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ABSTRACT: 
This paper provides useful equations for the analysis of loop dynamics specification such as damping ratio, overshoot 
and settling time in the third-order charge pump PLL with second-order loop filter. The presented analysis method is 
based on the approximation of the output phase step response using the step response of the second-order systems. In 
fact, the results can be used as an accurate approximation in the design and analysis of third-order PLL. The 
performance of this method has been verified in an interesting example using behavioral simulations in MATLAB. 
Simulations demonstrate a significant agreement between the simulated results of the actual PLL and the proposed 
approximated approach. 
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1.  INTRODUCTION 
Phase Locked Loops (PLLs) are widely used as clock 
generators in a variety of applications including 
microprocessors, wireless receivers, serial link 
transceivers, and disk drive electronics [1]-[9]. They 
are generally used in clock recovery and frequency 
synthesizing of wireless communication systems. The 
stability characteristics, bandwidth and fast locking 
time are the PLL's important specifications in high 
speed communication systems. For example, a wider 
loop bandwidth directly translates to a faster locking, 
and hence, the bandwidth must be maximized to 
minimize the lock time. 
While there are numerous PLL design examples in the 
literature, a precise analysis and mathematical clarity of 
the loop dynamics of the PLL is lacking. The two most 
popular references in this arena by Hein and Scott [10] 
and Gardner [11] provide useful insight to analysis of 
second-order PLLs. Several other references [12], [13], 
provide simplified yet useful approximations of third-
order PLLs. However, they do not provide a complete 
and extensive analysis for practical integrated circuit of 
PLLs, i.e., third-order PLLs. Extension to higher orders 
such as type II third-order PLL is still a topic of interest 
among researchers and cannot be solved analytically as 
easily as the second-order PLL mainly because there is 
an additional pole in transfer function that degrades the 
phase margin and causes peaking in the frequency 

response. Hence, we need to seek a method to 
determine the optimum location of this pole [14]. The 
frequency analysis of third-order PLL has been 
presented in several papers [15], [16], but the transient 
analysis is not investigated. Recently, we studied the 
damping ratio, phase margin and settling time of the 
third-order PLL [17], [18]. But, a comprehensive 
design method covering all of the dynamic behavior 
parameters like overshoot, rise time etc. is still missing 
among the previously presented works. 
The aim of this paper is to give insightful 
understanding of the PLL dynamics. In particular, it is 
of interest to analyze the transient behavior of the PLL 
and derive accurate and useful expressions for 
estimating the time-domain response parameters such 
as settling time, damping ratio and overshoot. The 
focus of the detailed derivations and analysis is on the 
Charge pump PLL (CPLL) because IC designers 
predominantly choose CPLLs over other PLL 
architectures. Although the presentation is for a CPLL, 
the analysis can be readily extended for other PLL 
architectures. Since the PLL with second-order loop 
filter is widely used in practical implementations, this 
paper concentrates on the analysis of PLLs with 
second-order loop filter. 
The paper is organized as follows. The system level 
modeling of the third-order charge pump PLL is 
presented in Section 2. In sections 3 and 4, the transient 
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response solutions of PLL are presented and closed-
form expressions are derived for settling time, 
overshoot and damping ratio estimation. In section 5, 
the presented analysis is verified through an example 
and behavioral simulations in MATLAB. Finally, the 
paper is concluded in section 6. 
 
2.  THIRD-ORDER CHARGE PUMP PLL 
ARCHITECTURE 
Fig. 1 shows the systematic model of a PLL with 
second-order loop filter [17]-[19]. A conventional 
charge third-order pump PLL consists of a phase 
frequency detector (PFD), a charge pump (CP), a loop 
filter (LF) and a voltage controlled oscillator (VCO). 
The charge pump consists of two switched current 
sources that pump charge into or out of the loop filter. 
The phase or the frequency of the reference (Vin) and 
feedback (Vout) signals are compared with the PFD and 
any difference will be translated to a current in the 
charge pump (IP). These analog current pulses are 
integrated and converted to voltage Vcont through the 
loop filter. The noise and the high frequency 
components in the charge pump output will be removed 
by the loop filter consisting of RP, CP and C2. The 
output signal of the loop filter drives the VCO which 
generates a signal with a specific frequency depending 
on the control voltage (Vcont). The capacitor C2 is used 
to improve the transient characteristics by suppressing 
the sudden jumps of the VCO control voltage (Vcont) 
caused by charge injection and clock feed through of 
the two switches. This capacitor is usually much 
smaller than CP. The phase-domain model of the PLL is 
shown in Fig. 2. This model is used as a behavioral 
prototype in system level simulations to verify the 
derived expressions. Fig. 3 shows the alternative phase-
domain model where, KVCO is the VCO gain, 
b=1+CP/C2 and IP is the charge pump current. From 
Fig. 3, the closed loop transfer function of the third-
order PLL is given as [20] 
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The phase margin of the third-order PLL can be 
obtained as follows [18] 
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The maximum obtainable phase margin is only a 
function of b and can be calculated as follows [19] 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −
= −

b
bPM 1

2
1tan 1

max
 (7) 

As seen in (7), the phase margin will be increased by 
increasing b or Cp/C2 ratio. Thus, the loop stability will 
be reduced if b is decreased. It is indicated in [19] that 
the phase margin will be maximized if (8) is satisfied.  
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For the unit-step input R(s) =1/s, the output C(s) is 
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The inverse Laplace transform calculation of the C(s) is 
very complicated. So, the analysis of loop dynamics 
specifications is difficult. In this paper, new closed 
form equations are proposed for dynamic specifications 
such as phase margin, damping ratio, overshoot and 
settling time. 

 
3.  THE PROPOSED APPROACH FOR 
TRANSIENT ANALYSIS 
In this section, the transient response characteristics of 
the third-order PLL are approximated through the 
transient response of a second-order system. As known, 
the unit step response of second order systems can be 
described as follows [21] 

)sin()/(1)(1 θωβα +−= − tetc d
t

  (10) 

Where, α is called the attenuation and ωd is the damped 
natural frequency of the system. The transient response 
of a practical control system often exhibits damped 
oscillation before steady state. A unit step response 
curve of a typical second-order system is shown in Fig. 
4. In order to specify the transient response 
characteristic of a control system to a unit-step input, it 
is common to specify the followings 
1. Rise time, tr 

2. Maximum overshoot, Mp 

3. Settling time, ts 

4. Peak time, tp  

outϕ
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Fig. 4. Unit-step response curve showing tr , tp , Mp  
and ts 

 
The proposed approach is based on approximating the 

phase step response of the third-order PLL by the step 
response of the second order systems. In this approach, 
an additional parameter td is introduced to obtain an 
extra degree of freedom. Therefore, the transient 
response is approximated by (11). 
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Where, td is the new introduced parameter. The 
dynamic behavior of the system can then be described 
in terms of four parameters α, β, θ and ωd. Thus, the 
Laplace transform of co(t) can be written in terms of 
Laplace transform of c1(t) as follows 
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Firstly, the Laplace transform of c1(t) is calculated. 
Equation (10) can be rewritten as 
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The transfer function of C1(s) can be simplified, 
yielding 
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Where 
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0 da ωα += (16)  
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Referring to (12), we have 
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Equation (19) is an approximation of the C(s) output. 
Equating C(s) and Co(s) from (9) and (19), respectively, 
results in 
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The delay time td is very small and therefore dste− is 
frequently approximated by 

d
ts tse d −=− 1 (21) 

Substituting (21) in to (19) results in (22) 
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Comparing numerators in both sides of (22) results in 
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Then rearranging (22) yields 
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By comparing coefficients of s3, s2, s1, and s0 terms on 
both sides of the (24), we get 
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Substituting (26) and (27) in to (28) we have 
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Using (29), the real negative value of td can be 
obtained. Then, referring to (25), (26) and (27) the 
values of a1, a0 and α will be calculated respectively. 
Also from (16), we have 

2
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Substituting (23) in to (17) gives 
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Therefore, θ can be calculated from (31). 
 

4.  TRANSIENT RESPONSE SPECIFICATIONS  
In the following, the rise time, peak time, maximum 
overshoot and settling time of the third-order PLL will 
be calculated using the approximated transient response 
given by (11). 
Rise time tr: The rise time is the required time for the 
response to rise from 0% to 100% of its final value. 
Referring to (11), the rise time can be calculated by 
letting c(tr)=1. This means 
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Settling time ts: The settling time is the time required 
for the response curve to reach and stay within a 
specified error around the final value by absolute 
percentage of it (usually ±2% or ±5%). The curves 

)/(1)(ˆ )( βα dttetc +−±= are the envelopes of the 
transient response of the unit-step input. The response 
curve c(t) always remains within a pair of the envelope 
curves. If the ±5% criterion is used then ts will be 
obtained as follow. 
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Peak time tp: The peak time is the time required for the 
response to reach the first peak of the overshoot. It can 
be obtained by differentiating c(t) with respect to time 
and letting it equal to zero. Knowing the fact that the 
time derivative of the unit-step response is the unit-
impulse response, the impulse response should be 
calculated and set to zero. Referring to (19), for the 
unit-impulse input R(s) =1, the output H1(s) becomes 
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The inverse Laplace transform of this equation yields 
the time solution for the response h2(t) as follows 
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Using (25) and (26) in (39) yields 
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The peak time is obtained by letting impulse response 
equal to zero. Therefore, from (35) and (37) we get 
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Since the peak time corresponds to the first peak 
overshoot, (41) yields the following equation 
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Maximum overshoot Mp: The maximum overshoot 
occurs at the peak time. Assuming that the final value 
of the output is unity, Mp is obtained from (11) and 
(42) as  
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The maximum overshoot of the second-order system 
can be calculated from the following equation 
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Where, ξ is called the damping ratio. Thus, from (43) 
and (44) the equivalent damping ratio of the third-order 
PLL can be approximated as 
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5.  TRANSIENT RESPONSE SPECIFICATIONS  
In order to determine the validity of the proposed 
method for the analysis of third order PLL, a test bench 
was created using the MATLAB simulator and an 
interesting example is carefully expressed and 
simulation is used to compare the results from 
theoretical analysis and simulation of actual PLL. The 
corresponding loop parameters are designed to reach 
phase margin equal to 60˚. As a result, from (7), 
b=13.9. Assuming that Cp=300pf, then C1=23.2 pf. 
Also, if Rp=2KΩ, using (8), KV = 1.035e13. Knowing 
the VCO gain, the charge pump current Ip can be easily 
obtained from (2). Assuming KVCO=50×106 Hz/V, 
Ip=420μA. 
By the set of equations (3)-(5), we have 
 
b1 = KV b=1.44e14 

b0 = b1 / (RpCp) = 2.4e20 

b2 = b / (RpCp) =2.32e7 

Equation (29) can be solved using MATLAB to obtain 
td and a1, a0 and α are calculated referring to equations 
(25)-(27). Also, ωd, θ and β are obtained by (30), (31) 
and (23), respectively. Note that the transient 
parameters are obtained by the set of equations (33), 
(34), (39), (42), (43) and (45). To verify the precision 
of the introduced approach in section 3 and 4, (11) is 
plotted in Fig. 5 for the parameters outlined above, 
where the horizontal axis is time and the vertical axis is 
the output phase. Also, the phase unit-step response of 
the third-order PLL has been simulated in MATLAB 
and is demonstrated in Fig. 5. The results predicted by 
(11) are observed to precisely match the results 
obtained via simulation (dashed lines of the Fig. 5). As 
seen, the precision of the match is such that the 
simulation based curves and the prediction based 
curves are nearly indistinguishable in the figure. Table 
1 summarizes the parameters of this example. 
The proposed approach for calculating of the transient 
specifications of the PLL is evaluated by simulations 
for different values of Ip, Rp and C2. The calculated rise 
time, settling time and overshoot from (33), (34) and 
(43) for different values of C2, Rp and IP are compared 
with the simulation results as shown in Fig. 6. In this 
example, the value of C2 is swept from 30pf to 100pf 
with the constant values of other parameters. Also, in 
similar way, Rp and Ip are swept from 2KΩ to 5KΩ and 
420μA to 650μA, respectively. 
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Fig. 6. Comparison between the simulated and calculated results of settling time, rise time and overshoot versus (a) Cp 

(b) Rp (c) Ip  

Comparison between simulations and the results 
obtained from the proposed method are shown in Fig. 
6.  
For different values of loop parameters, the phase 
margin is obtained from (6). Table 2 summarizes the 
phase margin of system for different values of loop 
parameters. Overall, the results indicate that when the 

loop stability or phase margin are decreased, then, the 
accuracy of the proposed approach for the calculation 
of maximum overshoot will be degraded but the 
settling time and rise time are proper. Simulations show 
if the ratio Cp/C2 is decreased, the loop stability is 
reduced which can be confirmed from (6) and (7). 
As seen, simulation results of the above example 
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indicate that the proposed approximation approach 
provides reasonable accuracy and very suitable while 
carrying an intuitive view of the transient behavior. 

 
Table 1.Transient response simulation parameters of 

the example 

  3rd PLL 
step response 

Approximated step 
response 

td  - -6.97e-8 
a0 - 1.67e13 
a1 - 1e7 
α - 4.44e6 
ωd - 1.72e6 

θ (rad) - -0.31 
β - -0.32 

tp (ns) 506 491 
Mp (%) 18.7% 19% 
ξ - 0.4 

tr (ns) 190 190 
ts (ns) 1.5 1.5 
PM 60˚ 59˚ 

 
Table 2. The phase margin of system for different 

values of loop parameters 
(1) Ip=420μA,  Cp=300pf,  Rp=2KΩ, KVCO=50e6 

C2 (pf) 
30 40 60 80 100 

PM 56˚ 51.8˚ 44.7˚ 39.6˚ 35.7˚ 
(2) Ip=420μA,  Cp=300pf,  C2=100pf, KVCO=50e6 

Rp (KΩ) 
1 2 3 4 5 

PM 45.4˚ 60˚ 54˚ 45˚ 38˚ 
(3) Rp=2KΩ,  Cp=300pf,  C2=100pf, KVCO=50e6 

Ip (μA) 
300 450 500 550 650 

PM 58.9˚ 60˚ 59.7˚ 59.3˚ 58.2˚ 
 
6.  CONCLUSION 
The transient behavior of the third-order charge pump 
PLL was investigated in this paper. The presented 
analysis is carried out in the time domain, allowing a 
mathematical modeling of the transient response in 
PLL. The proposed approach is used for approximated 
analysis and predicting the loop transient specification 
such as damping ratio, overshoot, settling time and 
other parameters for the PLL. Finally, behavioral 
simulations in MATLAB indicate exact agreement 
between the simulated results of the actual PLL and the 
proposed approximated approach. The results in this 
work help designers to estimate and optimize the 
performance of the third-order PLL in system-level 
design. 
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