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 ABSTRACT 

 The damping vibration characteristics of magneto-electro-

viscoelastic (MEV) Nano beam resting on viscoelastic foundation 

based on nonlocal strain gradient elasticity theory (NSGT) is 

studied in this article. For this purpose, by considering the effects 

of Winkler-Pasternak, the viscoelastic medium consists of linear 

and viscous layers. With respect to the displacement field in 

accordance with the refined shear deformable beam theory (RSDT) 

and the Kelvin-Voigt viscoelastic-damping model, the governing 

equations of motion are obtained using Hamilton’s principle based 

on nonlocal strain gradient theory (NSGT). Using Fourier Series 

Expansion, The Galerkin’s method adopted to solving differential 

equations of Nano beam with both of simply supported and 

clamped boundary conditions. Numerical results are obtained to 

show the influences of nonlocal parameter, the length scale 

parameter, slenderness ratio and magneto-electro-mechanical 

loadings on the vibration behavior of Nano beam for both types of 

boundary conditions. It is found that by increasing the magnetic 

potential, the dimensionless frequency can be increased for any 

value of the damping coefficient and vice versa. Moreover, 

negative/positive magnetic potential decreases/increases the 

vibration frequencies of thinner Nano beam. In addition, the 

vibrating frequency decreases and increases with increasing 

nonlocal parameter and length scale parameter respectively.                          
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1    INTRODUCTION 

 HE magneto-electro-elastic (MEE) material was first used in the 1970s, also MEE composite consisting of the 

Piezomagnetic and piezoelectric phase was discovered in this year by Boomgard et al [4]. The MEE 

nanomaterial, (including BiFeO3, NiFe2O4-PZT, BiTiO3-CoFe2O4) and their nanostructures became significant 

role in researches of Zheng et al [10], Martin et al [13], Wang et al [17] and Prashanthi et al [20]. For this reasons to 
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ascent the major potential of nanostructure for amplification many usages, their mechanical characteristics must be 

studied and well known before the introduction of the new designs. According to these considerations, the classical 

mechanic continuum theories are no longer suitable to predict the behavior of structures with a minimum specified 

size, why so they cannot provide accurate forecasts. So to fix this problem, Eringen [1-3-5-6-7-12] presented the 

nonlocal theories as an effective tool for considering size effects in continuum modeling. Besides various 

researchers like Lam et al [8] and Li et al [26] shown that the increase in stiffness not considered in nonlinear 

elasticity. Therefore, the nonlocal strain gradient theory is presented, upon which the stress field accounts for not 

only the nonlocal stress field but also the strain gradients stress field. In this paper, the models that have been 

developed extensively based on nonlocal elasticity theory of Eringen have been studied. Hence, Peddieson et al [9] 

have developed a nonlocal Euler-Bernoulli beam model by presenting a version of the nonlocal elasticity theory. 

They solved some representative problems especially for cantilever beams to illustrate the magnitude of predicted 

nonlocal effects. Also, several researchers like Wang [11], Wang et al [14], Civalek and Demir [18] have 

investigated the wave propagation and bending in carbon nanotubes (CNTs) and microtubules for nonlocal Euler-

Bernoulli and Timoshenko beam models. Murmu and Pradhan [15] analysed the small-size effects on single-walled 

carbon nanotubes (SWCNTs) in recent years. They described the stability response of SWCNT based on the 

nonlocal Timoshenko beam theory and considering elastic medium. The nonlocal parameter, aspect ratio of the 

SWCNT, Winkler and Pasternak parameters was studied. On the other hand, Yang et al [16] studied nonlinear free 

vibration of SWCNTs based on Eringen’s nonlocal elasticity theory and von Kármán geometric nonlinearity and 

solved the obtained equations by using the differential quadrature (DQ) method. The free vibration, buckling and 

bending of Timoshenko Nano beams based on a meshless method investigated by Roque et al [19]. Zenkour and 

Sobhy [21] studied the thermal buckling of single-layered graphene sheets on an elastic medium by using the 

sinusoidal shear deformation plate theory. Simsek and Yurtcu [22] analysed static bending and buckling of a 

functionally graded (FG) Nano beam under transvers distributed loads based on the nonlocal Timoshenko and 

Euler–Bernoulli beam theory. They extracted the governing equations by applying the principal of the minimum 

total potential energy and solved analytically the resulting equations. Ke et al [23] investigated free vibration of 

magneto-electro-elastic (MEE) nanoplates based on Kirchhoff plate and theory Eringen’s nonlocal theory. In this 

analysis, the governing equations and boundary conditions of a MEE Nanoplate that is under external magnetic 

potential, external electric potential, the biaxial force and temperature rise are extracted using the Hamilton’s 

principle and then solved analytically to obtain the natural frequencies of MEE nanoplates. They also studied the 

free vibration of the MEE Nano beam based on Timoshenko beam theory and solved numerically the resulting 

equations. Moreover, bending analysis of a thermo-magneto-electro-elastic Nano beam integrated with functionally 

graded Piezomagnetic layers studied by Arefi and Zenkour [28]. Buckling and vibration of Piezomagnetic and 

piezoelectric Nano beams based on third order beam model are verified by Ebrahimi and Barati [29-30-31-32-33]. 

However, they did not investigated magnet-electro-viscoelastic Nano beam via nonlocal strain gradient theory in 

their research’s.  

This paper investigates the free vibration of MEV Nano beam via nonlocal strain gradient theory. The Governing 

equations of Nano beam resting on viscoelastic layer are extracted based on Hamilton’s principle. Galerkin method 

is employed to analytically solve of the governing equations. Effects of various factors such as applied magnetic 

potential, nonlocal parameter, length scale parameter, the internal damping parameters and slenderness ratio on 

vibration characteristics of a Nano beam are studied. 

2    THEORY AND FORMULATION  

In Fig.1, a piezoelectric Nano beam with length L, width b, thickness ℎ is illustrated. Based on refined shear 

deformable beam theory, the arbitrary point displacement of Nano beam can be expressed by: 

 

     , , , b sw w
u x z t u x t z f z

x x

 
  

 
 

 

 (1) 

 

     , , , ,b sw x z t w x t w x t    (2) 
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Fig.1 

Geometry of MEV nanobeam with Winkler-Pasternak elastic 
medium. 

where , su w and 
bw denote axial displacement, shear component and bending component of transverse displacement 

of mid-plane, respectively. While,   f z  is a function that shows the shape of the shear strain/stress distribution 

along the beam thickness so that shear correction factor is not necessary. In the present study, a trigonometric nature 

is considered for shape function as described by Mantari et al [25]:  

 

   tanf z z mz  ,  0.03m    (3) 

 

According to the proposed beam model, non-zero strains can be written as follows: 

 

 
2 2

2 2

b s

xx

w wu
z f z

x x x


 
  
  

   
  

(4) 

 

  s

xz

w
g z

x






   

  

(5) 

 

where    1g z df z dz  . According to Maxwell’s equation, the electric potential   and magnetic potential   

distributions across the thickness are approximated as follows (Ke et al [24]):  

 

     
2

, , cos ,
z

x z t z x t V
h

        
  

(6) 

 

     
2

, , cos ,
z

x z t z x t
h

         
  

(7) 

 

In which h  . Also,   and V are the external magnetic potential and electric voltage applied to the Nano 

beam. The relation between electric field (
xE ,

zE ) and electric potential ( ) and magnet field (
xH ,

zH ) and 

magnet potential ( ), can be obtained as:  

 

 , cosx xE z
x





  


   

  

(8) 
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2
sin ,z

V
E z x t

h
          

  

(9) 

 

 , cosx xH z
x





  


   

  

(10) 

 

   ,z

2
sin ,zH z x t

h
  


        

  

(11) 

 

The governing equations can be extracted by applying Hamilton’s principle as follows: 
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 
0

t

S K W dt       
(12) 

 

where
S , 

K  and 
W  are the total strain energy, the kinetic energy and the work done by external applied forces, 

respectively. The relation of strain energy 
S  for MEV Nano beam can be derived as: 

 

 
1

2
S xx xx xz xz x x z z x x z z

v
D E D E B H B H dv             

 

(13) 

 

By calculating the first variation of strain energy 
S  and then substituting Eqs. (4)-(5) into resultant equation, 

we obtain: 
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       
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(14) 

 

In which the defined variables in Eq. (14) are obtained as follows: 
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(18) 

 

where , , , , , , ,ij ij i i i i iD B E H M N   and Q  are the stress, strain, electric displacement, magnetic induction electric 

field, magnetic field, bending moment, the axial force and shear force resultants, respectively. The relation of kinetic 

energy can be expressed as follows: 

 
2 2
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t t

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(19) 

 

In addition, the first variation of kinetic energy of present theory can be obtained in the form: 
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(20) 

 

In which the mass inertia are extracted as: 

 

   
2

2 2

0 1 2 3 4 5
2

, , , , , 1, , , , ,
h

h
I I I I I I z f zf z f dz




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(21) 

 

In addition, we obtain the work done by applied forces and the first variation of it using the following 

relationships: 
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   
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x x
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(23) 

 

In Eq. (22), F , denote external transverse load from viscoelastic medium which is obtained in Eq. (24): 

 

 
   2

2

b s b s

w b s p d

w w w w
F k w w k c

tx

   
   


   

 

(24) 

 

where 
pk  , 

wk  and 
dc  are shear, linear and damping coefficients of foundation. Also, EN and HN  denote electric 

and magnet loading, respectively. By substituting Eqs. (14), (20) and (23) into Eq. (12) and then integrating by parts, 

the following Euler–Lagrange equations are obtained when the coefficients of resultant equation, 

, , , ,b su w w     , are equal to zero as: 
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
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(29) 

3    THE NONLOCAL STRAIN GRADIENT THEORY FOR MEV MATERIALS  

According to Eringen’s nonlocal theory of elasticity, the stress state at a reference point x in an elastic continuum is 

regarded to be dependent not only depends on the strain state at  x  but also on  the strains state at all other points 

x  of the body. In addition, based on nonlocal strain gradient theory developed in Lam et al [8], the stress 

components are calculated in a displacement field from the combination of nonlocal elastic stress field and the strain 

gradient stress field. Therefore, the stress components can be obtained by: 

 
   0 1

ij ij ij       (30) 

 

where the stress 
 0

ij  and higher-order stress 
 1

ij  correspond to strain 
ij  and strain gradient

ij , respectively 

which are defined by: 
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     0

0 0
0

, ,
L

c

ij ijx x e a l x dx         
(31) 

 

     1 2

1 1
0

, ,
L

c

ij ijl x x e a l x dx         
(32) 

 

In which L is the length of the Nano beam and c

ij is the classical stress components at any point x   in the body, 

and  , ,i ix x e a l   is the kernel of the integral equation, in which a and l parameters correspond to the non-

localness and denote internal characteristic length (size of grain, granular distance, or lattice parameter) and external 

characteristic length of the system (crack length, wavelength, size, or dimensions of sample) respectively and 
ie is a 

constant appropriate to the material and has to be determined for each material independently. When the non-local 

functions  , ,i ix x e a l  satisfy the developed conditions by Eringen [6], the linear nonlocal differential operator 

can be assumed as the following: 

 

 
2 21i iL e a     for  i = 0,1  (33) 

 

By exerting Eq. (33) into Eq. (30), a general constitutive relation in a differential form for a Nano beam can be 

stated as:  

 

       
2 2 2 22 2 2 2 2 2

1 0 1 01 1 1 1c c

ij ij ije a e a e a e a l                   
       

   
 

(34) 

 

where 2 2 2x     denotes the Laplacian operator. By retaining terms of order  2o   and assuming 
0 1e e e   , 

we can be written the general constitutive relation in simplified form as follows:  

 

   
2 2 2 21 1 c

ij ijea l      
 

   
 

(35) 

 

Similarly, the following equations are obtained for a MEV Nano beam: 

 

   
2 2 2 21 1 c

j jea D l D     
 

   
 

(36) 

 

   
2 2 2 21 1 c

j jea B l B     
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(37) 

 

In above equations, c

ij  , c

jD  and c

jB  are given by [29] as follows:  

 
c

ij ijkl kl mij m nij nC e E q H       (38) 

 
c

j jkl kl jm m jn nD e E d H       (39) 

 
c

j jkl kl jm m jn nB q d E H       (40) 

 

where kl  is the strain and ijklC , mije , jm , nijq , jnd  and jn  denote the elastic, piezoelectric, dielectric, 

Piezomagnetic, magnetoelectric and magnetic constants, respectively. Finally, the stress-strain relations of a MEV 

solid can be expressed as: 

 

    2 2

11 31 311 1xx xx z zC e E q H             (41) 
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    2 2

55 15 151 1xz xz x xC e E q H             (42) 

 

    2 2
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where  
2

ea   and 2l  . Applying the Kelvin-Voigt viscoelastic-damping model with internal damping 

parameter  0g   and integrating Eqs. (41)- (46) over the cross-section area of Nano beam, the nonlocal Eqs. (47)- 

(54) are obtained for magneto-electro-viscoelastic Nano beam as: 
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              
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(49) 
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(52) 
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2
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(53) 
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2
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z
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   
 

 

(54) 

 

In which the cross-sectional rigidities are expressed as follows: 

 

   
2

2 2

11 11 11 11 11 11 11
2

, , , , , 1, , , , ,
h

z f zz zf ff

h
J J J J J J C z f z zf f dz




   

 

(55) 

 

    
2

31 31 31 31
2

, , sin 1, ,
h

e e e

h
K X Y e z z f dz 




   

 

(56) 
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    
2

31 31 31 31
2

, , sin 1, ,
h

m m m

h
K X Y q z z f dz 




   

 

(57) 

 

 
2

2

55 55
2

h

h
K C g z dz




   

 

(58) 

 

     
2

15 15 15 15
2

, , cos
h

h
X Y e q g z dz




   

 

(59) 

 

     
2

2
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2
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h
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(60) 

 

     
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2
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(61) 

 

   
2
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2

2 2 2 2
, , sin

h
e m

h

V V
F F d d z dz

h h h h
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



  
   

 
  

 

(62) 

 

Also, summation of normal forces and moments due to magneto-electrical field can be defined by: 

 

   
2

31 31
2

2 2
, , 1, ,

h
E H E H E H

b b s s
h

V
N N M M M M e q z f dz

h h





 
     

 
  

 

(63) 

 

The governing equations of a refined Nano beam under electrical and magnetic field based on the nonlocal strain 

gradient theory in terms of the displacement can be obtained by substituting Eqs. (47)- (54) into Eqs. (25)- (29) as 

follows: 

 

 

 

3 32
2

0 1 22 2 2

3 32
2
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1

1 1 0

b s

z f e mb s
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

 


  
    

     

       
           

        

 

 

 

 

(64) 
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 
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   
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 


    
           

     
        

       
          

         
0



 

 

 

 

 

(65) 
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Y X








    
           

     
        

     
        

      


   


 

2

31 152 2
0mY Y

x x

 
   
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(66) 
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   
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(67) 
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 
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    
           

     

 
 

(68) 

4    SOLUTION PROCEDURE  

The following boundary conditions for exact solution of the governing equations of a magneto-electro-viscoelastic 

Nano beam are expressed as: 

Simply-supported (S):  

 

0 0,b s

u
w w M at x L

x


    


 

 

(69) 

 

Clamped (C): 

 

 
0 0,

b s

b s

w w
u w w at x L

x

 
    


 

 

(70) 

 

According to the defined boundary conditions, the displacement components can be given by Fourier series 

expansion as: 

 

 
 

1

, nn i t

n

n

X x
u x t U e
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
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
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(71) 
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1

, ni t
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




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(72) 

 

   
1
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s sn n

n

w x t W X x e






  
 

(73) 

 

   
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, ni t

n n

n

x t X x e
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


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(74) 

 

   
1

, ni t

n n

n

x t X x e






   
 

(75) 

 

with substituting Eqs. (71)-(75) into Eqs. (64)-(68) and using Galerkin
’
s method, we can be obtained the following 

equations: 

 

     

     

     
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    

    

 

      

       

       

      

 

 

 

 

(76) 
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(80) 

 

where: 
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The admissible function 
nX  is considered as mode shape according to boundary conditions as follows (Leissa 

[2]):  

 

: sinn

n
S S X x

L

 
   

 
 

 

(84) 

 

2: sinn

n
C C X x

L

 
   

 
 

 

(85) 

 

Finally, the Eqs. (76)-(80) can be written in a matrix form as follows:   

 

       2 0n nM D K      (86) 

  

In Eq. (86),   , , , ,
T

n nb sn n nU W W    are the unknown coefficients and  M ,  D  and  K  are the mass, 

damping, and stiffness matrices for Nano beam which have been presented in Appendix. The properties materials of 

magneto-electro-viscoelastic Nano beam are presented in Table 1. (Ke et al [24]). 
 

Table 1 

Material constants for MEV BaTiO3–CoFe2O4 composite. 

Properties BiTiO3 - CoFe2O4 

                         11C GPa                                                                                        154.81 

                        
55C                                                                                                    44.2 

                         2

31e Cm                                                                                          -7.54 

                        
15e                                                                                                      5.8 

                         31 /q N Am                                                                                    89.23 

                        
15q                                                                                                   275 

                        9 2 2 1

11 10 C m N                                                                                5.64 

                       
33                                                                                                       5.95 

                        4 2 2

11 10 Ns C                                                                               -297 

                       
33                                                                                                    650.3 

                        12

11 10 /d Ns VC                                                                                 5.36 

                       
33d                                                                                                  2752.56 

                        3kgm                                                                5550 

5    NUMERICAL RESULTS AND DISCUSSIONS   

In this section, the vibration behavior of Nano beam made of piezoelectric material in magnetic field is investigated. 

In order to confirm the accuracy of the results, validation of the obtained results of the present study are carried with 

those provided by Ebrahimi et al [27]. Hence, the frequencies obtained from the two models are compared with 

respect to the power low index (P), temperature variations ( T ) and damping coefficient of zero for different 

values of the nonlocal parameter and presented in Table 2. In addition, the dimensionless form of viscoelastic and 

dimensionless frequency parameters with 
11C E  and 3 /12I h  are defined by: 

 
4 2 2

2 0

2
, , , ,w w p p d

gA L L L EI
L K k K k C c

EI EI EI ALAEI


  


      (87) 
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Table 2 

Comparison of the non-dimensional frequency obtained from the present study and Reference [32] for undamped S-S Nano 

beam. 

/L h  P T    (nm2) Ebrahimi and Salari [27] Present 

20 0 0 0 9.6468 9.65189 

20 0 0 1 9.1859 9.19080 

20 0 0 2 8.7825 8.78720 

20 0 0 3 8.4254 8.42995 

 

 

 
(a) Simply supported nanobeam (S-S) 

 
(b) Clamped nanobeam (C-C) 

Fig.2 

Effect of magnetic potential on vibration frequency of Nano beam respect to different damping coefficient ( / 20L h  , V= 0,   

1  , 0   , 15wK  , 5PK  , 0.01  ). 

 

Fig. 2 shows influence of magnetic potentials on the changes of non-dimensional frequency of magneto-electro-

viscoelastic Nano beam respect to damping coefficient (C) for different boundary conditions S-S and C-C at 

slenderness ratio / 20L h  , nonlocal parameter 21nm  , Winkler constant 15wK  , Pasternak constant 

5PK  , internal damping parameter 0.01  . As can be seen, influence of damping coefficient (C) led to a 

decrease of non-dimensional frequencies of magneto- electro-viscoelastic Nano beams for both types of boundary 

conditions. This decrease in the vibrational frequency is significantly observed at larger values of the damping 

coefficient. Furthermore, vibrational frequency per magnitude of the damping coefficient can be affected by 

applying a magnetic field to the Nano beam. So can be increased the dimensionless frequency for any value of the 

damping coefficient by increasing the magnetic potential, and vice versa. The reason for this is the change in the 

stiffness of the Nano beam by exerting magnetic potentials. Hence, can be controlled the effect of the damping 

coefficient on the vibrational frequency according to the sign and the magnitude of the magnetic potential. 

 

 
(a) Simply supported nanobeam (S-S) 

 
 (b) Clamped nanobeam (C-C) 

Fig.3  

Effect of nonlocal parameter on vibration frequency of nanobeam respect to different damping coefficient ( / 20L h  , 

0V   , 0  , 15wK  , 5PK  , 0.01  ). 
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(a) Simply supported nanobeam (S-S) 

 
(b) Clamped nanobeam (C-C) 

Fig. 4  

Effect of length scale parameter on vibration frequency of nanobeam respect to different damping coefficient ( / 20L h  , 

0V   , 1  , 15wK  , 5PK  , 0.01  ). 

 

Influence of the nonlocal and length scale parameters ( ,  ) on non-dimensional frequency of the smart 

magneto-electro-viscoelastic Nano beam versus damping coefficient at / 20L h  , 0V   , 15wK  , 5PK   

and 0.01   is shown in Figs. 3 and 4. It can be concluded that the increase of the nonlocal parameter leads to the 

reduction of the dimensionless frequency values. The cause of this decrease is the production of a stiffness-softening 

effect in the MEV Nano beam when the nonlocal parameter rises. On the other hand, the length scale parameter has 

an opposite effect on the dimensionless frequency, so that its increase leads to production a stiffness-hardening 

effect in the Nano beam and thus the frequency increases. It is also seen that the dimensionless frequencies of a C-C 

magneto-electro-viscoelastic Nano beam are larger than S-S Nano beam. In fact, Stronger support in the corners 

makes the beam more rigid so that the vibration frequency rises. 

 

  
Fig. 5  

Effect of internal damping parameter on vibration frequency of  S-S Nano beam respect to electric voltage and magnetic 

potential ( / 20L h  , 1  , 1  , 15wK  , 5PK  ). 

 

Fig. 5 presents influence of the internal damping constant ( ) on vibration frequency of magneto-electro-

viscoelastic Nano beam with simply- supported boundary conditions versus electric voltage (V) and magnetic 

potential ( ) at / 20L h  , 1  , 1  , 15wK  , 5PK   and C = 5. In this figure, with the increase of the 

internal damping parameter, the vibration frequency decreases for each constant value of the magnetic potential and 

electrical voltage. In addition, it can be seen that by increasing the applied voltage, less quantities are obtained for 

dimensionless frequencies. This decrease is due to the fact that the exertion of positive and negative voltages leads 

to the production of compressive and tensile forces in the magneto-electro-viscoelastic Nano beams, respectively. 

On the other hand, magnetic field has an opposite effect on vibration frequencies. Therefore, the increase of 

magnetic potential leads to increase of the dimensionless frequency for any constant value of internal damping 

parameter. It is also clear that by changing the internal damping parameter ( ), the effect of electrical voltage and 

magnetic potential on the vibration frequencies can be controlled for each sign and value. 
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Fig. 6  

Effect of slenderness ratio on vibration frequency of S-S 

Nano beam respect to different magnetic potential (V= 0, 

1  , 1  , 15wK  , 5PK  , 0.01  ).   

 

Fig. 6 shows the effect of slenderness ratio ( /L h ) on dimensionless frequency of magneto-electro-viscoelastic 

Nano beam with simply-supported edges for different values of magnetic potential at, 1  , 1  , V = 0,  

15wK  , 5PK    and 0.01  . As can be seen, the effect of the magnetic field is considerable in larger values of 

the slenderness ratio. Thus, effect of the magnetic field on the thinner Nano beams is more than thicker Nano beams, 

so that the vibrational frequencies of thinner Nano beams increase for positive potential and decrease for negative 

potential. The cause of this fact is the production of tensile and compressive forces in the MEV Nano beam due to 

the exertion of positive and negative potentials, respectively. In addition, zero magnetic potential do not produce any 

force in the Nano beam, so it will not affect the dimensionless frequency by changing the slenderness ratio.  

6    CONCLUSION 

This article investigates free vibration of magneto-electro-viscoelastic Nano beam resting on viscoelastic medium 

based on a nonlocal refined beam theory with various boundary conditions. According to nonlocal strain gradient 

theory, the governing equations are obtained using Hamilton’s principle and solved implementing an analytical 

solution. The results denote which the nonlocal and strain gradient parameters decreases the vibration frequency of 

magneto-electro-viscoelastic Nano beam. As shown that increase of internal damping parameter and damping 

coefficient leads to reduction of vibration frequencies. The most important consequence of this research is that the 

exertion of a positive and negative magnetic field to the MEV Nano beam produces tensile and compressive forces, 

respectively that have a significant effect on the vibrational frequency in larger value of slenderness ratio. Hence, 

negative/positive magnetic potential decreases/increases the vibration frequencies of thinner Nano beam. Therefore, 

the effect of these parameters should be considered in the design of devices and practical applications. 

APPENDIX 

 11 0 13 11M I X X    ,   12 1 11 13M I X X   ,  13 2 11 13M I X X   ,  21 1 40 20M I X X  , 

   22 0 20 00 4 20 40M I X X I X X      ,    22 0 20 00 3 20 40M I X X I X X     ,  

 31 2 40 20M I X X   ,    32 0 20 00 3 20 40M I X X I X X     , 

   33 0 20 00 5 20 40M I X X I X X      , 

 11 0 11 15 13C ig J X X   ,  12 0 11 13 15

zC ig J X X   ,  13 0 11 13 15

fC ig J X X   , 

 21 0 11 60 40

zC ig J X X   ,    22 00 20 0 11 40 60

zz

dC i X X c ig J X X      , 

   23 00 20 0 11 40 60

zf

dC i X X c ig J X X      ,  31 0 11 60 40

fC ig J X X   , 

   32 00 20 0 11 40 60

zf

dC i X X c ig J X X      ,  

     33 00 20 0 11 40 60 0 55 40 20

ff

dC i X X c ig J X X ig K X X         , 

 11 11 15 13K J X X   ,  12 11 13 15

zK J X X   ,  13 11 13 15

fK J X X   , 
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 14 31 13 11

eK K X X   ,  15 31 13 11

mK K X X   ,  21 11 60 40

zK J X X   , 

        22 20 40 00 20 40 20 11 40 60

E H zz

w pK N N X X k X X k X X J X X             ,  

        23 20 40 00 20 40 20 11 40 60

E H zf

d w pK N N X X c k X X k X X J X X             , 

 24 31 40 20

eK X X X   ,   25 31 40 20

mK X X X   ,   31 11 60 40

fK J X X   , 

        32 20 40 00 20 40 20 11 40 60

E H zf

w pK N N X X k X X k X X J X X             ,  

          33 20 40 00 20 40 20 55 40 20 11 40 60

E H ff

w pK N N X X k X X k X X K X X J X X               , 

  34 31 15 40 20

eK Y X X X    ,    35 31 15 40 20

mK Y Y X X    ,  41 31 20 40

eK K X X   ,  

 42 31 40 20

eK X X X   ,   43 15 31 20 40

eK X Y X X    , 

   44 11 20 40 33 20 00K X X X X X X      ,    45 11 20 40 33 20 00K Y X X Y X X      , 

 51 31 20 40

mK K X X   ,  52 31 40 20

mK X X X   ,   53 31 15 40 20

mK Y Y X X    , 

   54 11 20 40 33 20 00K Y X X Y X X      ,    55 11 20 40 33 20 00K K X X K X X      , 

33 33 0e mF F   
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