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ABSTRACT

In the present article, the free vibration analysis of a multi-layer
rectangular plate with two magneto-rheological (MR) fluid layers
and a flexible core is investigated based on exponential shear
deformation theory for the first time. In exponential shear
deformation theory, exponential functions are used in terms of
thickness coordinate to include the effect of transverse shear
deformation and rotary inertia. The displacement of the flexible
core is modeled using Frostig’s second order model which contains
a polynomial with unknown coefficients. MR fluids viscosity can
be varied by changing the magnetic field intensity. Therefore, they
have the capability to change the stiffness and damping of a
structure. The governing equations of motion have been derived
using Hamilton's principle. The Navier technique is employed to
solve derived equations. To validate the accuracy of the derived
equations, the results in a specific case are compared with available
results in the literature, and a good agreement will be observed.
Then, the effect of variation of some parameters such as magnetic

field intensity, core thickness to panel thickness ratio (Lc) and MR
h

layer thickness to panel thickness ratio (hMR y on natural frequency
h

of the sandwich panel is investigated.
© 2020 IAU, Arak Branch. All rights reserved.
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1 INTRODUCTION

HE use of sandwich structures in marine, transport, civil construction and aerospace applications is growing
rapidly because of advantageous features such as high strength to weight ratio and low maintenance cost. With
the increased interest and the use of sandwich structures in many challenging situations over the years, it is therefore
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so important to study its behavior in various circumstances [1]. In addition, they play a key role to control the
vibration of structures. Since it is important to achieve a way to control the vibration with higher efficiency and
short time response, many researches notice the use of sandwich structures with smart fluids layer or flexible core or
a combination of them. Smart fluids such as electrorheological (ER) and magnetorheological (MR) fluids has
controllable rheology. However, the ER fluids exhibit a number of shortcomings compared to the MR fluids
including low yield strength, requirement of high voltage and greater sensitivity to common impurities. On the other
hand, the MR fluids are known to exhibit considerably higher dynamic yield strength and greater insensitivity to
temperature variation and contaminants compared to ER fluids [2, 3]. Briefly, the excellence of MR fluids on ER
fluids is that they have greater changes in their characteristics. MR fluids usually contain soluble micron sized
magnetic particles in a carrier fluid. When they involve with a magnetic field, their yield stress changes with the
intensity changes of the magnetic field in a few milliseconds [4, 5]. So, they alter rapidly from a liquid to nearly
solid state [6]. Sandwich structures coupled with controllable magnetic field yield continually vary stiffness and
damping properties, and thereby could provide enhanced vibration isolation in a wide frequency range. Based on its
outstanding properties, various high performance MR fluid devices have been designed and tested [7-13]. From the
review of reported researches, it is observed that the sandwich structures like sandwich beams and sandwich plates
have been studied from different aspects that some of them illustrate the following. Yeh and Shih [14], analyzed the
dynamic characteristics and instability of MR adaptive structures under buckling loads. Rajamohan et al. [15],
derived finite-element and Ritz formulations for a sandwich beam with uniform and partial MR-fluid treatment, and
demonstrated their validity through experiments conducted on a cantilever sandwich beam. It was demonstrated that
the natural frequencies increase with increasing in magnetic field. Mohammadi and Sedaghati [16], investigated the
nonlinear vibration behavior of sandwich shell structures with a constrained ER fluid. Yeh [17] presented the
vibration of the sandwich plate with MR elastomer damping treatment. The finite element method is used to model
the sandwich plate with MR elastomer core. Rajamohan et al [5], studied the dynamic properties of a sandwich
beam with magnetorheological (MR) fluid as a core material between the two layers of the continuous elastic
structure. Yeh [18], investigated vibration characteristics of orthotropic rectangular sandwich plate with
magnetorheological (MR) elastomer core and constraining layer. Hoseinzadeh and Rezaeepazhand [19], studied the
influence of external electrorheological (ER) dampers on the dynamic behavior of composite laminated plates.
Eshaghi et al. [20], studied analytical and experimental free vibration characteristics of sandwich annular circular
plates comprising magnetorheological (MR) fluid as the core layer. Payganeh et al. [21] studied the free vibrational
behavior of sandwich panels with flexible core in the presence of magnetorheological layers. Eshaghi et al. [22],
investigated free vibration of a cantilevered sandwich plate with a magnetorheological (MR) fluid layer considering
different boundary conditions. Ghorbanpour and Soleymani [23], studied a size-dependent vibration analysis of a
rotating MR doubly-tapered sandwich beam in supersonic airflow.

In this study, the free vibration analysis of a sandwich panel with a flexible core and MR layers is investigated.
The displacement of the core is modeled using Frostig’s second order model. In this model, the displacement is
assumed in the form of a polynomial with unknown coefficients. The displacement of the sheets is modeled using
exponential shear deformation theory. Hamilton principle is used to derive motion equations. Simple support on
upper and lower sheets is considered as boundary conditions. Derived equations are solved using Navier technique.
Finally, the influence of magnetic field intensity, core thickness to panel thickness ratio, and MR layer thickness to
panel thickness ratio, on natural frequency of the sandwich panel are presented.

2 THEORETICAL FORMULATION

The studied sandwich panel is shown in Fig.1. It is a rectangular panel that it’s length, width and thickness are
named with @, b and A, respectively. It has a foam flexible core that is denoted by ‘¢’ index in this text. The flexible
core is enclosed by two composite sheets with a MR layer between them at both top and bottom. ‘#’ and ‘b’ indices
are used for upper and lower layers, respectively. ‘I’ index is used for face composite sheets, similarly ‘2’ for MR
layers and ‘3’ for the nearest layers to flexible core.
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Fig.1
Schematics of the Sandwich panel with two MR fluid layers and a flexible core.

In this study, the displacement field of sheets is modeled by exponential shear deformation theory as below [24]:

. Gwi(x,y,t) .
uj (xayazat):u(l) (xnyot)_zoa—x+f (Zl )gol (xnyot)
. Gwi X, y.t . 1
Vi (x,y,z,t):v(l)(x,y,t)—z %—i—f (Zi )l//l (x,y,t) o
Wi (x,y,z,t):w(i)(x,y,t)
_z(i)z

where i =1,3,15,3 and f(z;)=z( " ).Also, u;,v; and w; are displacements in the x, y and z directions,

respectively. u 6,\)(’) and w(l) are the mid-plane displacements. ¢' and ' are the rotation functions. According

to the Frostig’s second model, displacement field for the flexible core is as below [25]:
2 3
uc(x:yazat):ug(x:yat)+zcuf (xayat)—"_zcug(x,y at)+zcu§ (xayat)
2 3
Ve (x,y,z,t):v(c)(x,y,t)+zcvlc(x,y,t)+zcv§(x,y,t)+zcv§(x,y,t) 2)
2
WC(x7yazat):Wg(xny7t)+zcwf(xayot)+zcwg(xayat)

The kinematics (strain-displacement) equations based on Von-Karman strain assumptions are as below [26]:

1 .
&jj =5(ui,j +”j,i) [,J =X,y,z 3)

So, the strains in upper and lower sheets and in the core can be written as (4) and (5), respectively:
i i i
Exx =UQ “ZiW o (zi )P

+V6,x -2z; (l),xy +f (z; )¢’,ly +f (z; )y/’lx

N A N
Zyy Yo,y TFiMoy iV )
Vxz =26xz :—fagzl) !

z
Vyz =26y =%w’ i =1¢,3t,3b,1b
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c 2 3
Exx =UQx tZcUlxy tZcuU2 x tzcu3x
c 2 3
Eyy =V0,y tZcVly tZeV2,y FZeV3y
é‘gZ =wi+2z.w)

c _ 2 3 2 3 ©)
Yxy TUQ,y tZclUly tZiUD y FZEUB Y FVQ x FZeV]x FZEVDx TZEV3x
?/JCcz =up+2z.up +3zczu3 +Wo,x tZeWlx +zczw 2.x
7/)0,2 =v|+2z,v) +3ZCZV3 W0,y +ZcWl,y +zczw2’y

In order to reduce number of unknown parameters in Eq. (2), it is assumed that sheets and core are attached to

each other completely. By using this assumption, the displacement compatibility conditions at the joint surface of 3¢
and 3b layers with flexible core can be described as:

uzs | h, =tucl| n
z =——L z =—=
3t 2 2
uzp | p, =uc | h,
Z 5, =5 Z. =
T2 2
V3| h,=vel
T )
_ (6)
vap |l m, =vel h,
Zy,= Z. =7
2 2
w3t | h,=wel n
Zy=T 5 =5
2 2
wap |l o, =wel h,
za/ = zL =
2 2
By substituting relations (1) and (2) in relation (6), the compatibility equations can be written as:
1 1
2(u8t +u8b _2”8)+h3t fo —e Zgot +h3p | e 2(pb —wgc
ujy =
2
hC
L 1
4(u8t —qu—hculc)+2h3l fo —e Z(pt +2h3yp, W,lgc —e 2(pb
uzy =
3
hC
L L
Z(VSt +v8b _2V6)+h3t wfy —e Zy/t +h3p|e 2l//b —w,by 7
vy =
2
hc
1 L
4(v3’ 7v8b 7hcv]c)+2h3t W,ty —e 2y! |+2hy, w,by —e 2yb
v3 =
3
hC
¢ t b . cC
WO_WS 2(w0+w0 ZWO)
w1= wp = 2
he h:

The relationship between transverse strains and stresses in MR layers can be expressed as:
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=Gy =G (i =t.b) (8)

According to geometrical relationships between displacement components and rotation functions in layers 1 and
3, and also this assumption that a no slip condition is existed between sheet layers and MR layers, the components of
strain in MR layers can be obtained as:

s a i
y)%é :W,lx +h—(u(1)l —ul )— L4 (hli +h3i)
2j 2i
l ©)
2i i 1 ( li 31‘) 4 .
=w, +—|\vy vy |——(M; +h3; i=tb
7z =y e T ) U i) (i =t.b)

In the pre-yield regime, the MR material demonstrates the viscoelastic behavior, which has been described in

terms of the complex modulus Gﬂ< .
G"=G'+iG" (10)
where G' is the storage modulus, and G" is the loss modulus. They are described as[27]:

G'=—33691B2 +4.9975x10° B +0.873x10°

(1)
G"=-09B82 +0.8124x10°B +0.1855x10°
where B is the intensity of the magnetic field in Gauss.
In order to extract the motion equations, the Hamilton’s principle is employed as below:
t
jt2(5U+5V—5r)dt=o (12)

where O is the variation operator, U is the strain energy, V' is the work done by external forces, and T is the kinetic
energy. The work done by external forces is zero in the present research, and:

SU = 3 {[(Ohx Oy +0hy 0y +Thy SVhy +Tyy Fyg +Thz 5z )V}
i=1t,3t,30,1b 7,
+ Z {J.(T)ZCZ@/)ZCZ +Tj/z57;)z Vi (13)
i=22by

+ (052 0652 +752 15z +752 075z + Ok Oy +0%y, 025, 75 Sy AV

V(
b
ST == % A[[gpihi (i Sy +; v +w ;S )dxdy
i=1¢,3t,30,1b 0
< b . . . .
> {Ijo(pj hjw jow j +1pR (7}{2 Sz + 7z 09}z Ddxdy} (14)
i=2t,2b 0

a
_ J'J'l())pc he (u'c Slip +Vo Ve +W o 0W o )dxdy
0

© 2020 TAU, Arak Branch



852 M. Shekarzadeh et.al.

In Eq. (14), p is the mass density, dot-over script convention index indicates the differentiation with respect to

the time variable, also it is assumed that there is no normal stress in MR layers (2¢ and 2b). Egs. (15) introduce the
stress resultant that are used to extract the motion equations.

“w

i i i i ol i
{Nxx Nyy Ny Oxz ’Qyz } =

o “3‘ —0o

—N ‘\}‘

i i i i i i
{Mxx My .My, }: zj {O'xx 2Oyy s Txy }dzi

R

L3

2
c c c c c _ n
{M”xx ’M”yy ’M”XJ’ ’Manz ’MQnyz } - J Zc

L3
2

i=c,lt,3,1b,3b

LY
. . . 2 . . .
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1
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By using Eq. (12) and considering Eqgs. (15a)-(15i), the motion equations are extracted as:
It
ouy :
16a
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erx+N):§y +—Q2b —I”’ 1 +I]bw0x— o gob +4, IZb — 2Iozbzl'[')b+ ! [Ozbdgb _L[”’ gx =0 (16b)
2b 2 2b
3.
Suy'
1
3 3t c c c c c c 2t +3
N : +Nry Y +FM3>(X X h 2 MZx‘c X h Mlxy y h 3 M}r} .y h 2 Mlez h 3 MQZ‘(Z _h_sz +Alu0t
c 2t
TA ot ) 3t et .h ot . v 2 et Lo (16¢)
Uy +A3W0,x +A4W0,x _Jo @ +A5§0 +A6¢ +A7u1 +Axuo _Al Io (P +t— I ”0
Zl
~ L e Ly, <o
hzz 2t
3b .
ou, :
4 2 2 4 4 12
3b 3b c c c c c 2b
Nx\'v Nr)y l’l M}wx h MZ\”C’C h MZ\)y h3M3\)y thle _h_3 Q2x Q +A
+A2’;‘.3b +A10W‘(I)7,x +A11W.(t),x _J5b¢b +A12¢b +A13¢1 + A\l + A3y —A ]2b¢’b +L12b lb (16d)
2%
_ 1 Ty 1 Iyt =
— 1y +—1w,, =0
hy, 2%
I,
ovy
N;;/y-’_N):t- +LQ2: 11’ -t +]ltw(t) _Jétl// +A16[2t‘// _le 1: +L12t 3; _let _0 (16e)
’ o hy, ’ g th h2t hy,
b,
sl
1 . . ) ) w1 (16f)
Ny +N_ | +h—ij — IV I =+ AL —— 1+ p 157 —h—ﬁb 0y =0
2b 2b 2b 2b
3.
v,
4 2 2 4 2,
3t 3t c c c c c 2t 31
Nyy,y +N +h_M3w y h 2 MZvy Ly h 2 MZX} X h M3xv X ]’l MQI) h 3 QZ} __Q +A (16g)
. . . . .. e e 1 1 1
+AY Y A Ao~ A AY A AY + AV +AY — A, +h—12[ K —h—lz’ o +h—I Wi, =0
2% % %
3,
vl
4 2 2 . 4 4 12 . 1
N}b +N3b __Mc M( i L, _ ML Mc _Mc J—— {b+AV”3b
h( 3yy y h 2 2yy.y hcz 2xy X hc 3xy x h[ Qlyz hc3 02yz th Q}A 9" 0 (161’1)
. . . N . . e e . 1 1 1
A + AW+ Ao, ~T G+ A+ A+ A, +A15v0—A17102b(//b+h—21 vy —h—lﬂ’ o +—I i =0
2% 2% 2%

© 2020 TAU, Arak Branch



854

M. Shekarzadeh et.al.
owy
h 2h h 2h
1 3 1t 3t 1t 3t 3 ¢ 3 ¢ 3 ¢ 3 ¢
Mxi(,xx +Mx>t<,xx +Mxy,xy +Mxy,xy +Myy,yy +Myy, h tz M2xx,xx _h_;th,xx _h_tz 2yy,yy _h_3' 3yy.,yy
Upe 4 pre Ay 2h, 1 6h,, ,
+ZRZ h_zM hc; 3xy Xy + hc +( hc )MQZ\'Z X h(z
(S 2 ‘- . - " _
ne ) Q2yz y +sz X Q}z y +1, uo x +A3”0,x +A”u0’x +A,w 0,xx + A4, 0,xx +A,W 0,yy +A35(Po,x (161)
+A, 7, +Az3¢§ + Ay + Ao ATV A AV + Al ALY Ay
.. .. . . . ' 1 ot 1, -
+A23’//,by +A39V10,y +A30Wg +A29W(tJ + AW _12W +4 10 ¢x i 102t”(]),x +-— h 12 gtx _Ioztw 0,xx
b 21
1 . 1 .
—I3W g + ALV — p Ig‘v;ﬁy+h—102’v3fx =0
2t 2t
b,
Sw?
h 2h h 2h
1b 3b 1 3b 1b 3b 3 arc 3 arc ¢ 3b
Mxx,xx +Mxx,xx +Mxy,xy +Mxy,xy +Myy, MY}’Y}’ 2 MZXX‘XX - M}xx XX 2 MZyy yy 3 3yy,yy
h, h> h h,
1. 4 4h 2hy, 1 2 Zhbl .
_h_Rz +h_2Mz - h 33[) 3xy ,xy ( h : _) lez X +( h_z)MQbr’, _( : h_)MQIyz,y
c c c c c (16j)
6h,, 1b,+1b

2 % .. o b
+H— I, 3 h 2) QZyA y sz,x +Qyz,y +17uy), +A10” +A4u +A18W0x>c +A19W0\x +A4,W O.yy +A21¢’o,x

1b_++1b .3 b e e e e b oy e
+A22V/ +A25§0 +1, Vo, +A10V0,y T AW o + Ayl + Ayl +A28V0,y +A27V1,y + AW+ A+ AW,

1 1 1 1
2 b 2 b 2 - 2 - 2% - 2 2 +-1b 2b :3b L3
=Iywy +A,1, o, - P —1, u(” P —I; qu -1, WOxx -1, WOW+A ]0 l//y —I, v0y+h—1 VOX+A4v04,y =0
2 2 2 2%

op'
2h, -1 hy, - hy, -+ 2h, -1
1t 3t 1t 3t 1t 3t 3t 2 c 3t 2 c 3t 2 c 3t 2 c
Rxx,x +Rxx,x +ny,x +ny,x +Px +Px - h 3 e M}xx,x - h 2 e M2xx,x - h 2 e M2xy,y - h 3 3xy,y
¢ ¢ ¢ ¢
16k
2h3t 2M c 6h31 2M c 2t Jlt A A A A ’% 7+ A ..3p ( )
- P o= T 02z A0, - |+ WOX + A0 + 2W0x —Aye “uy + AU,
c c

A iy + Ay + A @ A A LW+ AT — Ay — Al @ =0

op” :
2hy, L . hy — h . 2h .
Rli,x +Rj>l:,x +R>]<§,y +R3}l/7,y +leb +Px3b __33be 2M3xx,x _%e ZMZ,\:X,X - 3’; ZMZU y 33[7 2M3U Y
h(? h(? hC h,‘
2h,, 6h 1 (161
+— h 2 zMélxz %b ZMZ)z)cz - 41Q2b _Jlb +A21W'g,x +A48¢b +A25W.(t),x —A27e zulL +A12”Z3b
A + A+ Agis + Al Wo  + ALY — AL — Al =0
oy’
, 2h . h, . h, . 2h .
R)l';,y+Rjy,y +R:§',x +R3)t',x +Rv1t +R‘?t - h31 2M31y y _h_t 21‘42y1 y _h_t 2M2ryx_ hjt ZMSX} X
1 1 (16m)

th ) c 6hz c
_h_;e My, — h3 2Mgzy

¢

2t 1t selt ol et Y] RS w3y
A0, —Jg Vo Ao + ALY+ A0 +Ase W+ A,

+ AW + AW A A AW+ ATV = ATV — A1 =0

© 2020 IAU, Arak Branch



Free Vibration Analysis of Multi-Layer Rectangular .... 855
Sy’ :
2h, -1 - - 2h
1b 3 1b 3 1b 3 _ Al ¢ 3b ¢ 3 ¢ 3h ¢
Ryy,y +R +nyx +nyx +P +P h 3 : 3yy.y _F : 2yy .,y _h_tz : 2xy X - 2M3n WX
c c c c 16n
2h,, RV 64, “oasc 2 1b_:+1b . b b ’%--« L3t ( )
0 MQlyz o 2 MQM —A 07 —JVY + Ay, + A, + A, 0+ Ape W+ AN
AWV AW A AW ATV = ALV = Al =0
ouy
N, — szx x +ny,y _h_z 2y I, > MQl\tz —Igug —Iiuy —Aye @ —Aye *¢ + A0y + A (160)
+A15L.‘-0 +A551'.‘.0 +A28w-g,x +A38W.(t),x =0
ou; :
c c 4 c ¢ 4 c 12 ¢ ¢ ¢ e 7% b 7% ot
Mlxv X +M1)ﬂ y h 2M3xxx +ny,x h M}vy Y Qz h ZMQ2cz [luo _I2ul _Az7e (/’ _A39e q’ (16p)
A iy + Ay + Aggiy’ + Ay + AWl + A =0
oV,
c 4 c 4 c 8 c c s c s 7% seh 7% P sec s
N.,vy,,v h 2 MZyt v _h 2 MZX} v h 2 MQWZ IOVO _Ilvl _Azse L4 _A3Se L4 +A53V0 +A54V1 (16q)
+AVY + AP + A0+ A =0
ovy
c c 4 c 4 c 12 c c s _% ==b _% st
Mly}y +Mltyx_h2M3v)y _thsnx Q;_ Mgzyz =LV =1V —Aye 2y —Aye Py (16r1)
AV A AT+ AN +AYY + A8 + A =0
Wy :
8 ¢ 4 c c 4 c b .. s (165)
o _FM P —Mg,.. O, _h T Mg, + AW + AV + A =0

c

In order to compress the motion equations, the coefficients 4, to A, are considered and presented in Appendix

A.

3 ANALAYSIS

Considering simply supported boundary condition for all edges, the Navier technique is employed to solve derived

equations as below [24]:

.. 0 © ..
i i .
{u({ ,u(c),ulc}: > {“r{m ’uSmn ,ulcmn }cosax sin By e
n=lm=1
.. o0 0
i i .
{v({,vg,vf}= Z Z {v,{m, Smn fmn }slnax cos fye
n=lm=1

J ot

a7

Jot

© 2020 TAU, Arak Branch



856 M. Shekarzadeh et.al.

. 0 0 .
{W(J) ,wg}: > {W;{m’wfnn }sinax sin By el
n=lm=l
{(/}] } =Z::122 :1{(/7,],;,,1} cosax sin,ByeJat (17
Jl_o§® §® J g Jat i _nzx ,_mx
{1// }—znzlzmzl{y/mn} sinax cos fye (i=13,=t,b) (a— » ﬂ,—)b—j

By substituting (14) in presented equations as Appendix A, simplified equation of motion can be provided as:
2
(1€]-o? [ 1) 2} = o) (18)
where

1z 1 3 3b It b 3t 3b t b t b b
A={ump Umn Yimn Ymn Y mn Y mn Y mn>Y mn W mn W mn »Pmn > Pmn ,‘//mn Wmn >

c c c c c T
Yomn "1mn>Y Omn Y 1mn " Omn j
which @, K, M and A are stiffness matrix, mass matrix, frequency and constant vector of mode shape of the panel,

respectively. To solve the Eq. (18), the determinant of ([K ] e [M ]) must be zero. After solving the equations

system, the minimum value of @ must be selected.

4 RESULTS AND DISCUSSION

In order to verify the accuracy of the present approach, the obtained natural frequency of the panel in the present
study is compared with [21] . For this purpose, mechanical and geometric properties of the panel are considered as
Table 1 and Table 2.

Table 1
Mechanical properties of the sandwich panel.

Property Face Sheets Flexible Core MR Layers
E1(Gpa) 24.51 0.10363 -
E>(Gpa) 7.77 0.10363 -
E;(Gpa) 7.77 0.10363 -
G12(Gpa) 3.34 0.05 Equation (10)
G12(Gpa) 3.34 0.05 Equation (10)
&) (Gpa) 1.34 0.05 Equation (10)
92 0.078 0.036 -

92 0.078 0.036 -

92 0.49 0.036 -
p(kg/mz) 1800 130 3500

Table 2
Geometric properties of the sandwich panel.
hyy (mm) hop (mm) hyy (mm) hop (mm) hyy (mm) hoyp (mm)  he/h hla
1 1 1 1 2 2 0.88 0.1
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The magnetic field intensity and the arrangement of layers are considered as B=150 Gauss and
(0/90/MR/0/core/0/MR/90/0) respectively. In order to compare results of this method with [21], four dimensionless
frequencies are derived based on:

2
a=24_ |Pc (19)
n \E.

The results are shown in Table 3 and they are close to the results of [21]. Difference between the results of
present study and [21] is because the transverse shear stresses at top and bottom surfaces of the plate are zero in
exponential shear deformation theory while in first order shear deformation theory, the correction factor is required
due to the lack of control of shear stresses at top and bottom surfaces of the plate. Therefore, it can be concluded
that, the exponential shear deformation theory can simulate the vibrational behavior of the plate better than the first-
order shear deformation theory.

Table 3
Comparison of dimensionless frequencies @ between present study and [21].
Mode Number Present [21]
(1,1 18.75 20.54
(1,2) 12.69 13.72
2,1) 32.55 33.22
2,2) 20.51 23.31

To investigate the effect of magnetic field intensity on natural frequency, a plate with presented properties in
Tables 1 and 2, is considered. The result of this investigation in four modes of vibration is shown in Fig.2. It is
observed by applying the magnetic field, the natural frequency increases in each mode. Increasing the magnetic field
intensity increases the shear modulus of the MR fluid, which leads to an increase in the stiffness of the structure. So,
the natural frequency of the system increases.

Fig.3 depicts the effect of core thickness to overall thickness ratio /. /& , on natural frequency in four modes.

According Fig.3, the natural frequency decreases with a gentle slope when the core thickness to overall thickness
ratio increases. Increasing /. /h , increases the mass of the structure, which leads to a decrease in the natural

frequency of the structure.
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The effect of MR layer thickness to overall thickness ratio /jsp //# , on natural frequency in four modes is

depicted in Fig.4. Based on Fig.4, the natural frequency decreases by increasing of MR layer thickness to overall
thickness ratio, because increasing /Apsg /h , increases the mass of the structure, which leads to a decrease in the

natural frequency of the structure.
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g g
o o
1
]
1

2950

Fig.4
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. . . " 4 natural frequency.

2800 -
0.015 0.02 0.025 0.03

5 CONCLUSION

The free vibration analysis of a multi-layer rectangular plate with both magnetorheological (MR) fluid layers and a
flexible core was presented. The applied theories for displacement fields in sheet layers and flexible core layer were
exponential shear deformation theory and Frostig’s second model, respectively. Hamilton's principle was employed
to reach the equations of motion, and the Navier technique was applied to solve them. The presented graphs had
described the variation of the natural frequency by the variation of the magnetic field intensity, core thickness to
panel thickness ratio, and MR layer thickness to panel thickness ratio.

APPENDIX A

The used coefficients in motion equations:
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