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 ABSTRACT 

 The problem treated here is to determine the viscosity effect on stresses, 

temperature change and chemical potential in a circular plate. The 

mathematical formulation is applied to two theories of thermoelastic 

diffusion developed by Sherief et al. [27] with one relaxation time and 

Kumar and Kansal [9] with two relaxation times. Laplace and Hankel 

transform techniques are used to obtain the expression for the 

displacement components, stresses, temperature change and chemical 

potential. The resulting quantities are computed numerically and depicted 

graphically by using numerical inversion technique for a particular 

model. Effect of viscosity is shown in the normal stress, tangential stress, 

temperature change and chemical potential. Some particular cases of 

interest are also deduced. Viscoelastic materials play an important role in 

many branches of engineering, technology and, in recent years, 

biomechanics. Viscoelastic materials, such as amorphous polymers, semi 

crystalline polymers, and biopolymers, can be modelled in order to 

determine their stress or strain interactions as well as their temporal 

dependencies.                    © 2019 IAU, Arak Branch. All rights reserved. 

 Keywords : Visco thermoelastic; Thick circular plate; Laplace and 

Hankel transforms; Viscosity. 

1    INTRODUCTION 

 HE coupling between the thermal and strain fields gives rise to the coupled theory of thermoelasticity. For 

static problems, this coupling vanishes and the thermal field becomes independent of the strain field. The 

coupling between the strain and temperature fields firstly studied by Duhamel [3] who derived equations for the 

distribution of strains in an elastic medium subjected to temperature gradients. Neumann [18] and several authors 

worked on Duhamel’s theory and solved a number of interesting problems based on this theory. Boit [1] derived the 

coupled theory of thermoelasticity, which includes the dilatational term based on the thermodynamics of irreversible 

processes. The extended form of thermoelasticity with one relaxation time was introduced by Lord and Shulman 

[13] and with two relaxation times, was developed by Green and Lindsay [8]. Viscoelasticity is the property of 

materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscoelastic materials 

play an important role in many branches of civil engineering, geotechnical engineering, technology and 

biomechanics. Viscoelastic materials, such as amorphous polymers, semi crystalline polymers and biopolymers. 
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Kumar and Chawla [10] showed the effect of viscosity on wave propagation in anisotropic thermoelastic medium 

with three-phase-lag model. Sharma and Kumar [25] investigated the problem of propagation of plane waves and 

fundamental solution with voids by using thermos-visco-elastic medium. Kumar et al. [11] studied reflection of 

plane waves in transversely isotropic micro polar visco-thermoelastic solid in the context of Lord and Shulman (L-

S), Green and Lindsay (G-L) and Coupled Thermoelastic (C-T) models. In addition, fundamental solution to a 

system of differential equations in micro polar visco-thermo-elastic solids with voids was studied by Kumar et al. 

[12]. Svanadze [29] studied the problem of plane waves and steady vibrations in the theory of viscoelasticity for 

Kelvin-Voigt materials with double porosity. Sharma et al. [26] investigated the effect of magnetic field on transient 

wave in visco-thermo-elastic half space by using Laplace and Fourier transform techniques.  

Thermo diffusion in an elastic solid is due to the coupling of the fields of temperature, mass diffusion and strain. 

Heat and mass exchange with the environment during the process of the thermos diffusion in an elastic solid. The 

concept of thermos diffusion is used to describe the processes of thermomechanical treatment of metals (carboning, 

nitriding steel, etc.) and these processes are thermally activated, and their diffusing substances being, e.g. nitrogen, 

carbon etc. They are accompanied by deformations of the solid. Podstrigach[24], Nowacki [19-20-21-22]
 
developed 

the theory of thermoelastic with mass diffusion. In this theory, the coupled thermoelastic model is used. This implies 

infinite speeds of propagation of thermoelastic waves. Sherief and Saleh [27] developed the theory of generalized 

thermoelastic diffusion that predicts finite speeds of propagation for thermoelastic and diffusive waves. Ezzat et al. 

[5-6] studied the problem of generalized thermos-visco-elasticity with one and two relaxation times by using state 

space approach and Laplace transform technique. Othman et al. [23] discussed the two-dimensional problem of 

thermos-visco-elasticity with two relaxation times. They obtained the expressions for temperature distribution, 

thermal stresses and displacement components. Comparisons are made within the coupled theory and generalized G-

L theory. Ezzat [7] constructed the equations of generalized thermos-visco-elasticity for a conducting isotropic 

media in the presence of a constant magnetic field within the context of one relaxation time [Lord-Shulman (L-S)] 

and two relaxation times [Green-Lindsay (G-L)]. He applied state space approach for the solution of one–

dimensional problems in the absence or presence of heat sources and used Laplace transform technique. Sherief and 

Saleh [28] worked on a problem of a thermoelastic half space with a permeating substance in contact with the 

bounding plane in the context of the theory of generalized thermoelastic diffusion with one relaxation time. Kumar 

and Kansal [9] studied generalized thermoelastic diffusion for Green Lindsay (GL-model) theory and discussed the 

Lamb waves. Marin [14] constructed the existence and uniqueness theorems of the generalized solutions for the 

boundary value problems in elasticity of initially stressed bodies with porous materials. Some basic theorems for 

micro-stretch thermoelastic materials using the Lagrange identity was studied by Marin [15]. Maghraby and Halim 

[4] used Laplace and Hankel transforms technique to solve the problem of generalized thermoelasticity in Lord-

Shulman theory [13] a half space subjected to a known axisymmetric temperature distributions. Marin and Stan [16] 

studied the weak solutions in elasticity of dipolar bodies with stretch. Tripathi et al. [30]
 
investigated the temperature 

distribution and thermal stresses in a semi-infinite cylinder with heat sources in thermoelastic theory with one 

relaxation time. Thick circular plate with axisymmetric heat supply in a generalized thermoelastic diffusion by using 

integral transform technique was discussed by Tripathi et al. [31]. 

The purpose of this paper is to study the problem of thick circular plate in a viscothermoelastic diffusion medium 

by using Laplace and Hankel transform techniques. The generalized theories of thermoelastic diffusion developed 

by Sherief and Saleh [27] and Kumar and Kansal [9] are used to investigate the problem.The normal stress, 

tangential stress, temperature change and chemical potential are computed and presented graphically for different 

values of radial distance. Some particular cases are also derived from the present investigation. The results presented 

here will be useful in engineering problems related to visco-thermo-elastic diffusion in isotropic elastic solids. 

2    BASIC EQUATIONS  

Following [Sherief et al. [27], Kumar and Kansal [9], Kumar et al. [11]], the constitutive relations and the equations 

of motion in a generalized thermoelastic with mass diffusion in the absence of body forces, body couples, heat and 

mass diffusion sources are given by  

(i) Constitutive relations 

 

, ,ij j it u  (1) 
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1 1 22 1 1 ,ij I kk ij I ij ij ijt e e T C
t t
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    

        
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 (2) 

 

1

2 11 1 ,kkP e a T b C
t t

  
    

        
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, , =1, 2, 3.i j k  (3) 

 

where ijt  are the components of stress tensor, ij  is Kronecker’s delta, ije are the components of strain tensor. The 

parameters I and  I  are defined as: 

 

*

1 ,I
t


 



 
        

*

1 ,I
t


 



 
      

 (4) 

where  1 3 2 ,I I t    
 

 2 3 2 ;I I c    
 
  and   are material constants, 

* *

1 2= , Q Q
 

 
  are visco-

thermo-elastic relaxation times, Here t , c are the coefficients of linear thermal expansion and diffusion expansion 

respectively, T is the temperature change, C is the mass concentration, P is the chemical potential of the material per 

unit mass, a  is the coefficient describing the measure of thermoelastic diffusion, b is the coefficient describing the 

measure of mass diffusion effects.                                                                                                                                                                                                                                                                             

 (ii) Equations of motion 

 

   
..

2 1
1 1 2. 1 1 ,I I I T C

t t
       

    
              

    
u u u

    

 (5) 

 

where  1 2 3, ,u u uu
 
is the components of displacement vector,   

is the density,   is the Laplacian operator,   

is del operator. 

(iii) Equation of heat conduction 

 

 
2 2 2

0 0 0 1 0 02 2 2
. ,eK T c T aT C T

t t tt t t
     

          
                          

u

    

 (6) 

 

where K is the coefficient of thermal conductivity, ec  is the specific heat at constant strain, 0T  is the reference 

temperature assumed to be such that 0/ 1T T  . 

 (iv) Equation of mass diffusion 

 

 
2

0 1
2 1 0 2

. 1 1 0,D Da T C Db C
t t tt

    
       

                     

u

    

 (7) 

 

where D is the thermoelastic diffusion constant.

 

Here  0 1,   are the diffusion relaxation times with 
1 0 0    and 

0 1,   are thermal relaxation times with 1 0 0   and here 1
1 0   , 0 01,    , for Lord-Shulman (L-S) 

model and 
0

0 0,    , for Green Lindsay (G-L) model.

  

3    FORMULATION OF THE PROBLEM  

We consider a homogeneous, isotropic, generalized viscothermoelastic diffusion thick plate of thickness 2d defined 

by 0 ,r    d z d   . The initial temperature in the thick plate is given by a constant temperature 0T  and the 
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heat flux  0 ,g F r z  is prescribed on the upper and lower boundary surfaces. The cylindrical polar coordinates 

 , ,r z
 
having origin on the surface 0z  , between the lower and upper surfaces of the plate and the z-axis is 

assumed the axis of symmetry. Due to symmetry about z-axis, all the field quantities are independent of the 

coordinate . 

For the two-dimensional problem, we take the displacement components, temperature change and mass 

concentration as: 

 

        0r zu r ,z ,t , ,u r , z ,t ,T r ,z ,t and C r ,z ,tu

    

 (8) 

 

We introduce the dimensionless quantities 

 

         
 

   
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2
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c c T c T c

t Q t Q c
t

   

  

  
           

  

     


  


    

 (9) 

 

where 
*  and 1c  are characteristic frequency and longitudinal wave velocity in the medium.                                                                                                                        

Upon introducing (9) in Eqs. (5)- (7), with the aid of (4), (8) and after suppressing the primes, we obtain 

 
2

2 1
1 2 2 2

1
,r

r tt tt

ue T C
b b u

r r rr t
 

   
      

    
    

 (10) 

 
2

2 1
1 2 2

,z
z tt tt

ue T C
b b u

z z z t
 

  
    
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 (11) 

 
2 0 0 0

3 4 5 ,tt tT b T b C b e      

    

 (12) 

 

 2 2 20 1 2
6 7 8 0,tt tt ttb e b T b C        

    

 (13) 

 

where 

 

  2 2 2 2 * *
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1
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e ru
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             
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Following Mukhopadhyay and Kumar [17], the displacement components ru and zu  in terms of potential 

functions   and    in the dimensionless form are given by 

 
2

,ru
r r z

  
 
  

    

2

2

1
.zu

z r rr

     
      

 (14) 

 

We define Laplace and Hankel transforms as:  
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   
0

, , , ,  ptf r z p f r z t e dt




 
  

       
^

0

, , , , , ,  ,nf z p H f r z p f r z p rJ r dr 


  

  
 


   

 

(15) 

 

where p is the Laplace transform parameter,     is the Hankel transform parameter and ( )nJ   is the Bessel function 

of the first kind of order n. 

Making use of (14) in (10)-(13) and applying the Laplace and Hankel transforms defined by (15) on the resulting 

equation (after simplification), we obtain 

 

 
^ ^ ^

6 4 2
1 2 3 4 , , 0,G D G D G D G T C

 
    

     

 (16) 

 

 
^

4 2
1 2 0,D B D B   

   

 (17) 

 

where 1 2 3 4 1, , , , G G G G B   and 2B  are given in Appendix A. 

The general solution of Eq. (16) can be written as: 

 
^ ^ ^ ^

1 2 3,     

   

 (18) 

 

where 
^

( 1,2,3)i i  is a solution of the homogeneous differential equation given by 

 

 
^

2 2 0, 1,2,3i iD i   

   

 (19) 

 

The solution of the Eq. (19) can be written as: 

 

 
3^

1

cosh ,i i i

i

A z 

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 (20) 

 

where 
1, 2  

and 
3  are the roots of the  characteristic equation given by 

 
6 4 2

1 2 3 4 0.G D G D G D G   

   

  

    

The solution of the Eq. (16), with the aid of (20) in (18) can be written as: 

 

    

^
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 (21) 

 

   where 
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Following the same procedure, we take the solution of (17) as: 

 
5^

4

sinh( ),i i

i

A z 



   

 (22) 

 

where 
4  and 

5  are the roots of the characteristic Eq. (17). 

4    BOUNDARY CONDITIONS  

 

 1 ,
T

g F r z
z


 


   

at  ,z d   (23) 

 

0zz zrt t 

 

at  ,z d   (24) 

 

   P t f r at  ,z d   (25) 

 

where  

 

  2, ,rF r z z e 
  

0. 
 
 (26) 

 

   0f r H a r 
   

 (27) 

 

In addition, 1g  is the constant temperature applied on the boundary. 

The non-dimensional values of ,zzt zrt and P are given by 
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u
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Applying Laplace and Hankel transforms defined by (15) on Eqs. (26) and (27), we obtain 
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 
 

2^

3/ 2
2 2

, ,
z

F z
p




 



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 
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0 1 0
,

a J a
f





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Applying Eq. (15) on the Eqs. (23)-(25) and substituting the values of  
^

,
^

,T
^

C and 
^

  from Eqs. (21) and (22) 

in the resulting equations and with the aid of Eqs. (14), (28)-(32), we obtain the expressions for displacements, 

normal stress, tangential stress, temperature change and chemical potential as: 

 

   
3 5^

1 4
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i i

u A d A d  
 

 
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  
   (33) 

 

   
3 5^

2

1 4

sinh cosh ,z i i i i i

i i

u A d A d   
 

 
  
  
   (34) 

 

 
3^

1

cosh ,i i i

i

T b A d


  (35) 
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cosh cosh ,zz i i i i i i

i i

t M A d M A d 
 

 
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 
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1 4

cosh cosh ,i i i i i i

i i

P K A d K A d 
 

 
  
  
   (38) 

 

 
3^

1

cosh ,i i i

i

C d A d


  (39) 

                                                                               

where 1 2 3 4, , , A A A A and 5 , A  

5 5 5

1 1 1

, , i i i

i i i

M N K

  

    are given in Appendix B. 

5    PARTICULAR CASES  

In the absence of diffusion  1 0 ,tta D    in Eqs. (33)-(39), we obtain the components of displacement, stresses 

and temperature change in a visco-thermo-elastic medium. 

In the absence of viscosity  1 2 0 ,Q Q   in Eqs. (33)-(39), we obtain the components of displacement, 

stresses, temperature change and chemical potential in a thermoelastic diffusion medium. Our result in a special case 

are similar with those obtained by Tripathi et al. [31]. 
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If 1
1 0,   0 1,  0 ,   in Eqs. (33)- (39), we obtain the corresponding results for viscothermoelastic 

diffusion for Lord Shulman (L-S) model. 

If 0 0,  0 ,   in Eqs. (33)- (39), we obtain the corresponding results for visco-thermo-elastic diffusion for 

Green Lindsay (G-L) model. 

6    NUMERICAL INVERSION OF THE TRANSFORMS    

The solution of the problem is obtained in physical domain; we must invert the transforms in (33)-(39), for all the 

theories. Here the displacement components, normal and tangential stresses, temperature change, chemical potential 

and mass concentration are functions of z, the parameters of Laplace and Hankel transforms p and   respectively 

and hence are of the form   
^

, ,f z p . We first invert the Hankel transform, which gives the Laplace transform 

expression  , ,f r z p


 of the function  , ,f r z t  as: 

 

     
^

0

, , , , nf r z p f z p J r d   


   (40) 

Now for fixed values of ,r  and z, the function  , ,f r z p


 in (39) can be considered as the Laplace transform 

 g s


 of the same function  g t .  

7    NUMERICAL RESULTS AND DISCUSSION  

For numerical computations, following
 
Daliwal and Singh [3], we take the magnesium material (thermoelastic 

diffusion solid) as:  

 
10 -1 -2 10 -1 -2 3 -3 3
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4 2 -2 -1 3 -1 -1 -5 -1 -4 3 -1
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2.696×10 Kgm s , 1.639×10 Kgm s , 1.74×10 Kg m , 0.293×10 K,
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0.85×10 Kgm sec, 9×10 Kg m s , 1.7×10

e t c

T

a c

D b K

  

 

   

   
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0 1
0 1

 Wm K ,  10 , 1 ,

1,  0.01 ,  0.03 ,  0.02 ,  0.04 .

s t s

d s s s s



   

 

    

  

 

MATLAB software has been used to determine the normal stress, tangential stress, temperature change and mass 

concentration for both L-S and G-L theories are computed numerically and shown graphically in Figs. 1-4 

respectively. From Figs. 1-4, solid line   ,  corresponds to thermoelastic L-S model (TE)  1 2= =0 ,Q Q
 
solid line 

with centre symbol   ,  corresponds to visco-thermo-elastic L-S model (VTE)  1 2=0.5, =1 .Q Q  Small dash 

line   ,  corresponds to thermoelastic G-L model (TE)   1 2= =0 ,Q Q  small dash line with centre symbol 

  ,  corresponds to visco-thermo-elastic G-L model (VTE)   1 2=0.5, =1 .Q Q   

Fig.1 depicts the variations of normal stress  zzt  with r . The behavior of normal stress with respect to r is same 

i.e. oscillatory for both L-S and G-L theories of thermoelastic and visco-thermo-elastic diffusion medium. On the 

other hand, the values of  zzt  for G-L theory is higher in comparison to L-S theory for thermoelastic medium (TE) 

and opposite behavior is  observed for visco-thermo-elastic medium (VTE). Fig. 2 represents that the variation of 

tangential stress  zrt  with radial distance r. The values of tangential stress remain oscillatory in the whole range for 

both cases (TE and VTE) and for both theories of thermoelasticity (L-S and G-L). Similarly, the values of tangential 

stress for L-S (TE) is higher in comparison to L-S (VTE) theory and similar behavior is noticed for both cases (TE 
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and VTE) for G-L theory. Fig. 3 shows the variation of temperature change T with radial distance r  . It is noticed 

that the values of temperature change increases and decreases alternately w.r.t radial distance for both LS(TE,VTE) 

and GL(TE,VTE) theories of thermoelasticity. Due to the presence and absence of viscosity, the values of T  for L-S 

theory is higher in comparison to G-L theory.  Fig. 4 depicts the variations of chemical potential P with radial 

distance r  . Similar behavior is noticed for both theories of thermoelastic and visco-thermo-elastic diffusion 

medium. The values of chemical potential P increases due to the presence of viscosity and decreases in the absence 

of viscosity for G-L theory in comparison to L-S theory. 
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Fig.1 

Variation of normal stress with radial distance. 
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Fig.2 

Variation of tangential stress with radial distance. 
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Fig.3 

Variation of temperature change with radial distance. 
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Fig.4 

Variation of chemical potential with radial distance. 

8    CONCLUSION 

In this work, the problem of thick circular plate in visco-thermo-elastic diffusion is a significant problem of 

continuum mechanics. The resulting quantities depicted graphically in the absence and presence of viscosity. It is 

evident that the physical quantities are also effected by the different non-classical theories of thermoelastic 

diffusion. It is observed that effect of viscosity decrease the values of normal stress for both theories of 

thermoelastic diffusion. In addition, viscosity increase the values of chemical potential and decrease the values of 

temperature change for G-L theory in comparison for L-S theory. In the absence of viscosity, the values of 

tangential stress increase for L-S theory and decrease for G-L theory.  

Nowadays, many people interested in the study of this phenomenon due to its application in geophysics and 

electronic industry. In integrated circuit fabrication, diffusion is used to introduce dopants in controlled amounts into 

the semiconductor substance. In particular, diffusion is used to form the base and emitter in bipolar transistors, 

integrated resistors, and the source/drain regions in metal oxide semiconductor (MOS) transistors and dope poly 

silicon gates in MOS transistors. The effect of diffusion is used to improve the conditions of oil extractions (seeking 

ways of more efficiently recovering oil from oil deposits). In addition, the study of thermal and diffusion effects 

plays an important role in understanding many seismological processes. The result obtained here are useful in 

engineering problems particularly in the determination state of stresses in a thick circular plate subjected to transient 

heat inside. Also, any particular case of special interest can be derived by assigning suitable values to the parameters 

and functions in the problem. 

APPENDIX A 
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APPENDIX B  
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