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 ABSTRACT 

 The dynamic responses of membrane are completely dependent on 

Pre-tensioned forces which are applied over a boundary of arbitrary 

curvilinear shape. In most practical cases, the dynamic responses of 

membrane structures are undesirable. Whilst they can be designed 

as vibration-based energy harvesters. In this paper a smart flat 

membrane sheet (SFMS) model for vibration-based energy 

harvester is proposed. The SFMS is made of an orthotropic 

polyvinylidene fluoride (PVDF) flat layer that has piezoelectricity 

effect. For this aim, polarization vector of PVDF layer is 

considered parallel to the applied electric field intensity vector. 

Electrodynamics governing equations of transverse motion of 

SFMS including active and modified pre-tensioned force are 

exploited. Transverse displacement component is expanded by the 

separable form corresponding to the axial and transverse and the 

linear ODE of motion based on generalized shape coefficients is 

obtained using Galerkin method. Finally, the explicit relation 

between forced vibration of SFMS and current and voltage 

harvesting are obtained. Numerical energy harvesting analyses 

were developed for an orthotropic rectangle SFMS and the voltage 

as function of the time is calculated based on different resistances. 

Parametric simulation shows a 1 m length and 0.5 width SFMS has 

ability to produce a peak to peak voltage about of 30 mV.                 

                                © 2019 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

HE use of membranes and cables is increasing in aerospace, mechanic and civil engineering applications to 

achieve extremely large space structures such as antennas, telescopes, aircrafts, and solar concentrators. These 

structures are typically built with very light materials which are optimally used. The general form of the governing 

equations of the membrane theory of thin shells can also be found in [1]. A brief and useful historical review of 

theoretical and few experimental studies on membrane vibration have been published by [2]. In modern engineering 

a big effort is made to reduce the weight of structures. Reducing the weight bears advantages which lead to lower 

______ 
*
Corresponding author. Tel.: +98 41 35539207; Fax.: +98 41 35539200. 

E-mail address: y.shahbazi@tabriziau.ac.ir (Y. Shahbazi). 

T 

https://dx.doi.org/10.22034/jsm.2019.664219


                                                                                                                                                      Y. Shahbazi                       79 

 

© 2019 IAU, Arak Branch 

manufacturing and operational costs and less required raw materials. However, light-weight structures tend to be 

more sensitive to static as well as dynamic instabilities. A solution to this problem without drastically changing the 

structural weight seems to be the implementation of smart materials to sense as well as to control the instabilities. 

An option which has been extensively investigated in recent years is the integration of piezoelectric patches or film 

in these mostly plate or shell-like structures. Piezoelectric materials belong to the so-called smart materials, or multi-

functional materials, which have the ability to respond significantly to stimuli of different physical natures. If the 

coupling between the physical fields of different types has sufficient magnitude, the coupling can be used to build 

discrete or distributed transducers of various types, which can be used as sensors, actuators, or even integrated in 

structures with various degrees of tailoring and complexity (e.g. as fibers), to make them controllable or responsive 

to their environment (e.g. for shape morphing, precision shape control, damage detection, dynamic response. The 

direct piezoelectric effect consists in the ability of certain crystalline materials to generate an electrical charge in 

proportion to an externally applied force; the direct effect is used in force transducers. According to the inverse 

piezoelectric effect, an electric field parallel to the direction of polarization induces an expansion of the material [3]. 

In recent years, the development of energy harvesting from vibrating structures with piezoelectric sensors mounted 

on the surface has been a major focus of many research groups. Yipeng Wu et al. have presented the analytical 

expression of the harvested power based on a novel nonlinear energy extraction technique in which the harvested 

power is optimized whatever the connected load [4]. Furthermore, functionally graded piezoelectric materials with 

(FGPMs) are used as harvesting material. The properties of piezoelectric patches in FGPM layer change through the 

thickness direction. The theoretical and finite element investigations of FGPMs for shunted passive vibration 

damping of laminated composite beams have derived by M. Lezgy-Nazargah et al. [5]. They have determined 

optimal values of the electric components belonging to each shunt circuit. Several excellent review articles have 

been published the field of energy harvesting [6-10]. Other relevant studies include [11-15] have presented some 

special models of energy harvesters based on beam model. Most of previous studies have just considered a linear or 

nonlinear modelling of unimorph beams or plates. To the author’s knowledge, the use of innovative linear and/or 

nonlinear structures other than unimorph beams or plates have not yet been considered satisfactorily. A dome-

shaped model for piezoelectric micro machined ultrasonic transducer structure was proposed by Peng et al. [16]. 

Their results showed that a considerable improvement of electromechanical coupling performance was achieved 

with the dome-shaped model. Their research may be a motivation for new energy harvesting systems. Recently, 

Shahbazi et al. presented a new class of smart cylindrical membrane shell panel energy harvester for MEMS 

applications [17]. Despite comparison confirmed that their cylindrical membrane shell panel energy harvester could 

be a new perfect candidate for implementation in micro generators, the production of dome-shaped model in Micro 

and Nano scale will have difficulty.  

Hence, in this paper, we try to present the electrodynamic governing equation and vibration amplitude to voltage 

harvesting relation of smart flat membrane sheet (SFMS) which can be used as a civil and architecture structure. For 

this aim, the Donnell’s linear strain–displacement relationship and classical equilibrium equations of plane elasticity 

are used to obtain the system of coupled linear differential governing equation in terms of transverse displacement. 

The transverse function satisfying simply supported boundary conditions in the separable form corresponding to the 

axial and transverse are considered and the Galerkin method is applied to the governing electrodynamic equations 

which lead to a second-order ordinary linear differential equation. Finally, case studies are performed and the 

voltage generated with different resistance of SFMS energy harvester due to harmonic ambient vibration is 

simulated. 

2    EQUATION OF MOTION OF SFMS FOR TRANSVERSE VIBRATIONS 

2.1 Mathematical assumption 

The SFMS is assumed to be stretched with sufficiently large stresses so that, if the subsequent transverse vibrational 

displacement is kept small, the stresses will remain essentially constant during vibration. In practice, this usually 

consists of stretching a membrane uniformly over a support frame. However, the tensile stress need not be uniform, 

and in reality it never is. Moreover, in-plane shear stresses, in addition to tensile stresses, may be applied at the 

membrane boundary. Such stresses are limited only by the requirement that at no point, and in no direction, within 

the membrane region will there be compressive stress. If a compressive stress component were to exist, the 

membrane would wrinkle because of its complete lack of bending stiffness.  

In order to driving of governing electromechanical dynamics equations of motion, following assumptions are 

made: 
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 PVDF layer is considered orthotropic and are so arranged that at each point, its mutually orthogonal 

directions of elastic symmetry are coincided with x-y Cartesian coordinate. 

 Transverse normal and shear strains, i.e. z , xz , and yz  are negligible.  

 The applied electric field intensity is assumed to be distributed uniformly along the thickness direction. 

 The polarization vector is assumed parallel to the applied electric field intensity vector both parallel to the 

thickness directions.  

 The SFMS slopes at all points and in all directions are small during the vibratory motion. 

The membrane strain components z
xx , 

z
yy , and 

z
xy  at an arbitrary point of the SFMS, at a distance z from 

middle surface, are related to the middle surface strains 0
xx , 

0
yy , 

0
xy  and to changes in the curvature and torsion 

of middle surface x , y , and xy  by the following three relations: 

 
0 0 0z z z

xx x x yy y y xy xy xyz z z               (1) 

 

The linear matrices of membrane strains associated with the displacement field of SFMS and the curvature 

changes are written as: 

 

0 0 0
x y xy

u v u v

x y y x
  

   
   
   

   

2 2 2

2 2
2x y xy

w w w

x yx y
  

  
     

  
  

(2) 

2.2 Piezoelectric constitutive equations 

The constitutive equations for the Converse and Direct effects of SFMS can be written, as follows: 

 

i ij j mi mS d E          Converse Piezoelectric Effect 

T
m mi i mk kD d E     Direct Piezoelectric Effect  

(3) 

 

In spite of mentioned assumptions i.e. z , xz , and yz  are negligible, so  
3 1




,  
3 1




,  
3 3

S


,  
3 3

d


, 

 
3 1

E


,  
3 1

D


, and  
3 3

 are the membrane strain matrices, the membrane stress matrices, the compliance matrices, 

the piezoelectric strain constant matrices, the applied electric field vector, the electric displacement vector and  the 

permittivity matrices, respectively. The electric field is applied only in z- direction here. Then, 0xE E  . It is 

worthwhile to notice that assuming the electric field as applied in z- direction, the strain will be generated in 

the x and y directions and 33 0d  . Since compliance  S of any material is the inverse of its stiffness  Q , the 

converse effect Eq. (3) can be written as:  

 

       

0

0 31
0

0 32

0
0

0

xx x x
i

y y y y z

xy xy xyxy

d

Q z Q Q d E

  

   

  

                                                

      (4) 

 

where, 0x , 0y , and 0xy are the initial normal and shear stress, respectively. These stress applied on a rectangle 

SFMS, as shown in Fig. 1, are related to initial force per unit length 0xT , 0yT , and xyT  as below: 
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       (5) 

 

 
(a) 

 

 
(b) 

Fig.1 

Rectangular smart flat membrane sheet (SFMS). (a) Initial normal and shear stress for; (b) Polarization Direction and 

distribution of surface electrodes. 

 

The SFMS is assumed orthotropic with following stiffness matrices  Q : 

 

 
11 12

12 22

66

0

0

0 0

Q Q

Q Q Q

Q

 
 


 
  

      (6) 

 

where, 
 

11 21

xx

xy yy xx

E
Q

E E



, 

 
12 21

xy yy

xy yy xx

E
Q

E E







, 

 
22 21

yy

xy yy xx

E
Q

E E



, and 66 xyQ G . In these 

expressions, xxE , yyE , xy , and xyG  are the Young’s modules, Poisson’s ratio and Shear modules, respectively. 

It’s worth mentioning that such stresses are limited only by the requirement that at no point, and in no direction, 

within the membrane region will there be compressive stress and the wrinkle will not occur. 

The tension resultants of the membrane stresses xT , yT , and xyT which are the total load acting per unit length 

of the middle surface of the SFMS can be calculated by the following integrations:  

 

       

0

0 312 2 2 2
0

0 32

0
02 2 2 2

0

h h h h
xx x x x

y y y y y z

h h h h
xy xy xy xyxy

T d

T dz dz Q z Q dz Q d E dz

T

  

   

     

                                                                          

          (7) 

 

By introducing the following matrices and vectors rsA , rsB , 1rP . 

 

    
2

2

, 1, , , ,

h

rs rs

h

A B Q z dz r s x y z



        (8) 

 

   
312

1 32

2

, ,

0

h

r z

h

d

P Q d E dz r x y z



  
  

   
    

       (9) 

 

Also, considering the 0B   for single layer SMFS, The Eq. (7) will yield as: 
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      (10) 

 

The Eq. (10) can be divided to initial, passive and active following stress resultant parts, namely: 

 

0

0

0 0

x x x x

y y y y

xy xy xy

T T T P

T T T P

T T T

       
       

         
       

           

      (11) 

 

with the same calculation and based on mentioned assumptions, the direct piezoelectric effect can be written in its 

expanded form as: 

 

31 32z x y zz zD d d E          (12) 

 

Substituting Eq. (5) in Eq. (12), the electrical displacement of SMFS can be written as function of stiffness 

components. Namely: 

 

   

   

 

0 0
31 0 32 0 31 11 32 12 32 22 31 12

31 11 32 12 32 22 31 12

2 2
31 11 31 32 12 32 222
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z x x y y
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d d d Q d Q d Q d Q

D z d Q d Q z d Q d Q

d Q d d Q d Q E

   

   

     
 
 

     
 
     
 

      (13) 

 

The charge developed on the i
th

 electrode surface distributed between 1 2,i ix x 
 

 and 1 2,i iy y 
 

 can be expressed 

as the electrical displacement integral on the area of the surface. The charge expression in absence of inplane 

displacement components u and v can be written: 

 

   

   

 
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i
z
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i
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 
    

       
     

      
                  

 
     

  

 
2 2

1 2

i i

i i

x y

x y

xdy        (14) 

2.3 Electrodynamics equation of motion of SFMS 

In this part, the electrodynamics equations of motion of SFMS are derived. For this aim, we have followed whatever 

have presented for a passive membrane structure [1].  

Assume a SFMS which is stretched over boundary regions. The stress applied externally may vary along the 

boundary. A three-dimensional sketch of its middle surface in a typical displaced position with membrane stress 

resultants xT , yT , xyT  and their variations acting on each  side of  the element is shown in Fig. 2.  

Assuming  that  the  SFMS slopes  at  all  points  and  in  all directions  are  small  during  the  vibratory  motion.  

Summing forces in the transverse (z) direction leads to: 
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 
2

2
( , , )

dx

w
q x y t hdxdy

t






 



      (15) 

 

where,   is mass density per unit volume of the material, and h is the membrane thickness. The harmonic 

pressure 1 2 1 2( , , ) [ ( ) ( )][ ( ) ( )]sin( )q x y t p H x x H x x H y y H y y t       , having units of force/area, 

distributed over the surface of the membrane in domain 1 2x x  and 1 2y y . It’s worth mentioning that such 

stresses may be applied on a specific surface of membrane in which the distribution should be presented using 

Heaviside function. By replacing xT  with its average value   / / 2x x xT T T y dy      , and 
w

x




 with its 

average value 
( / )

/ 2
w w w x

dy
x x y
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     
, doing the same for yT , xyT , yxT , and 

w

y




, and finally 

remaining just one and second order differential terms one obtains: 

 
2

2
( , , )x y xy yx

w w w w w
T T T T q x y t h

x x y y x y y x t


              
          

              
      (16) 

 

Summing moments about an axis parallel to z, and through the center of mass of the element shows that 

xy yxT T . Also, summing forces in the x and y directions, and assuming that there are no significant accelerations  

or  body  forces  (e.g.,  gravity, centrifugal) in the x and y directions, one obtains the following classical equilibrium 

equations of plane elasticity.  

 

   
0

xyx TT

x y


 

 
      (17) 

 

   
0

y xyT T

y x

 
 

 
      (18) 

 

Multiplying Eq. (17) by 
w

x




, and Eq. (18) by 

w

y




, and then subtracting both from (16), the transversely 

electrodynamics equation of motion of SFMS becomes: 

 
2 2 2 2

2 2 2
2 ( , , )x xy y

w w w w
T T T q x y t h

x yx y t


   
   

   
      (19) 

 

It is worth to mentioning that xT , yT , and xyT  are functions of x, y , and t. In following, we assumed that the 

initial stress resultants are sufficiently large that remain essentially unchanged due to the vibratory displacement. 

Also, the initial shear stress 0xyT , and active loads xP  , yP  are neglected. In spite of mentioned assumption, it can 

be written that 0 0 0x y xy x yT T T T T       . 
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Fig.2 

Stress resultants on infinitesimal SFMS element. 

3    FORCED VIBRATION AND ENERGY HARVESTING ANALYSES 

3.1 Mathematical formulation  

In calculating of forced vibration response of the SFMS, deflection function  , ,w x y t  satisfying the boundary 

condition, Eq. (20), in the separable form corresponding to the axial and transverse wave numbers i, j can be written 

as:  

 

       
1 1

, , sin sinmn m n

m n

w x y t Z t x y 
 

 

       (20) 

 

Here, m

m

a


  ,  n

n

b


  , and  mnZ t  is the generalized coordinate that is unknown function of t. Form the 

orthogonality of the trigonometric function, it can be concluded that: 

 

       
0 0

, ,0 , ,0 sin sin
a b

mn m nZ x y w x y x y dxdy          (21) 

 

       
0 0

, ,0 , ,0 sin sin
a b

mn m nZ x y w x y x y dxdy          (22) 

 

where  , ,0w x y  and  , ,0w x y  are initial deflection and velocity of SMFS, respectively. Substituting the 

displacement function Eq. (20) into Eq. (19), we apply the Galerkin method; that is, each phrase of Eq. (19) 

multiplied by the corresponding special parts of the displacements in Eq. (20) and the result is integrated over the 

domain of the SFMS. Hence, the Eq. (19) will be changed to system of linear second-order ODEs in terms of the 

unknown time function  mnZ t , as below: 

 

 
 

2

1 22
sin( )

mn
mn mn

Z t
k k Z t q t

t



 


      (23) 

 

where, 

 

1k h          2 2
2 0 0x m y nk T T    

       2 1 2 1

4
cos cos cos cosmn m m n n

m n

p
q x x y y

ab
   

 
          

(24) 

 

The linear second-order differential Eq. (23) has following response: 
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       2 2

2
1 1 2 1

, ,0 sin , ,0 sinmn
mn mn mn

k k q
Z t Z x y t Z x y t t

k k k k




   
            

         (25) 

 

Recalling Eq. (20), the deflection function  , ,w x y t  of SFMS can be written as:  

 

           2 2

2
1 1 2 11 1

, , , ,0 sin , ,0 sin sin sinmn
mn mn m n

i j

k k q
w x y t Z x y t Z x y t t x y

k k k k
  



 

 

     
               
          (26) 

 

Assuming the uniform electric field 
i
ZE  can be expressed as i i i

Z
i

V V
E

z h


   


, which the iV  is the potential 

difference between the upper and lower surface of the i
th

 distributed electrode. It is worthwhile to notice that the 

current, charge and voltage are all functions of the time. The frequency   of these periodic functions is dependent 

upon the external distributed load ( , , )q x y t applied to the SMFS. The amplitude of the current is that of the charge 

times the excitation frequency that is given as: 

 

( ) ( )I t Q t          (27) 

 

The relation between voltage and current for an electrical circuit with pure resistance is expressed as: 

 

( )
( )

V t
I t

R
          (28) 

 

Combining Eq. (13), (25), (26) and Eq. (27), the amplitude of the current for i
th

 distributed electrode can be 

determined as: 
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d Q d d Q d Q dxdy
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



      
                



    

 

 

       
(29) 

 

Substituting  , ,w x y t from Eq. (26) at rest condition in Eq. (29), integrating in domain 1 2,i ix x 
 

 and 

1 2,i iy y 
 

, current for i
th

 distributed can be expressed as ( )i Num
I t

Den
  in which: 
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zz

R
Den d Q d d Q d Q x x y y

h


          

(30) 

4    NUMERICAL ANALYSIS AND DISCUSSION  

In following, the numerical energy harvesting analyses were developed for an orthotropic rectangle SFMS. The 

analyses have been performed with following dimensions and material properties: 1a m , 0.5b m , 2h mm , 

31800kg m  , 5.2y MPa  , 2.7xxE GPa , 2.5yyE GPa , 0.53xyG GPa , 0.326xy  , 
12

31 23 10d m V  , 
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12
32 2.3 10d m V  , and 

8
33 1.6 10 F m   . The SFMS is assumed has stretched with 0.6 y .  The simulation 

has done only for m=n=1. At first, the effect of the   on the maximum deflection is analyzed. The SFMS should be 

excited at fundamental natural frequency where it experiences the largest deflections and presents maximum energy 

harvesting. However, in order to have a behavior correctly described by a linear theory, the vibration amplitude of 

the SFMS must be of the order of 1/10 of the thickness, or smaller.  

Hence, the SFMS is excited at the spectral frequencies including 50, 100, 150, 288.6 Hz  and the 

maximum deflections in midpoint ,
2 2

a b
x y  of SFMS are calculated numerically using MATLAB software. 

The deflection function of midpoint in the considered spectral frequencies are shown in Fig. 3 to Fig. 6. In all 

simulation, the linear assumption is evaluated. Afterwards, the voltage as function of the time is calculated based on 

different resistances 0.1, 0.5, 1, 5 k . In this simulation, the electrodes distribution is assumed on the whole of 

SFMS layers, i.e.  1 20,x x a   and  1 20,y y b  . To obtain the maximum voltage harvesting, the SFMS 

should be excited at the frequency which present maximum deflection i.e. fundamental natural frequency 

288.6 Hz  .  

 

 

 

 

 

 

 

 

 

 

Fig.3 

Forced vibration response of SFMS for 50 Hz  . 

  

 

 
 
 
 
 
 
 

 

Fig.4 

Forced vibration response of SFMS for 100 Hz  . 

  

 

 
 
 
 
 
 
 
 

Fig.5 

Forced vibration response of SFMS for 150 Hz  . 
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Fig.6 

Forced vibration response of SFMS for 288.6 Hz  . 

 

The voltage harvesting for different resistances are illustrated in Fig. 7 to Fig. 10.  It can be seen that a peak-to-

peak voltage of 30 mV is produced. 

 

 

 

 

 

 

 

 

 

Fig.7 

Amplitude of voltage harvesting as a function of the time 

for resistance 0.1R k  . 

  

 

 
 
 
 
 
 

 

Fig.8 

Amplitude of voltage harvesting as a function of the time 

for resistance 0.5R k  . 

  

 

 
 
 
 
 
 

Fig.9 

Amplitude of voltage harvesting as a function of the time 

for resistance 1R k  . 

  

 

 
 
 
 
 
 
 

Fig.10 

Amplitude of voltage harvesting as a function of the time 

for resistance 5R k  . 
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According to Eq. (26), Eq. (29) and Eq. (3), it may be concluded that the peak to peak voltage harvesting is 

depended on forced vibration frequency and vibration amplitude of SFMS. The control of forced vibration 

frequency is illogical while the vibration amplitude which itself is effected by the influence of pretension forces and 

linear displacement assumption may be increased. The more voltage harvesting may be obtained where the SFMS 

have low pretention forces or large nonlinear amplitude vibration occurred. For later state i.e. large nonlinear 

amplitude vibration, the nonlinear displacement assumption should be considered in formulation. 

Finally, substituting Eq. (29) to Eq. (28), the voltage harvesting time domain function can be calculated as 

homographic functions or linear fractional transformations in general form 1 1

2 2

.
( )

.

a R b
V R

a R b





. Where, 

   
2 2

1 1
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i i

i i

x y

x y

w w
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2 2

1 1

2 2
2 31 11 31 32 12 32 222

i i

i i

x y

zz

x y

a d Q d d Q d Q dxdy
h


       

2 1b   

(31) 

 

By introducing 1 1

2 2

a b

a b
  and considering above coefficients, it can be seen that 0 . For 0 the values of the 

function are decreasing from   to 1

2

a

a
. So, the minimum voltage harvesting based on different values of R is equal 

to 1

2

a

a
. While, the maximum voltage harvesting has no finite value.  

Finally, the SFMS is compared with other recent energy harvester systems including beam, plate and membrane 

models. Shahbazi et al. have comprehensively discussed their smart cylindrical membrane shell panel harvester by 

nine recent studies of beam and plate models. They have also listed the target points geometrical design, frequency 

operation and output power or voltage of each work. The SFMS energy harvester is added to their table for a 

quantitative comparison of the SFMS’s efficiency with previous projects. The comparison is presented in Table 1. 

 
Table 1 

Comparative performance of SFMS with of previous works reviewed by (Shahbazi et al. 2012). 

Previous work        Design Resonant frequency 
Output power or voltage 

Fabrication 

Work 1. MEMS based piezoelectric 

power generator array for vibration 

energy harvesting (Liu et al. 2008) 

Cantilever size:  
Length = 2,000– 3,500 μm 

Width =750–1000 μm 
226–234 Hz d31 mode 

Output voltage of 3.93 V DC, 
Output power of 3.98 μW 

Work 2. Energy Harvesting MEMS 

device based on thin film piezoelectric 
cantilevers (Choi et al. 2006) 

Cantilever size: 
Length = 170 μm 
Width = 260 μm 

3 mode: 13.9, 21.9 48.5 kHz 

Output voltage of 2.4 V at 
5.2 MΩ load Output power 
of 1.01 μW 

Work 3. A free standing thick film 

piezoelectric energy harvester (Kok et 
al. 2008) 

Cantilever size: 

Length = 13.5 mm 

Width = 9mm 
Thickness = 192 μm 

229 Hz d31 mode 

Output voltage of 130 mV 

Output Power of 270 nW at  

9.81 m/s2 

Work 4. Two layered piezoelectric 

bender devices for micro power 
generator (Jeong et al. 2008) 

Cantilever size: 

Length = 10 mm 
Width = 10 mm 

120 Hz 

Peak-to-peak voltage of 2.0 V 

and a power of 0.5 mW in 

resonance mode 

Work 5. Piezoelectric scavengers in 

MEMS technology: fabrication and 
simulation (Schmitz et al. 2005) 

The piezoelectric generator 

is located on top of the beam and 

consists piezoelectric layer 
sandwiched between top and 

bottom electrode 

300–1000 Hz Variation of 

resonance frequencies: 300, 
700, 1000 Hz 

1–100 μW 

Work 6. Piezoelectric harvesters and 
MEMS technology (Renaud et al. 

2007) 

The device is packages 

using two wafers 
1.8 kHz 40 μW 
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Work 7. Laser machined piezoelectric 

cantilevers for mechanical energy 

harvesting (Hyunuk et al. 2008) 

10 cantilevers on both side 

of the bridge, 5 of them 
are placed with tip mass 

alternately. 

Width = 4mm 

Length = 5.75 mm 

870 Hz 
Output power of 1.13 μW  

Power density of 301.3 μW /cm3 

 

Work 8. Power Harvesting Using 

Piezoelectric MEMS Generator with 
Interdigital Electrodes (Lee et al. 

2007) 

Cantilever size: 
Length = 3,000 μm 

Width = 1,500 μm 

Thickness = 22 μm 

570–575 Hz 
Output voltage of 1.127VP-P,  
Output power of 0.123 μW 

Work 9. Power Harvesting Using 

Piezoelectric MEMS Generator with 
Interdigital Electrodes (Lee et al. 

2007) 

2 PVDF layers on both side of 

Epoxy core 
Length = 5000 μm  

Circumferential width= 0.001 rad 
Thickness of Epoxy layer= 100 μm   

Thickness of each PVDF  
layer=10  μm   

471.79 Hz 
Output voltage of 0.3204 VP-P, 
Output power of 0.467 μW 

Work 10. Power Harvesting Using 

smart cylindrical membrane shell 

panel (Shahbazi et al. 2012) 

2 PVDF layers on both side of 

Epoxy core 
Length = 5000 μm  

width= 0.001 rad 
Thickness of Epoxy= 100  μm   

Thickness of  PVDF =10  μm   

471.79 Hz 
Output voltage of 0.3204 VP-P, 
Output power of 0.467 μW 

proposed energy harvester: SFMS 1a m , 0.5b m , 2h mm  288.6 Hz Output voltage of 0.0307 VP-P 

5    CONCLUSIONS 

In this study, electromechanical equations of motion and vibration to voltage harvesting relation of smart flat 

membrane sheet (SFMS) energy harvester are presented. The SFMS is PVDF laminate with piezoelectricity effect. 

The sensing and actuation mechanism are applied in piezoelectricity relations of SFMS. For this aim, polarization 

vector is parallel to the applied electric field intensity vector both parallel to the transverse directions. By assuming a 

series form function for displacement and inserting in equations without presence of external load and applying 

Galerkin method, the linear ordinary differential equation (ODE) of motion based on generalized shape coefficients 

is obtained. Finally, the explicit relation between vibration amplitude and voltage are calculated. Parametric 

simulation shows that a 1 m length and 0.5 width SFMS has ability to produce a peak to peak voltage about of 

30mV. The proposed harvester model efficiency is compared to with other recent energy harvester systems including 

beam, plate and cylindrical membrane models. The SFMS model, while easy to implement, has an acceptable 

efficiency. 
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