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 ABSTRACT 

 In this paper, vibration analysis of rotary tapered axially 

functionally graded (AFG) Timoshenko nanobeam is 

investigated in a thermal environment based on nonlocal 

theory. The governing equations of motion and the 

related boundary conditions are derived by means of 

Hamilton’s principle based on the first order shear 

deformation theory of beams. The solution method is 

considered using generalized differential quadrature 

element (GDQE) method. The accuracy of results are 

validated by other results reported in other references. 

The effect of various parameters such as AFG index, rate 

of cross section change, angular velocity, size effect and 

boundary conditions on natural frequencies are discussed 

comprehensively. The results show that with increasing 

angular velocity, non-dimensional frequency is increased 

and it depends on size effect parameter. Also, in the zero 

angular velocity, it can be seen with increasing AFG 

index, the frequencies are reducing, but in non-zero 

angular velocity, AFG index shows complex behavior on 

frequency.  
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1    INTRODUCTION 

 HE composites were presented among materials in order to have conflict properties such as lightness, high 

strength, ductility etc. Since composite materials are made up from one or more materials with distinct physical 

and chemical properties, these are named as advanced materials [1]. Delamination, that also called interlaminar 
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cracking,  is the big problem of composites that is one type of composite materials’ damage that occurs [2]. The 

applicable special structures are modeled by beams with non-uniform cross sectional areas like tapered beams, 

biomechanics, civil, robotics and mechatronics are some industrials that used this beams for the reason that arbitrary 

strength distribution and ability to control stress distribution in non-uniform cross sectional beams. The elastic- and 

rotary-types of micro and nanoelectromechanical systems (MEMS& NEMS) are more used in modern technology. 

Microcantilever-based contact-type sensors and actuators as well as microrotor-based devices have a huge 

application potential in different fields of industry including telecom, IT, material characterization, chemistry and 

environmental monitoring, (bio) medical, automotive, aerospace and defense applications [3]. For some micro-

structures and micro-sized systems such as biosensors, atomic force microscopes and etc. can be used 

microbeams[4, 5]. The vibration analysis of beams considering rotary effects have been studied in different solution 

methods by a large number of researchers. Kaya investigated free vibration analysis of a rotating Timoshenko beam 

by differential transform method (DTM). Applying the TD method to the blade type rotating Timoshenko beams is 

accomplished by his study for the first time[6].   Dewey and Hodges used finite-element method of variable order to 

develop free vibration of rotating beams. Also, they explained results for uniform beams with zero and nonzero hub 

radius, tapered beams, and a non-uniform beam with discontinuities [7]. Many researchers studied on static and 

dynamic behavior analyses of microbeams recently. In this years, the different methods were used to study uniform 

and non-uniform microbeams. In many articles modified couple stress theory have been used for modeling behavior 

of materials at micro scale according to accuracy and accordance with experimental results of this theory. Chen et al. 

used first order shear deformation theory in developing a modified couple stress model for bending analysis of 

composite laminated beams [8]. According to the Euler -Bernoulli beam theory within the modified strain gradient 

elasticity and modified couple stress theories, Akgöz studied on bending of micro-sized beams. The boundary 

conditions in his study that was taken into consideration were propped cantilever, both ends clamped, both ends 

simply supported and cantilever cases. The conclusion of his results revealed that there is a significant difference 

between the bending values obtained by higher-order elasticity theories with those calculated by the classical 

elasticity theory [9]. Asghari et al. presented a nonlinear size-dependent Timoshenko beam model by using modified 

couple stress theory. Also, they used multiple scales method for analyzing the free-vibration of microbeam [10]. 

Challamel worked on bending of small scale rods analysis by using some simplified non-local beam theory [11]. 

Chen et al. studied on rotating tapered Timoshenko beams by determining natural frequencies, mode shapes and 

their geometrical properties varying linearly with the technique of variational iteration [12]. Dehrouyeh-Semnani 

used first deformation beam and modified couple stress theories for considering the influence of size effect on flap 

wise vibration of rotating microbeams. Also, for examining free vibration behavior of the microbeam, He developed 

a finite element method [13]. Yong Huang and Xian-Fang Li studied a new approach to solve natural frequencies for 

free vibration of axially functionally graded (AFG) tapered beams with non-uniform cross-section combined of 

aluminum and zirconia as two constituent phases under typical end supports including simply supported, clamped, 

and free ends [14]. Shojaeefard et al. investigated a comparative study on magnetic field effect on size dependent 

free vibration of smart rotary functionally graded nano/microplates [15]. Also they considered vibration and 

buckling analysis of a rotary functionally graded piezomagnetic nanoshell embedded in viscoelastic media [16] and 

finally focused on free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler 

foundation under thermo-electro-magneto-elastic condition [17]. Sarkar and Ganguli worked on Closed-form 

solutions of free vibration for axially functionally graded (AFG) Timoshenko beams having a uniform cross-section 

and fixed–fixed boundary condition for certain polynomial variations of the material mass density, elastic modulus 

and shear modulus, along the length of the beam [18]. Free vibration and stability analysis of AFG tapered 

Timoshenko beams are investigated by Shahba et al through a finite element approach with classical and non-

classical boundary conditions [19].  Shahba and Rajasekaran studied on free vibration and stability of tapered Euler–

Bernoulli beams made of AFG materials using differential transform element method (DTEM) and differential 

quadrature element method of lowest-order (DQEL) [20]. A new approach to the vibration behaviors of AFG 

Timoshenko beams with non-uniform cross-section was studied by Yong Huang and et al. An advantage of the 

suggested approach is that the derived characteristic equation is a polynomial equation, where the lower and higher-

order natural frequencies can be determined simultaneously from the multi-roots [21]. Rajasekaran worked on the 

free vibration of centrifugally stiffened AFG tapered Timoshenko beams using differential transformation and 

quadrature methods. Natural frequencies are obtained for problems by considering the effect of material non-

homogeneity, taper ratio, shear deformation parameter, rotating speed parameter, hub radius and tip mass [22]. A 

comprehensive review of the both analytical and numerical methods were employed by Swaminathan et al. to study 

the static, dynamic and stability behavior of FGM plates. The effect of variation of material properties through the 

thickness, type of load case, boundary conditions, edge ratio, side to thickness ratio and the effect of nonlinearity on 

the behavior of FGM plates were discussed [23].  Shojaeefard et al. investigated free vibration and critical angular 
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velocity of a rotating variable thickness two-directional FG circular microplate [24]. Free vibration and thermal 

buckling behavior of temperature dependent FG porous plate using modified couple stress theory based on CPT and 

FSDT was studied by Shojaeefard et al. [25]. 

In this paper, vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam is 

investigated in a thermal environment based on nonlocal theory. General motion equations and related boundary 

condition are derived by means of Hamilton’s principle. The solution method is considered using generalized 

differential quadrature element (GDQE) method. The accuracy of results are validated by other results reported in 

other references. 

2    THEORY AND FORMULATION OF AFG NANOBEAM EQUATIONS    

Consider an axially functionally graded nanobeam with geometrical properties: length (L), width (b) and thickness 

variable which is made by composing two different materials (metal and ceramic) without separating boundary 

which means the volume fraction varies continuously (Fig.1). 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Configuration of axially functionally graded tapered rotating 

cantilever beam. 

 

 Material distribution is assumed to follow power law as following equations: 

 

( )n
cV x l  (1a) 

 
1m cV V   (1b) 

 

where cV  and mV are volume fraction of ceramic and metal, respectively. Seeing Fig. 1, it is observed that at 0x   

of AFG nanobeam, the volume fraction of metal is one. By the way, the both end of the AFG nanobeam is made of 

pure metal and pure ceramic respectively, that ceramic percentage increases by getting closer to the x l , which 

means at x l  it is totally made of ceramic. Considering Eqs. (1) and as the function of volume fraction of AFG 

nanobeam. 

Considering Timoshenko AFG nanobeam which is made by composing two different materials (metal and 

ceramic), the material and geometrical properties of the nanobeam are assumed to vary arbitrarily in the axial 

direction (x) and it can be defined as a linear function of nanobeams length (f(x)). Material and geometrical 

properties of the nanobeam is shown in Fig. (1) which is presented in Eqs. (1) [8]. 

 

1 1 2( ) ( )
x

F x F F F
L

    (2) 

 

where the subscripts 1 and 2 denote the left ( 0x  ) and the right ( x l ) sides of the nanobeam. ( )F x Can be 

rewritten as (3) , (4) [8]: 

 

1( ) (1 )
x

F x F f
L

   (3) 

where 
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1

(1 )
F

f
F

   (4) 

 

The material and geometrical properties of nanobeam such as Young's modulus (E), shear modulus (G), mass 

density ( ) , material size effect parameter (l), width (b), height (h), the second moment of cross-sectional area (I) 

and cross-sectional area (A) can be obtained from (1c) and (1d) [8]. 

From above equations, it can be seen that in the left side ( 0)x  , middle ( / 2)x L  and right side 

( )x L cross-sectional area of AFG nanobeam, material and geometrical properties function can be 

written
1( )F x F ,

1 2( ) / 2 / 2F x F F   and 
2( )F x F , respectively. It means that the left side cross-sectional area 

of AFG nanobeams made of pure metal, in middle cross-sectional area of AFG nanobeam the percent of volume 

fraction of ceramic and metal is equal to 50% of the total material and the left side cross-sectional area of AFG 

nanobeam is made of pure ceramic. 

Mechanical and physical properties of the beam can be evaluated according to following equations: 

 

  ( ) ( ( ) ( ))( )

( ) ( 0) ( ( 0) ( ))( )
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c c c c
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     

 (5a) 
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 (5b) 
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 (5c) 

 

where  ,E x T ,  ,x T  and  ,x T  are Young’s modulus, mass density and Poisson’s ratio at the certain point 

(x), respectively, while subscript c denotes ceramic phase and subscript m expresses properties in the metal phase. In 

addition, n is the power law index which determines material distribution. Need to be mentioned that Poisson’s ratio 

is assumed to be same through the thickness and it doesn’t vary along z axis. Other material properties like Lame’s 

parameters for considered AFG nanobeam can be evaluated using Eqs. (5a), (5b). To get more accuracy of high 

temperature environments, it is important to consider mechanical properties variation at different temperatures. The 

nonlinear thermo-elastic equation can be considered to model material behavior at temperature T as [14]: 

 

 1 2 3
0 1 1 2 3 1Y Y Y T Y T Y T Y T

      (6) 

 

where 0Y , 1Y  , 1Y , 2Y  and 3Y  are the temperature dependent coefficients of material property. 

2.1 Kinematic relations 

The equations of motion are derived based on the Timoshenko beam theory according to which the displacement 

field at any point of the beam can be written as: 

 

     , , , ,xu x z t u x t z x t   (7a) 

 

   , , ,zu x z t w x t  (7b) 
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where t is time,  is the total bending rotation of the cross-section, and u and w are displacement components of the 

mid-plane along x and z directions, respectively. Therefore, according to the Timoshenko beam theory, the nonzero 

strains are obtained as: 

 

 xx

u
z

x x









 
  (8a) 

 

xz

w

x



 


 (8b) 

 

where 
xx  is normal strain and 

xz is shear strain . Based on the Hamilton’s principle which states that the motion of 

an elastic structure during the time interval 
1 2t t t  is such that the time integral of the total dynamics potential to 

be extreme [18], it is expressed 

 

 
2

1

0
t

t
U T V dt     (9) 

 

Here U is strain energy, T is kinetic energy and V is potentiate energy due to external applied forces. The virtual 

strain energy can be calculated as: 

 

 ij ij xx xx xz xz

V V

U dV dV           (10) 

 

Substituting Eqs. (8) into Eq. (10) yields: 

 

0

L
u w

U N M Q dx
x x x


    

         
         

        
  (11) 

 

In which N is the axial force, M is the bending moment and Q is the shear force. These stress resultants used in 

Eq. (11) are defined as: 

 

, ,xx xx S xz

A A A

N dA M zdA Q K dA        (12) 

 

where 
SK  is the shear correction factor. The kinetic energy of Timoshenko beam can be written as: 
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22 2
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1
,
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L
yx z

A

uu u
T x T dAdx

t t t


      
               

   (13) 

 

Also, the virtual kinetic energy can be expressed as: 

 

0 1

20

2

L

u u w w u u
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t t t t t t t t
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m
t t
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
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      

           
   
    

   

  (14) 

 

where  0 1 2, ,m m m are the mass moments of inertia defined as follows:  

 



N. Shafiei et.al.                                21 

 

© 2020 IAU, Arak Branch 

    2

0 1 2, , , 1,z,z
A

m m m x T dA   (15) 

 

Now, rotation effect on the governing equation is evaluated. The variation of the work done corresponding to 

changes of angular velocity can be obtained by: 

 

0

L
w

N
w

V dx
x x




 

 
   (16) 

 

That 

 

       
2

0

( , )
2 , ,

2

Rotation Thermal x T
N L x L r x dA E x T x T T TN dN A





            (17) 

 

where  ,  , r, x and 0T  are beam density at the certain point x, angular velocity, hub radius, beam length variation 

along x direction and the reference temperature. By substituting Eqs. (11), (14) and (16) into Eq. (9) and setting the 

coefficients of ,U w  and   to zero, the following Euler–Lagrange equation can be obtained:  

 
2 2

0 12 2

N u
m m

x t t

  
 

  
 (18a) 

 
2 2

02 2

Q w w
N m

x x t

  
 

  
 (18b) 

 
2 2

1 22 2

M u
Q m m

x t t

  
  

  
 (18c) 

 

Under the following boundary conditions: 

 

0 0 0N or u at x and x L     (19a) 

 

0 0 0Q or w at x and x L     (19b) 

 

0 0 0M or at x and x L     (19c) 

2.2 The nonlocal elasticity model for AFG nanobeam 

In classical continuum theories, the stress at a point is assumed to be a function of strain at that point. While the non-

local continuum mechanic assumes that the stress at a point is also a function of the strains in the neighborhood of 

the point. Besides, the forces between atoms and internal size effect parameter are also taken into consideration in 

the mentioned theories. Such nonlocal model was proposed by Eringen [19-21] and Eringen and Edelen [22]. 

Eringen attributed the nonlocality to the atomic theory of lattice dynamics and experimental observations on phonon 

dispersion. According to Eringen [19,20], the nonlocal stress tensor   atpoint x  is defined as: 

 

       ' , ' 'ij ijx x x t x d x  



    (20) 

 

where  'ijt x  are the classical, macroscopic second Piola-Kirchhoff stresses at point x that is connected to the 

components of the linear strain tensor kl as: 
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ij ijkl klt C   (21) 

 

The kernel function  ' ,K x x   represents the nonlocal modulus, 'x x  is the distance (in the Euclide an 

norm) and   is a material constant that depends on internal and external characteristic lengths such as the lattice 

spacing and wavelength, respectively. The macroscopic stress  at point x in a Hookean solid is related to the strain 

  at the point x by generalized Hooke’s law [23].  is a constant given by:  

 

0e a

l
   (22) 

 

where a and l are the internal and external characteristic lengths, respectively and 0e  indicates a material constant. 

For a class of physically admissible kernel, it is possible to be represented the integral constitutive relations given by 

Eq. (20) in an equivalent differential form as: 

 

  2 2
01 kl kle a t    (23) 

 

where 2  is the Laplacian operator. Thus, the scale length 0e a  takes into account the size effect on the response of 

nanostructures. For an elastic material in the one dimensional case, the nonlocal constitutive relations may be 

simplified as:  

For an elastic material in the one dimensional case, the nonlocal constitutive relations may be simplified as: 

 

 
2

2

0 2

xx
xx xxe a E

x
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 


 


 (24a) 

 

 
2

2

0 2

xz
xz xze a G

x


 


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
 (24b) 

 

where xx and xz are the nonlocal stress and strain, respectively. E is Young’s modulus,  / 2 1G E v   is the 

shear modulus (where v is the Poisson’s ratio). For Timoshenko nonlocal AFG beam, Eqs. (24) can be rewritten as: 
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2

2

0 2
,xx
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x


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
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
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2

2

0 2
,xz

xz xze a G x T
x


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
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
 (25b) 

 

Integrating Eqs. (25) over the beam’s cross-section area, the force-strain and the moment-strain of the nonlocal 

AFG Timoshenko beam theory can be obtained as follows:  
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0 2 xx xx

N u
N e a A B

x xx
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In which the cross-sectional rigidities are defined as follows: 

 

    2, , , 1, ,xx xx xx

A

A B D E x T z z dA   (27a) 

 

 ,xz S

A

C K G x T dA   (27b) 

 

The explicit relation of the nonlocal normal force can be derived by substituting the second derivative of N from 

Eq. (18a) into Eq. (26a) as follows:  

 

 
3 3

2

0 0 12 2xx xx

u u
N A B e a m m

x x x t x t
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 (28) 

 

Also, the explicit relation of the nonlocal bending moment can be derived by substituting the second derivative 

of M from Eq. (18c) into Eq. (26b) as follows: 

 

 
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2

0 0 1 22 2 2 2xx xx

u w u w
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 (29) 

 

By substituting the second derivative of Q from Eq. (18b) into Eq. (26c), the following expression for the 

nonlocal shear force is derived: 
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 (30) 

 

The nonlocal governing equations of AFG Timoshenko nanobeam in terms of the displacement can be derived 

by substituting N, M and Q from Eqs. (28)-(30) into Eqs. (18) respectively, as follows: 
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 (31a) 
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 (31c) 

3    SOLUTION METHODOLOGY  

Differential quadrature method (DQM) was firstly proposed by Bellman et al. as an efficient direct method to solve 

partial differential equations [26, 27]. The weight coefficient which is influenced by the choice of grid points affects 

the accuracy of DQM results. In preliminary formulations of DQM, weight coefficients were calculated by an 

algebraic equation system which limited the use of large grid numbers. A simple formula was presented by Shu for 
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weight coefficients with practically unlimited number of grid points leading to generalized differential quadrature 

(GDQ) method [28]. Applications of GDQ were early limited to regular domain problems. To study the multi-

domain problems, Shu and Richards developed a domain decomposition technique [29]. Based on this method, the 

domain of the problem is divided into a number of sub-domains or elements before discretizing each subdomain 

using GDQ. The domain decomposition technique using GDQ method on each sub-domain is frequently named as 

the DQEM [28]. A more general form of this approach includes the mapping technique, in which, a generic element 

is mapped onto a simple computational element. The mentioned method has the advantages of the finite element 

method (FEM) and GDQ and it is often referred to GDQEM [30]. Grid points describe the locations of calculating 

derivatives and field variables in GDQ. Derivative of a function with respect to a variable at a given node is 

calculated as a weighted linear sum of the function values at all nodes in the mesh line. Wang and Gu introduced 

DQEM to apply multi-boundary conditions by assigning two degrees of freedom to each end point for a fourth-order 

differential equation [31]. The DQEM method is a conventional integral quadrature method which calculates the 

derivative of a function approximately at any point by a linear summation of all functional values along a mesh line. 

Hermit type polynomials are used in DQEM instead of Lagrangian polynomials which make DQEM slightly 

different from the conventional DQM. The key procedure in DQM and DQEM applications lies on the 

determination of weighting coefficients [28] and DQM is used to discretize the governing differential equations. 

Four element nodes are utilized to define displacement gradient and momentum and transverse force equilibrium 

equations on the interelement boundary. DQEM has an advantage as a finite-element method in general geometries 

[32]. Due to the accurate results and convenient implementation procedure, applications of GDQM and DQEM have 

been widely increased in various fields of study and have been developed in recent years. GDQEM is applied here to 

solve the obtained governing equations. For this purpose, the following solution procedure is considered. The r-th 

order derivative of function  if x  can be defined as [28]: 
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  (32) 

 

That n is the number of grid points along x direction and ijC  can be obtained by following equations: 
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where M(x) is defined as: 
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The weighting coefficient along x direction C
(r)

 can be obtained as: 
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 (35) 

 

To obtain a better distribution for mesh points, Chebyshev-Gauss-Lobatto technique is applied as: 
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 
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 (36) 

 
“el” refers to the number of element along the length of the microbeam. Considering ―u=Ue

iωt
, w=We

iωt
,
 

𝜑=∅e
iωt

 ―and using GDQE method, governing equations can be rewritten as: 
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 (37a) 
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In Eqs. (37), the subscript el refers to the number of element along the length of the microbeam. In order to solve 

the governing equations coupling with the boundary conditions, the following matrix equation can be evaluated [33]. 

Finally, with solving the eigenvalue problem, the natural frequencies are obtained [28]. 
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 (38) 

4    RESULTS  

In order to have better judgment on results, non-dimensional parameters are defined as following: 
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(39) 

 

The coefficients of Young’s modulus,  mass density and Poisson’s ratio have been considered in Table 1. 

Comparison of results for non-dimensional angular velocity (Φ) of cantilever non-FG nanobeam for δ=  =0 is 

computed and are shown in Table 2. 

In Table 3., it is seen the comparison of results for non-dimensional frequency of non-uniform propped 

cantilever nanobeam.  
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Table 1 

The coefficients of Young’s modulus,  mass density and Poisson’s ratio[34]. 

Material Properties Value 

SUS304 
E (Pa) 2.0104e+11 

ρ (Kg/m3) 8166 
Ν 0.3262 

Al2O3 

E (Pa) 3.4955e+11 

ρ (Kg/m3) 3800 

Ν 0.24 

 
 

Table 2 

Comparison of results for non-dimensional angular velocity (Φ) of cantilever non-FG nanobeam for δ=  =0. 

Non-dimensional 

angular velocity 
(Φ) 

Fundamental frequency  Second frequency 

Present GDQM [35]  Present GDQM [35] 

0 3.516009 3.5160  22.03437 22.035 

1 3.681644 3.6816  22.18089 22.181 

2 4.137318 4.1373  22.6148   22.615 

3 4.797271 4.7973  23.32015 23.320 

4 5.584995 5.5850  24.27323 24.273 

5 6.449537 6.4495  25.44596 25.446 

6 7.360362 7.3604  26.80896 26.809 

7 8.299625 8.2996  28.33396 28.334 

8 9.25682  9.2568  29.99526 29.995 

9 10.22567    10.226      31.77039 31.771 

10 11.20232    11.202      33.64024 33.640 

 
 

Table 3 

Comparison of results for non-dimensional frequency of non-uniform propped cantilever nanobeam. 

Rate of Cross section change, (βh) 
Φ=0, Ψ1

 Φ=0, Ψ2 

Present GDQM [35] Present GDQM [35] 

0 15.41814697 15.4182 49.96433188 49.9648 

0.1 14.84884477 14.8488 47.63657636 47.6370 

-0.1 15.96864263 15.9687 52.23662242 52.2372 

-0.2 16.50282404 16.5028 54.46077893 54.4614 

 

As was observed, Tables 2 and 3, respectively, compared cantilever and propped cantilever nanobeam results. 

They showed a good agreement are consistent with the results presented with the results reported in reference [32]. 

As other validation, Table 4. is computed fundamental and 2
nd

 frequency of present Timoshenko beam in deferent 

  from 0 to 0.5 and then compared with  Euler-Bernoulli beam and Timoshenko beam in reference [36]. 

 

 

Table 4 

The results comparison of 1st & 2nd frequency in deferent µ for both cantilever and propped cantilever nanobeam. 

 
Fundamental Frequency 

 
Second Frequency  

 

Present 

Timoshenko 

Timoshenko 

[36] 

Euler-Bernoulli 

[36]  

Present 

Timoshenko 

Timoshenko 

[36] 

Euler-Bernoulli 

[36] 

 Propped Cantilever  

Nμ=0 3.921886032 3.7845 3.9266 
 

7.045365614 6.4728 7.0686 
Nμ=0.1 3.816364505 3.6939 3.8209 

 
6.444224694 6.0348 6.4649 

Nμ=0.3 3.279111326 3.2115 3.2828 
 

4.751908019 4.6013 4.7668 
Nμ=0.5 2.786800818 2.7471 2.7899 

 
3.82054622   3.7312 3.8325 

 
Cantilever  

Nμ=0 1.87191249   1.861   1.8751 
 

4.639805283 4.4733 4.6941 
Nμ=0.1 1.875878373 1.865   1.8792 

 
4.494033199 4.3506 4.5475 

Nμ=0.3 1.911173814 1.8999 1.9154 
 

3.721925038 3.6594 3.7665 
Nμ=0.5 2.015010821 2.0024 2.0219 

 
2.915170763 2.8903 2.9433 
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Independent of size effect parameter, it can be seen that frequencies are reduced. In Fig. 2 fundamental 
frequency is shown for cantilever nanobeam when  βh=δ=0 in 4 states. 
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Fig.2 

Fundamental frequency, cantilever, βh=δ=0. 
 

 
with increasing angular velocity, non-dimensional frequency is increased and it depends on size effect 

parameter. With increase of nonlocal parameter, the value of frequencies increase. In the zero angular 

velocity, it can be seen with increasing AFG index, the frequencies are reducing, but in non-zero angular 

velocity, AFG index shows complex behavior on frequency. 
In Fig. 3 the second frequency is shown for cantilever nanobeam when  βh=δ=0 in 4 states. 
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Fig.3 

Second frequency, cantilever, βh=δ=0. 
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In most AFG index, with all angular velocity, the frequency decreases. With increasing size effect parameter, the 

difference between the first and second frequencies from each other become less. It is seen that with increasing 

angular velocity, frequency increase and converges to one side. It means that in high angular velocity, second 

frequency  is less dependent on size effect parameter. 

The problem of interest is a rotary microbeam whose length ‘L’, beam height ‘  1 1 hh h x  ’ and beam width 

‘  1 1 bb b x  ’ are located on x, z and y directions, respectively, also,  2 11 /h h h    and 2 11 /b b b   , also, 

the geometrical properties of microbeam such as second moment of cross-sectional area (I) and cross-sectional area 

(A) can be given as, respectively: 

 

2 2
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2 2

( )

h b
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In Fig. 4 the fundamental frequency is shown for cantilever nanobeam when δ=0 in 4 states. 
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Fig.4 

Fundamental frequency, cantilever, δ=0. 
 

 

Now, we examine the effect of taper effect. In pure ceramics, geometrical changes and size effect parameter has 

little effect. On the other in AFG material, geometry effect is increased by increasing the size effect parameter. 
In Fig. 5 the second frequency is shown for cantilever nanobeam when  δ=0 in 4 states. 
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Fig.5 

Second frequency, cantilever, δ=0. 
 

 

As shown, the taper effect in second frequency is more than fundamentally frequency. After it, in Fig. 6, the 

fundamental frequency is shown for propped cantilever nanobeam when  h =δ=0 in 4 states. 
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Fig.6 

Fundamental frequency, propped cantilever, βh=δ=0. 
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In Fig. 7 the second frequency is shown for propped cantilever nanobeam when h =δ=0 in 4 states. 
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Fig.7 

Second frequency, propped cantilever, βh=δ=0. 
 

 

According to Figs. 6 and 7, with increasing AFG index, the frequency is decreased. While with the increasing of 

angular velocity, the frequency is increased but the effect of size effect parameter is reduced.  It was also observed, 

the effect of size parameter in pure ceramic is far more than pure metal. 
In Fig. 8 the fundamental  frequency is shown for propped cantilever nanobeam when δ=0 in 4 states. 
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Fig.8 

Fundamental frequency, propped cantilever, δ=0. 
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In Fig. 9 the second frequency is shown for propped cantilever nanobeam when δ=0 in 4 states. 
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Fig.9 

Second frequency, propped cantilever, δ=0. 
 

 

According to Figs. 6 and 7, the tapered effect in second frequency is more than fundamentally frequency. 

5    CONCLUSION 

In this paper, vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam is investigated 

in a thermal environment based on non local theory. The solution method is considered using generalized 

differential quadrature element (GDQE) method. The accuracy of results are validated by other results reported in 

other references. According to obtained results, it is observed that with increasing AFG index, the frequency is 

decreased. While with the increasing of angular velocity, the frequency is increased but the effect of size effect 

parameter is reduced.  It was also obtained the effect of size parameter in pure ceramic is far more than pure metal. 
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