller to suppress the flutter of a composite 

plate. Song and Li [29] studied the active aeroelastic flutter analysis and vibration control at the flutter bounds of the 

supersonic composite laminated plates with the piezoelectric patches using the supersonic piston theory. Makihara 

and Shimose [30] studied the harvesting of electrical energy generated from the flutter phenomenon of a plate wing. 

Leão et al. [31] investigated the possibility of increasing the supersonic flutter boundary of a composite flat panel by 

applying a multimode shunted piezoceramic in series topology. Lu et al. [32] introduced a nonlinear partial 

differential equation for the dynamic analysis of a cantilevered piezoelectric laminated composite plate, under the 

combined action of aerodynamic load and piezoelectric excitation. The static stability of a thin plate in axial 

subsonic airflow has also been studied [33]. Song et al. [34] presented a new active flutter control method which 

suppresses the flutter effectively and without affecting the natural frequency of the structural system based on the 

Kirchhoff plate theory and supersonic piston theory. Kelkar et al. [35] presented a concept for energy harvesting 

https://www.sciencedirect.com/topics/engineering/free-vibration
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system that uses free-play induced limit cycle oscillations as the energy resource and magnetostrictive device that 

can harness that energy in a 2-D aeroelastic system. The effects of the pseudo-elastic hysteresis of shape memory 

alloy springs on the aeroelastic behaviour of a typical airfoil section for different sets of alloy constitutive properties 

have also been investigated [36-38]. Rafiee et al. [39 and 40] studied nonlinear free and forced vibration of a 

piezoelectric composite shell under thermo-electro-aerodynamic loading. In numerous papers, Arefi and Zenkour 

[41-45] investigated thermo-electro-mechanical behavior of nonoplate using different theories in different 

conditions. Also, Arefi et al. [46] studied vibration nonlocal analysis of an elastic three-layered nanoplate with 

exponentially graded graphene sheet core and piezomagnetic face-sheets on Pasternak’s foundation. They 

scrutinized the natural frequency for different side length ratio, nonlocal parameter, inhomogeneity parameter, and 

parameters of foundation numerically. In another study, Arefi and Soltan Arani [47] investigated nonlocal magneto-

electro-thermo-elastic analysis of a functionally graded nanobeam subjected to magneto-electro-elastic loads using 

third-order shear deformation theory and derived the bending results for a simply supported nanobeam in terms of 

parameters of loadings, materials, and geometries. 

To the author’s knowledge, there is not any study about the nonlinear vibration response of MEE structures 

under magneto-electro-thermo-aerodynamic loading. So, this paper intends to fill this research gap. To this end, it is 

assumed that the MEE body is poled along the z direction and subjected to electric and magnetic potentials between 

the upper and lower surfaces. To model the problem, TSDT along with Gauss’s laws for electrostatics and 

magnetostatics, first-order piston theory and Galerkin method and multiple times scale method are used. After 

validating the presented method, effects of several parameters on the nonlinear vibration response of this smart plate 

is studied. 

2    DERIVING THE EQUATION OF MOTION   

Based on Reddy's TSDT, the displacement field of a rectangular plate is expressed by [48]: 
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In which u0, v0, and w0 are the displacements of the mid-surface along x, y, and z axes, respectively, and θx and θy 

are the rotations of a transverse normal about the y and x axes, respectively (Fig. 1). 

 

 

 
 
 
 
 
 
 

 

 

 

Fig.1 

Geometry of a MEE rectangular resting on a damped 

elastic foundation.  

 

Using the above displacement field, the linear strain-displacement relations are given as below [48]: 
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(2) 

 

Assuming that the electric and magnetic fields are applied along z-direction, the constitutive equations of a 

transversely-isotropic MEE material can be written in the following form [49]: 
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(5) 

 

where {σ} and {ε} are stress and strain vectors, respectively; {D} and {B} are the electric displacement and 

magnetic flux density vectors, respectively; {E} = { ,0 0 z }
T
 and {H} = { ,0 0 z }

T
 are electric field and 

magnetic field vectors, respectively, where   and   denote electric and magnetic potentials and which have been 

substituted into Eqs. (3)-(5); [Cij], [ηij] and [µij] are the elastic, dielectric and magnetic permeability coefficient 

matrices, respectively; [eij], [qij] and [dij] are the piezoelectric, piezomagnetic, and ME coefficient matrices, 
respectively; pz, mz and βii are pyroelectric, pyro-magnetic and thermal moduli, respectively; and ΔT denotes the 

temperature change. 

Using Hamilton’s principle and based on Reddy's TSDT, one can obtain the equations of motion of a rectangular 

plate resting on a damped elastic foundation as below [48]: 
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where kw and ks are spring and shear coefficients of the foundation, respectively, cd is the damping coefficient of the 
foundation, and Δp is aerodynamic pressure passing over the top surface of the plate. Other parameters of these 

equations are defined as below: 
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In which the force and moment resultants are obtained by: 
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Since the density of the plate (ρ0) is constant, Eq. (7a) results in: 
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On the other hand, for most engineering applications of thin walled structures, in-plane inertias can be neglected 

[50]. So, Eqs. (6a)-(6e) are reduced to: 
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To express Eqs. (8)-(12) in terms of displacements and rotations, the resultants are obtained from Eq. (7b) and 

Eq. (3). However, since in Eq. (3), ,z  and ,z  are unknown parameters and the constitutive Eq. (3)-(5) are coupled 

to each other, Eqs. (4) and (5) along with Gauss’s laws for electrostatics and magnetostatics and in the absence of 
unpaired electric charge are used to obtain the analytical expressions for ϕ and ψ, that is: 
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Substituting Eqs. (4) and (5) into Eq. (13), one obtains: 
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It is obvious from Eq. (14) that integrating these equations with respect to z, one can obtain potentials’ 

distributions. So, integrating Eq. (14) with respect to z gives: 

 

   

   

31
, 1 3 2 1 1 4 2 2 03

31
, 1 1 3 3 1 2 3 4 03

z

z

A A z A A z

A A z A A z

     

     

    

    
 

 

(17) 

 

where 
0  and 

0  are the constants of integration and are obtained by using the ME boundary conditions on the two 

surfaces of the plate. Assuming that The MEE body is poled along the z direction and subjected to an electric 
potential V0 and a magnetic potential Ω0 between the upper and lower surfaces of the plate, the ME boundary 

conditions are stated as below: 

 

   

   
2 2

0 02 2

, , , , 0,

, , , , ,

h h

h h

x y z x y z

x y z V x y z

 

 

     

      
 

 

(18) 

 

which result in the following expressions for the gradients of electric and magnetic potentials: 

 

   

   

0

0

31
, 1 3 2 1 1 4 2 23

31
, 1 1 3 3 1 2 3 43

V

z h

z h

A A z A A z

A A z A A z

    

    


    

    
 

 

(19) 

 

The resultants are obtained by Eqs. (3), (7b) and (19): 

 

 21
11 0, 0, 11 31 0 31 02x x xN h C u w T e V q       

 
 (20) 

 

 
22

55 0,3 20
,h h

x x x x xQ C w R Q    (21) 

 

 
3 2 2

11 2 31 1 31 31 3 31 , 0,60
2 4h

x x x xxM C e e q q w           

 
5 2 2

11 2 31 1 31 31 3 31 , 0,1680
2 16 5h

x x x xxP C e e q q w           

 

(22) 



     Linear and Nonlinear Free Vibration of a Two-Dimensional ….                     150 
 

© 2021 IAU, Arak Branch 

where all terms involving y and v0 are deleted in Eqs. (20)-(22) to obtain the equations of motion for a two-

dimensional MEE plate [51]. Following the same procedure on Eqs. (8)-(12), on the other hand, gives the following 

equations of motion for a two-dimensional plate:  

 

, 0x xN   (23) 

 

 2 4 2

164 4
, , 0, 0 0, 0 0 0 6 0, 4 ,3 9 3,x x x xx x x w s xx d xx x xh h hx

Q P N w k w k w c w p I w I w J           (24) 

 

2

4
, 2 4 0,3

x x x x xh
M Q K J w    (25) 

 
where for high Mach numbers, the aerodynamic pressure loading Δp along the positive x direction is determined by 

[51]: 

 

 0, 0xp w w      (26) 

 

where 
2

2 1

U

M

 





   and 

2

2

2 1

1

M

UM







 
   in which 

 is air density, U 
 is flow velocity, and M 

 is Mach number. 

Substituting Eqs. (2), (3), (7b) and (19) into Eqs. (23)-(25) gives: 

 

0, 0, 0, 0xx x xxu w w   (27) 

 

1 0, 2 0, 3 0, 4 0 5 , 6 , 7 0

2

8 0, 0, 8 0, 0, 9 0, 0, 0 0 1 0, 2 ,

xxxx xx x x xxx x x

xx x x xx x xx xx x x

w w w w w

u w u w w w I w I w I

        

   

      

    
 

 

(28) 

 

10 , 6 5 0, 6 0, 2 2 0,x xx x xxx x x xw w K I w            (29) 

 

where the coefficients are given in Appendix A. To solve these set of nonlinear partial differential equations (PDEs), 
Eqs. (27) and (29) are solved to obtain u0 and θx, respectively, in terms of w0 and its derivatives: 

 

 
 

3 3

3 2

2 2

2 2

5 6 2

0, 0, 0, 0

10 6 2

,
xx x t

xx x xx x

x t

I
u w w w

K

 


 

  
  

 

 

 
  

 
 

 

(30) 

 

Substituting Eq. (30) into Eq. (28) gives: 

 
3 2 2

1 0 2 0 3 0 4 0, 5 0, 0, 0, 6 0, 0, 7 0, 0,

2 2

8 0, 0, 8 0, 0, 0, 9 0, 0, 0, 10 0, 0, 0

xx x xx xxx x xxxx x xx

xt xx x xx xtt x xt xxt x xxtt

L w L w L w L w L w w w L w w L w w

L w w L w w w L w w w L w w

     

    
 

 

(31) 

 

where  1,2,3iL i   and  4,5, ,10iL i   are differential and constant operators, respectively, which are defined 

in Appendix B. 

For the simply-supported boundary condition, the transverse displacement can be expressed by: 

 

   0 sinw hW t x a  (32) 

 

Substituting Eq. (32) into Eq. (31) and using the orthogonality of trigonometric functions, one obtains the 

following ordinary differential equation (ODE) with cubic stiffness and inertial nonlinearities: 

 
3 2 2

1 2 3 4 5 6 0GW G W G W G W G WW G W W       (33) 
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where  1,2, ,6iG i   are constant coefficients which are given in Appendix C. 

3    ANALYTICAL SOLUTION OF THE EQUATION OF MOTION  

Defining the dimensionless time as: 

 
3

11

2

0

1 C h
t

Ia
   

 

(34) 

  

and substituting it into Eq. (33), results in the following dimensionless nonlinear ODE: 

 
2 3 2 2

, , , , 0W W W W W W W W              (35) 

 
where ω is the dimensionless natural frequency of the MEE plate and all the coefficients are given in Appendix D. 

Multiple time scales method is used to solve Eq. (35) analytically. To use this method, a small, positive and 

dimensionless parameter (  ) must be introduced to be multiplied by the nonlinear and damping terms [52]. The 

coefficients of the nonlinear terms in Eq. (35) contain the term  
2

h a , which is dimensionless and small. So 

 
2

h a   is used as the so-called positive dimensionless parameter. That is: 

 
2 3 2 2

, , , , 0W W W W W W W W                 (36) 

 

 where    ,    ,    , and    . 

Moreover, to use the method of multiple time scales, independent time variables are introduced according to 

[52]: 

 
n

nT         for        0,1n   (37) 

 

and W can be presented by the following expansion: 

 

       2

0 0 1 1 0 1, , ,W W T T W T T O       (38) 

 

where  2O   denotes the higher order terms in the expansion. Using Eq. (37), the derivatives with respect to   are 

rewritten as below: 

 

0 1

2
2

0 0 12
2

d
D D

d

d
D D D

d







 

 

 

 

 

(39) 

 

where 
0D  and 

1D  denote 
0T   and 

1T   respectively. 

Substituting Eqs. (38) and (39) into Eq. (36) and equating the coefficients of 0  and 1  to zero, one obtains: 

 
2 2

0 0 0 0D W W   (40) 

 

   
22 2 3 2 2

0 1 1 1 0 0 0 0 0 0 0 0 0 0 02D W W D D W D W W W D W W D W            (41) 
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The solution of Eq. (40) can be expressed as: 

 

   0 1 1 0expW X T i T cc   (42) 

 

where  1 1 1X X T  is an unknown complex function of T1, and cc denotes the complex conjugate of the preceding 

terms. 

Substituting Eq. (42) into Eq. (41) gives:  

 

   

   

2 2 ' 2 2 2

0 1 1 1 1 1 1 0

2 2 3

1 0

2 3 3 exp

exp 3

D W W i X i X X X i T

X i T cc

       

   

        
 

  
 

 

(43) 

 

where '

1X  denotes 
1 1dX dT , and 

1X  is the complex conjugate of X1. To have a periodic solution for W1, the 

coefficients of  0exp i T  should be eliminated from Eq. (43), that is: 

 

 ' 2 2 2

1 1 1 12 3 3 0i X i X X X            (44) 

 

Defining X1 in polar form, that is  1
1 2

expX p iq , where p and q are real functions of T1, and then by 

following the procedure described by Shooshtari and Razavi [53], the following closed-form expression is obtained 

for W: 

 

   21 1
0 0 02 8

exp cosW p Ap B q


        
 

 (45) 

 

which is obtained by considering only the first term in expansion of W given in Eq. (38). In Eq. (45), p0 and q0 are 

constants, 2 23 3A      , and 21
08

B Ap


 . The transverse displacement (w0) of any point of the plate can 

be obtained by substituting Eq. (45) into Eq. (32). In addition, the nonlinear frequency ratio of the MEE plate is 

obtained as below: 

 

 
1 2

2 2

02
1 h

NL a
Ap


    

 
 

 

(46) 

 

where NL  denotes the nonlinear frequency of the plate. 

4    NUMERICAL EXAMPLES AND DISCUSSION   

In this section, the results which are obtained from the relations of present work have been compared with the results 

of previously published papers for isotropic and piezoelectric plates. For the considered isotropic thin plate, 

dimensionless natural frequency is determined using 
2

0na h D   in which  3 212 1D Eh   
 

 and 

3 1n G G  , where E is Young modulus and v is Poisson's ratio. The piezoelectric plate, on the other hand, is a 

thick plate with 0.04a  m and 0.01h  m. The dimensionless natural frequency for this plate is obtained by 

 2

0 11n a h C  . Material properties of the piezoelectric plate are given in Ramirez et al. [54]. The results are 

shown in Table 1. It is seen that there is good agreement between the results. The discrepancy between the results of 

PZT-4 plate is due to this fact that the plate is a quite thick one with 4a h  , and on the other hand, in ref. [54] a 

3D theory has been used to model the plate which obviously gives more accurate results for thick plates. 
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Table 1 

Comparison of dimensionless natural frequencies of two-dimensional rectangular plates. 

Method 
Plate 

isotropic PZT-4 

Young and Budynas [55]  9.8700 - 

Ramirez et al. [54] - 2.2650 

Present study 9.8692 2.4218 

 

Next, the linear and nonlinear free vibration of a simply-supported MEE two-dimensional rectangular to 

magneto-electro-thermo-aerodynamic loading is analyzed. Material properties of the studied MEE plate are given in 

Table 2. 

 
Table 2 

Material properties of BaTiO3-CoFe2O4 composite material [56]. 

Properties Values 

Elastic [GPa]  
11 55226, 44.2C C   

Piezoelectric [C/m2] 
31 152.2, 5.8e e    

Dielectric [×10–9 C/(Vm)] 
33 6.35   

Piezomagnetic [N/(Am)] 
31 15290.1, 275q q   

Magnetoelectric [×10–12 Ns/(CV)] 
33 2737.5d   

Magnetic [×10–6 Ns2/C2] 
33 83.5   

Thermal modulus [×105 N/( m2K)] 
11 4.74   

Pyroelectric [×10–6 C/N] 25zp   

Pyromagnetic [×10–6 N/(AmK)] 5.19zm   

Mass density [kg/m3] 
0 5550   

 

To study the effects of aerodynamic loading on the response of the MEE plate, the following dimensionless 

parameters are defined: 

 

   2 3 3

0 11,a h U a C h          (47) 

 

where   is mass ratio,   is dimensionless aerodynamic pressure, and 
2 1M   . 

4.1 Linear vibration 

Effects of electric and magnetic potentials on the natural frequency have been studied and the results are shown in 

Tables 3 and 4. The thickness of the plate is changed while its length-to-thickness ratio ( a h ) is constant for all the 

cases. It is seen that negative electric potentials and positive magnetic potentials increase the natural frequency of a 

MEE plate. This phenomenon can be useful to avoid the resonance in the forced vibration. Moreover, it is noticed 

that for plates with smaller thicknesses, the electric and magnetic potentials have more effect on the response of the 

plate.  

 
Table 3 

Effects of applied electric potential on the dimensionless frequency 0 11100 na C    of a two-dimensional MEE plate 

( 20a h  ). 

h (mm)  
V0 (102V) 

−1
 

0 +1  

0.1 14.2279 14.1942 14.1604 

1 14.1976 14.1942 14.1908 

10 14.1945 14.1942 14.1939 
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Table 4 

Effects of applied magnetic potential on the dimensionless frequency 0 11100 na C    of a two-dimensional MEE plate 

( 20a h  ). 

h (mm)  
Ω0 (10A) 

−1
 

0 +1  

0.1 13.7416 14.1942 14.6328 

1 14.1496 14.1942 14.2387 

10 14.1897 14.1942 14.1987 

 

Fig. 2 shows the effect of dimensionless foundation parameters on the dimensionless frequency 

0 11100 na C    of a MEE plate with 50a h  . The dimensionless foundation parameters are obtained by 

 2 3

11s sK k a C h  and  4 3

11w wK k a C h . It is seen that the dimensionless shear coefficient (
sK ) has more 

effect on the natural frequency compared with the effect of the dimensionless spring coefficient (
wK ). Moreover, it 

is seen that the relationships between the natural frequency and the foundation parameters are nonlinear. 

 

 
(a) 

 
(b) 

Fig.2 

Effects of elastic parameters of the foundation on the natural frequency of MEE plate: (a) 0wK  , and (b) 0sK  . 

(
0 0 0V T    ). 

 

Effect of temperature change on the natural frequency of a MEE plate has also been investigated and the result is 

shown in Fig. 3. The dimensionless frequency of the MEE plate is obtained by 0 11100 na C   . It is observed 

that increasing the environment temperature decreases the stiffness of the system, and consequently decreases the 

natural frequency of the plate. 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Effect of temperature rise on the natural frequency of a 

MEE plate. ( 0 0 0s wK K V    , 50a h  ). 

 

 

To study the effects of aerodynamic pressure on the linear response of the plate, linear form of Eq. (33) should 

be solved analytically or numerically. If Eq. (33) is rewritten in the following linear form 

 
22 0n nW W W     (48) 
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where 2

1 32

G

G G
   is the damping ratio, the response of the plate in terms of time (t) is obtained as below: 

 

         
0 0

0 cos sinnn

d

W Wt

d dW e W t t



 

   
 

 
(49) 

 

where 21d n     is damped natural frequency; and  0W  and  0W  are initial displacement and velocity, 

respectively. 

Fig. 4 shows the time history of a MEE plate with and without considering aerodynamic damping. a h  is taken 

as 50 whiles 1h mm . For both cases a closed-circuit ME boundary condition is considered and the temperature 

change and foundation parameters are taken as zero, that is 
0 0 0s w dV T k k c       . It is clearly observed 

that the MEE plate without considering aerodynamic damping (i.e., when 0M   ), is dependent on the initial 

value of  W W t  at 0t  . However, for the plate with aerodynamic damping, the response is independent of the 

initial condition and gradually decays to zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Linear time history of a MEE plate with aerodynamic 

damping and without aerodynamic damping 

(    100, 1.5, 0 0.2, 0 0M W W     ). 

 

Effects of electric and magnetic potentials on the response of the same MEE plate with a/h = 100, h = 0.1 mm 

and 0M    are also studied and the results are shown in Figs. 5 and 6, respectively. It is noticed that for positive 

electric potential, damped frequency decreases whereas the converse happens when applying the positive magnetic 

potential. Moreover, positive electric potential and negative magnetic potential decrease the amplitude of motion. So 

applying the positive electric potential or negative magnetic potential can be served as a way to increase the stability 

of the plate under aerodynamic pressure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Effect of Electric potential on the linear time history of a 

MEE plate. 
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Fig.6 

Effect of magnetic potential on the linear time history of a 

MEE plate. 

 

 

Based on the relation given for G2 in Appendix C, if 

 

 

2

3 2
2

2
0

1

dcM

UM 


 



 


 

 

(50) 

 

Is satisfied, the linear response of the plate will be unstable. Fig. 7 demonstrates the stable and unstable regions 

for 1h mm . In this figure, both axes are dimensionless parameters where  2

dC c U h   . Unstable solution 

is the solution where the response grows continuously with time. For the studied MEE plate with positive foundation 

damping, the unstable solution may occur in Mach numbers smaller than 2 1.4142 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Stable and unstable solutions for different values of 

aerodynamic loading and foundation damping. 

4.2 Nonlinear vibration 

Fig. 8 shows the responses of a MEE plate with 100a h   and 0 01h . m , with and without considering 

aerodynamic damping. For both cases a closed-circuit ME boundary condition is considered and the temperature 

change and foundation parameters are taken as zero, that is 0 0 0s w dV T k k c       . It is clearly observed 

that the MEE plate without considering aerodynamic damping (i.e., when 0M   ), is dependent on the initial 

value of  W W   at 0  . However, for the plate with aerodynamic damping, the response is independent of the 

initial condition and gradually decays to zero. 
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(a) 

 
(b) 

Fig.8 

(a) Time histories, and (b) phase plane diagrams of a MEE plate; with aerodynamic damping ( 0.5M   ) and without 

aerodynamic damping ( 0M   ). (For both cases;  100, 1.5, 0 0.2M W    ). 

 

Effects of electric and magnetic potentials on the response of the have also been studied and the results are 

shown in Fig. 9. The length-to-thickness ratio ( a h ) is 100 ( 0 1h . mm ), 0s w dT k k c     , 100  , 

1.5M   , and 0.5M   . It is seen that positive electric potentials and negative magnetic potentials decrease 

the amplitude and the frequency of the plate.  

 

 
(a) 

 
(b) 

Fig.9 

Effects of: (a) electric (
0 0  ), and (b) magnetic (

0 0V  ) potentials on the time history response of a MEE plate 

(  0 0.2W  ). 

 

Effects of foundation parameters, temperature change, Mach number and aerodynamic pressure on the time 

history of a MEE plate with 50a h   and 0 01h . m  have also been investigated. Fig.10 shows the results, in 

which the dimensionless foundation parameters are obtained by  2 3

11s sK k a C h  and  4 3

11w wK k a C h . For 

all the cases 0.5M   , 0 0 0dV c    and  0 0.2W   are considered. It is seen that elastic parameters of 

the foundation increase the frequency of the response which is the consequence of the increase in the stiffness of the 

system. In addition, it is noticed that sK  has more effect on the response compared with the effect of wK . The 

converse happens when increasing the temperature. That is, positive temperature change decreases the stiffness and 

the frequency of the plate. Moreover, it is seen that higher Mach numbers and dimensionless aerodynamic pressure 

make the response to decay sooner. 
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Fig.10 

Effects of: (a) foundation parameters ( 100, 1.5, 0M T     ), (b) temperature change 

( 100, 1.5, 0s wM K K     ), (c) Mach number ( 100, 0s wT K K      ), and (d) dimensionless aerodynamic 

pressure ( 1.5, 0s wM T K K      ) on the time history response of a MEE plate. 

 

Effects of electric and magnetic potentials on the time history and phase plane diagram of a MEE plate with 

100a h   while the thickness is changed have been investigated, too. It is seen from Figs. 11 and 12 that for plates 

with smaller thicknesses, potentials have noticeable effects on the response of the MEE plate. 

 

  
Fig.11 

Effects of electric potential on the time history and phase plane plot of a MEE plate with different thicknesses 

( 0 0w s dT K K c      , 100a h  , 100  , 1.5M   , 0.5M   ). 

  

  
Fig.12 

Effects of magnetic potential on the time history and phase plane plot of a MEE plate with different thicknesses 

( 0 0w s dT K K c V      , 100a h  , 100  , 1.5M   , 0.5M   ). 
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Fig. 13 shows the backbone curves for a MEE plate with 0dc  , 100a h  , 100  , 1.5M   , and 

0.5M   . For Figs. 13(a) – (d), 0 1h . mm . It is seen that for some values of electric and magnetic potentials, 

the hardening nonlinearity changes to the softening one. This behaviour is also seen for higher temperature changes. 

Fig. 13(c) shows that using an elastic foundation decreases the nonlinearity of the system. It is also observed that Ks 

has more effect on the response compared with the effect of Kw. In Figs. 13(e) and 13(f) the value of thickness is 

changed while the a/h ratio is remained constant. It is noticed that the electric and magnetic potentials have more 

effect on the backbone curves of a MEE plate with smaller thickness. 

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

  

 
(e) 

 
(f) 

Fig.13 

Backbone curves of a MEE plate for different: (a) electric potentials ( 0 0w sT K K     ), (b) magnetic potentials 

( 0 0w sT K K V     ), (c) elastic parameters of the foundation ( 0 0 0T V    ), (d) temperature changes 

( 0 0 0w sK K V    ), and (e, f) thicknesses ( 0w sT K K    ). 

 

Linear and nonlinear time histories have also been compared with each other. For nonlinear response, the curves 

have been obtained based on Eq. (38) considering one or two terms in the expansion. It is obvious from Fig. 14 that 

nonlinear response has higher frequency which is due to the effect of initial amplitude on the nonlinear frequency. 

Moreover, it is noticed that in Eq. (38), the first term is dominant in the time history which is why the two nonlinear 

time histories are almost the same.   
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Fig.14 

Comparison of linear and nonlinear time histories. 

5    CONCLUSIONS 

Linear and nonlinear vibration response of a two-dimensional MEE plate is studied analytically in this paper. The 

plate is under aerodynamic pressure and subjected to temperature change, and electric and magnetic potentials 

between the upper and lower surfaces. To model the problem, TSDT, Gauss’s laws for electrostatics and 

magnetostatics, first-order piston theory, and Galerkin method and a perturbation method are used. By presenting 

some numerical examples it is found that:  

- Elastic parameters of the foundation have nonlinear effects on the natural frequency. Moreover, they 

increase the frequency of the response which is the consequence of the increase in the stiffness of the 

system.  

- Positive electric potentials and negative magnetic potentials decrease the natural frequency as well as the 

response amplitude and the nonlinear frequency of the MEE plate.  

- Increasing the environment temperature decreases the stiffness and consequently decreases the natural 

frequency and nonlinear frequency of the MEE plate. 

- Applying the positive electric potential or negative magnetic potential can be served as a way to increase 

the stability of the plate under aerodynamic pressure. 

- The nonlinear time history of the MEE plate without considering aerodynamic damping is dependent on the 

initial displacement. However, for the plate with aerodynamic damping, the response is independent of the 

initial condition and gradually decays to zero. 

- For plates with constant a/h ratio, electric and magnetic potentials have noticeable effects on the time 

histories, phase plane diagrams and backbone curves of the plates with smaller thicknesses. 

- Generally, the MEE plate exhibits hardening behaviour. However, for some values of electric and magnetic 

potentials and temperature changes, the nonlinearity is of softening type. 
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