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Abstract: This study is devoted to analyse of free and forced vibrations and semi-active 
control vibrations of sandwich microbeam with Functionally Graded Materials (FGM) and 
viscoelastic/electrorheological (ER) core. The intended model is for top and bottom layers 
of functionally graded materials with power law and a core model for Viscoelastic materials 
with complex shear modulus. Hamilton principle is used to determine the governing 
Equations of motion on the sandwich microbeam based on the modified couple stress theory. 
Mesh less method of Radial Basis Functions (RBF) is used to calculate natural frequency 
and the loss factor. All the effects of length scale parameter, shear modulus and changes due 
to variation of the electric field on the natural frequency and loss factor have been drawn. 
Combination of RBF method and forward difference led to evaluation of forced vibration 
and deflection of microbeam for length scale parameters and different electric fields under 
the dynamic load have been calculated and drawn. The feedback effects are analyzed for 
vibration amplitudes of sandwich microbeam by using Linear Quadratic Gaussian (LQG) 
and optimal control method. At the end, the results are compared with papers for different 
viscoelastic models such as Kelvin model, Bingham plastic model and complex modulus 
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1 INTRODUCTION 

The use and application of Nano/Micro-Electro-

Mechanical systems (NEMs/MEMs) are growing in 

various industries such as medicine, aerospace and 

biotechnology. In particular, microbeams are present in 

Atomic Force Microscope (AFM), micro-switches, 

micro-actuators, biosensors and micro-accelerometer by 

Ghayesh et al. [1] and Gomathi et al. [2]. Lightweight 

and resistance, and reduction of noise and vibrations in 

micro-electro-mechanical systems are important things 

which are always considered by the researchers. For 

example, due to thermal resistance in most of the 

sandwich microbeam, Functionally Graded Materials 

(FGM) have been used at different faces and viscoelastic 

materials are used in the core for better damping 

property. Functionally graded materials are a class of 

composites which change in their general mechanical 

properties is steadily from one surface to another. These 

materials are made of metal and ceramic which are 

produced by metallurgical powder and have no 

boundary problem in the layers. Form of materials 

distribution in matrix can be in form of power law (Λ, 

V, X) or exponential or uniform.  

Nowadays, other compounds such as functionally 

graded carbon nanotube reinforced composite (FG-

CNTRC) and boron nitride nanotube (BNNT) are used 

in the functionally graded materials as amplifiers instead 

of metal compound by Mohammadimehr and 

Alimirzaei. [3]. Smart materials such as Shape memory 

alloys by Asadi [4], piezoelectric or rheological 

materials are used to control vibrations in micro 

structures and due to the need for a low power source 

and low voltage, these systems are called semi-active. 

Rheological are materials which their general 

mechanical properties change, such as shear modulus, 

viscosity, and yield stress with electric field (ER 

materials) or magnetic field (MR materials). Various 

models have been proposed for the behavior of 

viscoelastic rheological materials, the most important of 

which are Complex modulus, Kelvin material model for 

pre-yield and Bingham plastic model for post-yield and 

Maxwell model by Yeh [5], El Wahed et al. [6]. Works 

done on macro and nano and microbeams with FGM 

faces and viscoelastic core are summarized as follows: 

A) Studies and papers performed in macro size with 

classic theories: That includes analysis static of bending, 

buckling, free and forced vibration analysis, control and 

optimization vibrations. The natural frequency and the 

loss factor in viscoelastic materials such as 

electrorheological heavily depend on shear modulus. 

The real part is called the storage modulus and the 

imaginary part is called the loss modulus in complex 

modulus model. Yalcintas and Coulter [7] examined free 

vibrations of sandwich macro beam with the 

electrorheological core with different boundary 

conditions. They examined the effects of the electric 

field on a complex modulus and showed that lowering 

the constraints and supporting conditions will reduce 

natural frequency and increase loss factor. Arikoglu and 

Ozkol [8] investigated free vibrations of sandwich beam 

with composite faces and viscoelastic core using semi-

analytic differential-transfer technique (DTM). They 

studied the effects of thickness, length, angles of fibers 

in the beam faces and different boundary conditions on 

natural frequency and the loss factor. Other model that 

is offered for viscoelastic/rheological materials in the 

pre-yield area is Kelvin model. Rahn and Joshi [9] used 

Kelvin material model to evaluate control of 

longitudinal vibrations of sandwich beam with ER core 

using Lyapunov Theory and Linear-Quadratic Regulator 

(LQR) method. Another model which is presented for 

rheological materials in the post-yield area is Bingham 

plastic model. Rezaeepazhand and Pahlavan [10] used 

Bingham plastic model to evaluate forced vibrations of 

sandwich beam with ER core. They used finite element 

method for spatial derivatives solvation and used central 

finite difference method for time derivatives solvation of 

partial differential Equations. Other methods for 

vibration analysis of sandwich beam are methods with 

mesh such as finite element and inverse method which 

were used by Adessina et al. [11] to evaluate forced 

vibrations of sandwich beam with viscoelastic core 

under dynamic load with different boundary conditions. 

Bhangale and Ganesan [12], conducted free vibration 

and static bending of sandwich microbeams with 

viscoelastic core under thermal load. Allahverdizadeh et 

al. [13] used Particle Swarm Optimization (PSO) 

algorithm for vibration analysis and optimization of 

sandwich beam with FGM faces and suggested amount 

of optimal volume fraction and optimal layer thickness. 

In addition, Allahverdizadeh et al. [14] investigated the 

natural frequency and loss factor for this sandwich 

beam. Different methods have been recommended for 

vibration control of sandwich beams in which intelligent 

materials are used as sensors and actuators. Modern 

control methods such as active feedback control and 

feedforward by Vasques and Rodrigues [15], Active 

Noise Control (ANC) and Active Vibration Control 

(AVC) [16], Hybrid active and passive control by 

Benjeddou [17], Adaptive control, Positive position 

Control [18], Independent Space Control [19], H2 / H 

Optimized Control [20], linear Quadratic gaussian 

(LQR) [21] can also be mentioned. 

B) Free and forced vibration analysis and vibration 

control of sandwich microbeam: Given that the classic 

theory of elasticity is not capable of predicting and 

expressing the behavior of systems in very small faces 

(nano and micro), different mathematical models are 
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proposed as non-classical elasticity theory. 

Experimental experiments to calculate the natural 

frequency and behavior of systems in very small faces 

are extremely costly and that is why these mathematical 

models have been used for the last two decades. The 

Nonlocal theory of elasticity by Eringen [22] can be 

considered to be among these models. Ebrahimi and 

Shafiei [23] used meshless General Differential 

Quadratic Method (GDQM) to evaluate free vibrations 

of Rotating Nano beam (FGM) using this theory. Shen 

et al. [24] evaluated forced vibrations of this nanobeam 

under dynamic load in a longitudinal and transverse 

direction. Evaluation of length parameter effects and 

changes of volume fraction indicator on sandwich 

microbeam with different boundary conditions using 

semi conductive differential transformation method 

(DTM) was done by Ebrahimi and Salari [25]. Other 

nonclassical theories such as surface elasticity by Gurtin 

et al. [26], micro polar theory [27] and couple stress 

theory which consists of four constant materials (two 

fixed numbers and two additional numbers) have also 

been presented [28]. Another important theory among 

these theories is the theory of strain gradient [29]. In this 

theory, high-order tensors such as deviation tensor and 

expansion tensor are considered and that is why 

Equations are wrapped and have higher length scale 

parameters. Ghorbanpour Arani et al. [30] used this 

theory to analyze the vibrations of sandwich microbeam 

using the DQM method of without Square Difference 

mesh. Also, Mohammadimehr and Monajemi [31] 

examined the buckling and free vibrations of FGM 

nanobeam reinforced with nitrite and boron. Yang et al. 

[32] presented the modified couplestress theory in which 

there is only need for expression of one length scale 

parameter. Density of Functional strain energy in 

modified couple stress theory was from square tensor of 

strain and symmetric part of the curvature tensor where 

length scale parameter only appeared in the curvature 

tensor. Şimşek and Reddy [33] examined the flexion and 

free vibrations of FTG sandwich microbeam using this 

theory and evaluated the effect of small length scale 

parameter on level of static deflection and natural 

frequency, they also evaluated the buckling 

phenomenon under critical load on microbeam with high 

order theories. The analysis of the forced vibrations of 

Timoshenko’s sandwich nanobeam on Elastic base was 

done by Akbas [34]. Roque et al. [35] studied the 

optimal amount of volumetric fraction and thickness of 

layers in FGM sandwich microbeam.  

In recent years. Different analytical and semi-analytical 

methods have been proposed for analyzing sandwich 

microbeams with FGM layers and Viscose core. Semi-

analytic methods such as He,s Method [36], Rayleigh-

Ritz Method [37], Arefi et al. [38] Combined methods 

with the use of Galerkin method,  finite element methods 

were used by Asemi et al. [39] and mesh less methods 

such as GDQM by Ghorbanpour Arani et al. [40]. Basic 

Radial Functions (RBF) method is among suitable 

numerical methods used for complex forms. 

Convergence is possible with low number of points in 

this method due to lack of dependence of points to speed 

domain [41]. Other methods are combinations of two or 

more methods to reduce the defects of any of these 

methods such as combination of square differential 

method and base radial function method done by Shu et 

al. [42]. In this article, we have used base radial 

functions method to evaluate free vibrations of sandwich 

microbeam with FGM faces and viscoelastic/ER core. 

Then, combination of base radial functions method and 

leading finite difference method led to evaluation of 

forced vibrations of this sandwich microbeam with 

different boundary conditions. Then, we have used LQG 

control method to design and calculate suitable 

controller in the intended form for the intended system. 

Complex shear modulus model, Kelvin material model 

and Bingham plastic model have been considered in 

order to validate various models and comparison has 

been done with valid articles. In the end, we have 

evaluated the effect of length scale parameter (modified 

couple stress theory) and variation of the electric field on 

natural frequency and loss factor. 

2 SYSTEM MODEL 

2.1. Properties of ER Materials 

Electrorheological is a substance with a behavior near to 

Newtonian fluids. Its mechanical properties shear 

modulus and viscosity change under the influence 

of electric field in a way that it turns into having an 

organized atomic structure and atomic arrangement in 

a regular manner. The electric field is indicated by E 

(KV/mm) and changes between 0 and 5. Increased 

electric field leads to behaviour of this material to 

become closer to the solid state. The point of yield in this 

diagram is extremely important and points before this 

point is called pre-yield and points after it are called 

post-yield. The stress and strain Equation for this 

substance is as follows: 

 

𝜏𝑥𝑧 = 𝐺∗𝛾, 𝑎𝑛𝑑𝐺∗ = 𝐺 ′ + 𝐺″𝑖 (1) 
 

Where, xz and  are shear stress and strain and G* is the 

complex shear modulus which changes under the effect 

of electric field. In which G′ is storage modulus and G″ 

is loss factor. The different models are defined for 

viscoelastic materials in pre-yield area and plastic 

models in post-yield area. One of these models is Kelvin 

which is defined for pre-yield area. In this model, shear 

stress is modeled in parallel equal to a spring and a 
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damper. If G is stiffness of the spring and  is damping 

of a viscous damper, it can be written: 

 

𝜏𝑥𝑧 = 𝜂�̇� + 𝐺𝛾, 𝐺(𝐸) = 𝑚𝑔𝐸 + 𝑏𝑔, 𝜂(𝐸)

= 𝑚𝑒𝐸 + 𝑏𝑒 
(2) 

 

In which, 


 is the rate of Shear strain variations. In 

which mg, bg, me and be are obtained in laboratory. 

Bingham plastic model is among other models in post-

yield area, that p and p are respectively shear stress and 

viscosity base coefficient for ER material post-yield 

area, it can be written as: 

 

𝜏𝑝(𝐸) = 𝜂𝑝�̇� + 𝜏𝐸(𝐸), 𝑎𝑛𝑑𝜏𝐸(𝐸) = 𝛼𝐸𝛽 (3) 
 

In which, E is stress fluctuations which is a function of 

the electric field and the amount of p is separated from 

the electric field. In which  and  are the constants 

of ER material in the post-yield area and are determined 

in laboratory. All models are compared with valid article 

at the end of this study for validation. 

2.2. Functionally Graded Materials (FGM) 

Functionally graded materials are a combination of two 

different materials which are mostly made of ceramic 

and metal. This distribution non-homogeneously 

changes in line with thickness of the beam as shown in 

“Fig. 1”.  

 

Fig. 1 A model of microbeam sandwich with ER core and 

FGMs faces. 
 

Metal is distributed in power law form in layer one from 

top to bottom (Z1/2,-Z1/2). This distribution is the 

opposite in the third layer (Z3/2,-Z3/2). If the general 

mechanical properties of material for Kth layer are shown 

with Pk(Z), it can be written: 

 

𝑃𝑘(𝑧) = 𝑃𝑇
(𝑘)
𝑉𝑇
(𝑘)

+ 𝑃𝐵
(𝑘)
𝑉𝐵
(𝑘) (4) 

 

In which PB and PT are general mechanical properties 

and VB
 and VT

 are volume fractions for highest and 

lowest levels of kth layer which can be expressed as 

follows: 
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p and q are related to volume fraction index for upper 

and lower microbeam layers. 

2.3. Assumptions of the Problem 

In this section, we will focus on displacement field and 

stress-strain relation based on the assumptions 

governing the problem. Assumptions governing the 

problem are as follows: 

 The transverse deflection of beam is extremely 

small compared to thickness 

 Core is made of viscoelastic materials (ER) and 

has shear deformation equal to the assumptions 

of Timoshenko beam  

 Faces are made of FGM materials with power 

distribution and shear deformation in it has 

been ignored 

 Layers do not slip on each other 

 Transverse deformation is equal in all layers 

If uk(x, y, z, t) and wk(x, y, z, t) are respectively the 

longitudinal and transversal deflections of kth layer of 

sandwich microbeam for any desired point, it can be 

written: 
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(6) 

 

In which, u0(x, t) and w(x, t) are longitudinal and 

transverse deflection of the middle face of viscoelastic 

core. (x,t) is the total change of core angles based on 

Timoshenko theory. It can be written based on 

displacement field Equation and von Kármán Equation: 
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 (7) 

In which,  is the longitudinal strains in upper and lower 

faces and γ is the shear strain in core. It can be written 

according to Hooke's Equation that: 
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         1 2 3(1) * (2) (3)
1 2 3, ,xx xx xz xz xx xxE z G E z         (8) 

 

In which, E1(z) and E3(z) are Young's modulus for upper 

and lower faces in functionally graded materials and G2
* 

is complex shear modulus for Viscoelastic core of ER 

according to “Eqs. (4-5)”. 

2.4. Modified Couple Stress Theory 

In this section, we will use modified couple stress theory 

expressed by Young et al. (2002) for materials in micro-

size to extract strain energy Equations. According to this 

theory, the energy of strain potential includes two 

sections of square tensor of the strain and curvature 

tensor (which only includes length scale parameter). In 

this theory, the density of strain energy of u for sandwich 

microbeam with infinite shape transformation is as 

follows: 

 
3

1

1
( )

2

k k k k
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k V

U m dV  
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   (9) 

 

In which  and  are symmetric parts of stress and strain 

tensor and  and m are respectively symmetric part of 

curvature tensor and deviatory part of coupled stress 

tensor. 
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The infinitesimal rotary vector generated by the 

deflection field is also defined as follows: 
 

1
( ( ))

2

k k
i icurl u   (11) 

In which l is length scale parameter which applies the 

effects of size in curvature tensor. Also, the amount of 

(k) is the Shear stress for kth layer. 

3 GOVERNING EQUATIONS 

According to Hamilton’s principle, the motion Equation 

for sandwich microbeam under external load and 

electric field is as follows: 
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2

1
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t
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In which, T is the Kinetic energy of the system, U is the 

strain energy and Wext is work resulting from outside 

forces and Wer is the virtual work caused by electric 

field changes in ER, and  is related to variation 

operator. It can be written by applying variation in “Eq. 

(9)” for strain energy: 
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(13) 

 

The values of N, M, Q are respectively normal new axial, 

flexural, and shear and S forces related to modified 

couple in kth layer and are defined as follows: 
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By substituting “Eq. (14) into Eq. (13)”, we can obtain 

the following Equation: 
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Which can be written for the coefficients N, M, R: 

 

𝑁 = 𝑁𝑥𝑥
(1) + 𝑁𝑥𝑥
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𝜕𝑢0
𝜕𝑥

− 𝐴12
𝜕𝜑

𝜕𝑥
− 𝐴13

𝜕2𝑤

𝜕𝑥2
 

𝑅 = (𝑁𝑥𝑥
(1) −𝑁𝑥𝑥

(3))
ℎ2
2
+
𝑆𝑥𝑦
(2)

4

= 𝐴21
𝜕𝑢0
𝜕𝑥

− 𝐴22
𝜕𝜑

𝜕𝑥
− 𝐴23

𝜕2𝑤

𝜕𝑥2
 

𝑀 = 𝑀𝑥𝑥
(1) +𝑀𝑥𝑥

(3) +
1

2
(𝑁𝑥𝑥

(1)ℎ1 − 𝑁𝑥𝑥
(3)ℎ3) +

𝑆𝑥𝑦
(1)

2

+
𝑆𝑥𝑦
(3)

2
+
𝑆𝑥𝑦
(2)

4
 

= 𝐴31
𝜕𝑢0
𝜕𝑥

− 𝐴32
𝜕𝜑

𝜕𝑥
− 𝐴33

𝜕2𝑤

𝜕𝑥2
 

(16) 

 

The coefficients of the deflection variables in “Eq. (16)” 

which are Aij form a symmetric matrix equal to: 

 

𝐴11 = 𝐸𝑚(ℎ1 + ℎ3) + (𝐸𝑐 − 𝐸𝑚) (
ℎ1
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) 
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−
ℎ3
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ℎ2
2

 

𝐴13 =
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2
(ℎ1
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2)
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ℎ1
2
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ℎ3
2
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) 

𝐴21 = 𝐴12 

𝐴22 = [𝐸𝑚(ℎ1 + ℎ3)
ℎ2
2

4

+ (𝐸𝑐 − 𝐸𝑚) (
ℎ1

𝑝 + 1
+

ℎ3
𝑞 + 1

)
ℎ2
2

4

+ 𝐺2
∗𝑙2
2
ℎ2
8
] 

𝐴23 = [
𝐸𝑚
2
(ℎ1

2 + ℎ3
2)

+ (𝐸𝑐 − 𝐸𝑚) (
ℎ1
2

𝑝 + 2
+

ℎ3
2

𝑞 + 2
)

+
𝐺2
∗𝑙2
2

4
]
ℎ2
2

 

𝐴31 = 𝐴13 
𝐴32 = 𝐴23 

𝐴33 =
𝐸𝑚
3
(ℎ1

3 + ℎ3
3)

+ (𝐸𝑐 − 𝐸𝑚) (
ℎ1
3

𝑝 + 3
+

ℎ3
3

𝑞 + 2
) + 

𝐺𝑚

2
(ℎ1𝑙1

2 + ℎ3𝑙3
2) +

(𝐺𝑐−𝐺𝑚)

2
(
ℎ1𝑙1

2

𝑝+1
+

ℎ3𝑙3
2

𝑞+1
) +

𝐺2
∗ℎ2𝑙2

2

8
  

(17) 

 

In “Eq. (17)”, only the A22, A23, A32 and A33 strings have 

a length scale parameter that shows curvature tensor. 

The kinetic energy for a sandwich microbeam can be 

expressed as follows: 

 
3

2

1

1
( )

2
k

k V

T U dV


   (18) 

 

In which k is the density and U is the speed at any 

desired point of microbeam and moment of inertia in kth 

layer can be written as: 

 

       
2

2
0 1 2

2

, , (1, , )

k

k

h

k k k

k

h

I I I z z z dz



   (19) 

With the factorial of the displacement coefficients in 

“Eq. (18)”, the inertia related terms in “Eq. (19)” are 

defined as: 

 
     

      
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            

1 3 2
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2
2 1 3 2

1 2 0 0

1 3

2 20 0
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3 1 31 1 0 0

1 3 1 3 2
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1 3 1 3 1 32 2
5 1 3 1 32 2 1 1 0 0

4

2 2

2 2
2

1

4

I I I I

h
I I I I

I I I h

I I I I h I h

h
I I I I h I h

I I I I h I h I h I h

  

  

 

   

   

     

 (20) 

 

The variation of kinetic energy in “Eq. (18)” can be 

written as: 

 

 2 2 2
0 0 0 1 2 0

2

3 0 4 50
2

L I u I w I I u
b

T dxw w w
I u I I

x x x

    


   

   
 

         
        

         

  (21) 

 

If the loading of width on microbeam is shown with 

F(x,t), virtual work caused by external force is equal to: 

 

ext ext

V

W F wdV    
(22) 

 

And also, virtual work caused by changes on electric 

field in electrorheological core is as follows: 

 

er

V

W dV      
(23) 
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“Eq. (23)” changes based on consideration of proper 

model for electrorheological core which will be 

discussed at validation of forced vibrations. The general 

motion Equation governing the sandwich microbeam is 

obtained as follows: 

 
2 2 3

0
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2 2 3
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:
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w
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x x x





  
    
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 (24) 

 

Also, the remaining terms outside the integral in “Eq. 

(12)” represent boundary conditions and can be written 

as: 

 

 

0

2
3 0 4 5

0

0

1 1
0

2 2

0

xz

N u

R

M w
Q I u I I w

x x

w
M

x


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 







  
     
  

 
 

 

 (25) 

 

The matrix form of “Eq. (24)” for free vibrations, can be 

written as follows: 

 

   2[ ] [ ]mK M    (26) 

 

Where, [M] and [K] are the matrix of mass and Stiffness 

and  is the eigenvector of displacement. In the method 

of radial basis function (RBF), we separate vector of 

deflection (Vs) to time and space functions described in 

section (4), with assumption of harmonic movement can 

be written as: 
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   
      

     
   
   

    
  







 
(27) 

 

In which m is the complex radian frequency (rad/s) and 

 is weight coefficients and can be distinguished as 

follows: 

2 2(1 )m i    (28) 

 

In which  is the Natural frequency and  is loss factor 

and is equal to: 

 
2

2

2

Im( )
Re( ) ,

Re( )

m
m

m


 


  

 
(29) 

4 RBF NUMERICAL METHOD FOR CALCULATING 

FREE VIBRATION 

One of the mesh less numerical methods is radial base 

functions (RBFs). This method is suitable for complex 

forms and has a high convergence due to the lack of 

dependence of the distribution of points to the domain. 

In a way that the general form of a differential Equation 

is as follows: 

 
2( ) ( )

( ) 0

mLu x u x in

Bu x on

 





 
 (30) 

 

In which L is the linear differential operator on Ψ domain 

and B is the linear differential operator on ∂Ψ boundaries 

and with assumption distribution of Ns points on each 

layer of sandwich microbeam, in general we will have 

3Ns*3Ns matrices of domain and boundaries. 

Distribution of points in accordance with Gauss-

Chebyshev-Lobatto is as follows: 

 

( 1)
1 cos[ ] , ( 1,2,3,..., )

2 ( 1)
i

L i
x i N

N

 
   

 
 (31) 

 

According to having four boundary conditions for each 

side of sandwich microbeam, the following nodes can be 

considered as boundaries: 

 

{1, 𝑁, 𝑁 + 1,2𝑁, 2𝑁 + 1,2𝑁 + 2,3𝑁 − 1,3𝑁} ∈ 𝜕𝜓 (32) 

 

There are different models to express radial base 

function in RBF method, the most important of which 

are: 
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 (33) 
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Several multiqaudrat functions have been used in this 

article in which c is the parameter of shape. Selection of 

parameter c is extremely important for obtaining the 

correct answer. The optimal value after the guess and 

error is about c= 1.7 (Ns) -0.5 and Ns is the number of 

points on one layer of the beam. The following general 

form is obtained for the differential Equation system by 

placing “Eq. (33)” in “Eq. (30) :”  

 

∑𝛼𝑗𝐿𝑔(‖𝑋𝑖 − 𝑋𝑗‖, 𝑐)

𝑁

𝑗=1

= 𝜔𝑚
2 ∑𝛼𝑗𝐿𝑔(‖𝑋𝑖 − 𝑋𝑗‖, 𝑐)

𝑁

𝑗=1

, 𝑖

∈ 𝜓 

∑𝛼𝑗𝐵𝑔(‖𝑋𝑖 − 𝑋𝑗‖, 𝑐)

𝑁

𝑗=1

= 0, 𝑖 ∈ 𝜕𝜓 

(34) 

 

The matrix form of “Eq. (34)” is as follows: 
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0
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In which m is the eigenvalue. It can be written by 

placing “Eq. (27)” in “Eq. (24)”: 
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(36) 

Then, the natural frequency and loss factor are obtained 

using “Eq. (28)”. 

5 FORCED VIBRATIONS 

The transverse force of F(x, t) and the force of Fer 

obtained from changing electric field are applied to the 

ER core. There are different models for 

changing electric field of the ER core. We have used 

complex shear modulus models as well as Kelvin 

material model in the pre-yield area and Bingham model 

in the post-yield area in examples mentioned in this 

article and these have been validated with credible 

articles. Solvation of differential Equations based on 

time is done in this method by dividing time steps to t 

using Forward difference rule method and Nicholson-

Crank's assumptions. The general form of sandwich 

microbeam’s motion Equation by combining the leading 

differential and RBF method is as follows: 
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(37) 

 

Based on the conditions of the problem at t0 for t time 

step, time at the nth moment can be defined in form of 

tn=t0+nt and we can move to n + 1 step. As can be 

seen, next step of n-1 steps which is n can be obtained 

from it. Location derivatives are calculated from RBF 
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and time derivatives are calculated from Forward 

difference rule method. 

6 LQG CONTROLLER (REDUCED-ORDER 

MODAL) 

Vsi is the mode of displacements to ith mode, it can be 

written based on modal sum method to following form: 

 

1

( , ) ( ) ( )

r

si i i

i

V x t g x q t



  (38) 

Assuming proportional damping, and substituting “Eq. 

(38)” into “Eq. (24)”, it can be written in the following 

form: 

 

( ) ( ) ( ) er extMq t Cq t Kq t F F     (39) 

 

The second order system above may be transformed to 

the following state space one: 

 

         

    

,x A x B z f

y C x

  


 (40) 

 

Where each column of the control input matrix B 

represents the ER actuation loads distribution for a 

unitary electrical field and the control input z is a column 

vector formed by the electrical field E applied to the 

actuators. The perturbation vector f is the state 

distribution of the mechanical loads Fext and the output 

vector y is, generally, composed of the measured 

quantities, written in terms of the state vector x through 

the output matrix C. The system dynamics are 

determined by the square matrix A. In “Eq. (24)”, the 

generalized excitation force vector {f} and the matrix 

[Kg] define the inputs, while {y} is the output vector. In 

the closed-loop configuration, the control input vector 

{z} in “Eq. (40)” is related to the state feedback vector, 

as: 

 

       1 1, .....
T

g n nz K x x q q q q      (41) 

 

The vector of mechanical and electrical force is as 

follows: 
 

  1 1,ext erf M F B M F     
   

 (42) 

The feedback gain matrix is obtained so as to minimize 

the quadratic cost function of the form: 

 

         
0

1
( )

2

T T
J x Q x z R z dt



   (43) 

 

Where, Q and R are the state variable and control input 

weighting matrices. {z}= -[Kg]{x}, where the control 

gain matrix, [Kg]=[R]-1 [B]T [P] is evaluated by solving 

[P] from the following algebraic Ricatti Equation: 

 
1 0T TA p pA PBR B p Q     (44) 

 

To estimate the states of the system from sensor outputs, 

an state estimator based on the Kalman filter is designed: 

 

ˆ ˆ ˆ( ) ( )g ex A BK x f k y Cx      (45) 

 

Where, x is the estimated state vector and Ke is the 

observer gain matrix. The Luenberger observer 

simulates real system and penalizes the difference 

between the measured output y and the estimated output 

Cx, Input dw and output Vn noise contributions are added, 

respectively, to state excitation p and output 

measurement y in Equation (40). Hence, replacing 

y=Cx+Vn in Equation (45), then subtracting the resulting 

Equation from the state space system, with added noise 

term dw, leads to: 

 

( )e w e ne A k c e d k V     (46) 

 

The optimal gain Ke is then defined as: 

 
1T

ek pC V   (47) 

 

Combining the steady-state Kalman–Bucy filter with the 

steady-state LQR, the inter-related dynamic system will 

take the following form:  

 

0
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g g w

e ne

A BK BK dIx x f

I Ke e VA K C

         
           

          

 (48) 

 

Where, e(t) is the error between the true and estimated 

states and dw and Vn are the plant and measurement noise 

vectors. The plant and measurement noise are both 

assumed to be white, and have a gaussian probability 

density function and are assumed uncorrelated with the 

inputs. Equations (44) and (47) are Lyapunov Equations 

and can be solved simultaneously using MATLAB 

software to determine the feedback gain. 

7 VALIDATIONS OF MODELS 

7.1. Sandwich Microbeam (Complex Shear Modulus) 

In the first case, we study free sandwich 

microbeam vibrations made of functionally graded 

materials faces and viscoelastic core. In this 
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model, volume fractional index has been considered to 

be same in upper and lower layers [43]. The mechanical 

properties of the sandwich beam are in accordance with 

“Table 1”. 

 
Table 1 Material properties and dimensions 

FGM layers 

=472 Gpac=70 Gpa , EmE 

=0.17c=0.3 , νmν 
3=3100 Kg/mc,  3=2702 Kg/mm 

=5 μm3=l1l 

Viscoelastic layer 

=4 Mpa2G 

η=0.38 
3=2000 Kg/m2 

=7.5 μm2l 

 
 

 

Fig. 3 Variation of the loss factor ratios (ξ) with the volume 

fractions index for h2=l2 and S-S microbeam. 

As it can be observed in “Table 1”, it has a low level of 

natural frequency and loss factor. Also, the ratio of 

natural frequency and loss factor are defined as follows: 

 

dim dim,nonclassic nonclassic
ensionless ensionless

classic classic







  


 (49) 

 

There is a comparison between the article of 

Dehriouyeh-Semnani et al. [43] on the ratio of natural 

frequency and loss factor. There is comparison between 

frequency ratio and loss factor in “Figs. 2-3”. 

 

7.2. Kelvin Model 

We apply the force off on it in order to study 

deformation of the end point of the tip of C-C beam. As 

it can be observed from “Fig. 4a”, the first natural 

frequency 1 decreases by increasing power index p and 

q at lower values of power index, but the first natural 

frequency tends to an approximately constant value as 

power index increases. In addition, the plotted results 

demonstrate that by increasing the value of length scale 

parameter l, the first natural frequency 1 increases. It 

can be observed from “Fig. 4b”, by increasing power 

index p and q, the first loss factor 1 increases and then 

is approximately constant and also by increasing the 

value of length scale parameter l, the first loss factor 1 

decreases. Figure 5a illustrates that the first natural 

frequency decreases 1 by increasing length of 

microbeam L at lower values of length microbeam, but 

it converges to a constant value by increasing length of 

microbeam. It can be observed from “Fig. 5b”, by 

increasing length of microbeam L, the first loss factor 1 

increases and then decreases.  

It can be seen from “Fig. 6a-b” that the first natural 

frequency 1 and the first loss factor 1 have ascending 

trends, respectively, with respect to electric field (E). 

Since with the increase of the electric field, the state of 

material ER to the solid is almost approaching, and the 

matrix of stiffness and damping increases, for this reason 

simultaneously the first natural frequency and first loss 

factor magnitude increase. In “Figs. 7a-8a”, the first 

natural frequency decreases with increasing core 

thickness (h2) and upper face thickness (h1) as a result of 

the decreasing ratio of the sectional stiffness to mass. As 

shown in “Fig 7b”, by increasing the core thickness of 

ER, the loss factor increases because the average 

material loss factor of the microbeam increases. In “Fig. 

8b”, by increasing the thickness of the upper layer, the 

amount of the loss factor first increased and then reduced 

because the system loss factor depends on both the 

material loss factor and stored strain energy. As the 

thickness of the FGM layers increases, the average 

material loss factor of the microbeam increases, 

however, the average strain energy stored by the faces 

due to the shear stress decreases. Therefore, the loss 

factors of the microbeam do not always increase with the 

faces thickness. Instead, an increase to a global 

maximum and then a decrease is observed.  
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(a) First natural frequency of microbeam 

 
(b) Loss factor of microbeam 

 
Fig. 4 Variation of the natural frequency and loss factor 

with the volume fractions index for E=1(KV/mm) and for 

various values of the dimensionless length scale parameter. 
 

In “Fig. 9”, we examine the different boundary 

conditions on the first natural frequency and the first loss 

factor. As it is known, with increased constraints of 

microbeam, the natural frequency increases and the loss 

factor of the system decreases. As the stiffness matrix 

increases, the shear stress decreases and the energy 

stored in the system decreases. In “Fig. 10”, the three-

dimensional diagram of the changes of the length scale 

parameter and electric field is plotted in terms of the first 

natural frequency and the loss factor for C-S boundary 

condition.  

According to this diagram, the highest natural frequency 

is related to the maximum value of the electric field and 

of the length scale parameter, but the highest amount of 

loss factor is related to the greater electric field and the 

smallest of the length scale parameter. As shown in “Fig. 

11a”, with increasing electric field, the tendency to 

stiffness the system increases, and the natural frequency 

increases, as the volume power index increases, the mass 

matrix increases and the natural frequency decreases. 

But in “Fig. 11b”, with the increase of the electric field 

and the volume power index, the loss factor was first 

increased and then decreased. As before mentioned, the 

loss factor is related to material loss factor and strain 

energy stored, which is first increased and the latter 

decreases. 

 

 
(a) First natural frequency of microbeam 

 
(b) Loss factor of microbeam 

 
Fig. 5 Variation of the natural frequency and loss 

factor with the length of microbeam for E=1(KV/mm), 

p=1, q=2 and for various values of the dimensionless 

length scale parameter. 
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(a) First natural frequency of microbeam 

 
(b) Loss factor of microbeam 

Fig. 6 Variation of the natural frequency and loss factor 

with the electric field for p=1, q=2 and for various values of 

the length scale parameter. 
 

 
(a) First natural frequency of microbeam 

 
(b) Loss factor of microbeam 

Fig. 7 Variation of the natural frequency and loss factor 

with the thickness of core for E=1(KV/mm), p=1, q=2 and for 

various values of the dimensionless length scale parameter. 
 

 
(a) First natural frequency of microbeam 

 
(b) Loss factor of microbeam 

Fig. 8 Variation of the natural frequency and loss factor 

with the thickness of top face for E=1(KV/mm), p=1, q=2, 

and for various values of the dimensionless length scale 

parameter. 
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(a) First natural frequency of microbeam 

 
(b) Loss factor of microbeam 

Fig. 9  Variation of the natural frequency and loss factor 

with the volume fractions index for E=1(KV/mm), l=0.5h 

and for various boundary conditions. 
 

 
(a) First natural frequency 

 
(b) First loss factor 

Fig. 10 Variation of the natural frequency and loss factor 

with the electric field and length scale parameter for, p=1, 

q=2 and C-S boundary condition. 
 

 
(a) First natural frequency 

 
(b) First loss factor 

Fig. 11 Variation of the natural frequency and loss factor 

with the electric field and length scale parameter for p=1, 

q=2, and C-S boundary condition. 
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8 FORCED VIBRATIONS 

We investigate the microbeam C-F according to “Fig. 1” 

under dynamic force F=f0sin(πx/L)cos(ωst). In “Fig 12,” 

we ignore the damping effects in the system and the 

damping factor in “Eq. (39)” that C=0. By analyzing the 

response time in “Fig. 12a-b”, the noise and disturbance 

effects on a given system are known, although the range 

of motion decreases with increasing electric field, it does 

not have any effect on noise and turbulence. In “Fig. 13”, 

the effects of damping are considered. As seen, there are 

effects of disturbances until the time t=4s. In “Fig. 14”, 

by inserting the controller on the microbeam and 

obtaining the optimal gain parameter in feedback, the 

amplitude, noise and turbulence can be reduced. 

 

 
(a) Transient response of microbeam for ωs=31.4 

 
(b) Transient response of microbeam for ωs=2 

 

Fig. 12 Time history of tip microbeam for, E=1(KV/mm), 

p=1, q=2, and for various values of the electric field and C-F 

boundary condition. 

 

 

 

 

In “Fig. 14”, the optimum control is placed on the 

system, using “Eq. (5)” By controlling the electric field, 

the setting time is equal t=2.2 and t=4.1. The optimal 

feedback gain values in “Eq. (3)” are k1=10, k2=1, k3=24, 

k4=50, k5=-14.7, k6=107. In “Fig. 15”, the force F= 

f0sin(πx/L)cos(ωst)exp(-2t) enters on the microbeam. In 

“Fig. 15a”, damping in the ignition system is considered, 

but in “Fig. 15b”, this damping is considered. In “Fig. 

16a”, the controller is located on the system and the 

setting time t=2.6 and maximum oscillation A0=.18 

range are reduced. In “Fig. 16b”, the bode diagram was 

used to indicate the state with controller and no 

controller. 

 

 
(a) Transient response of microbeam for ωs=31.4 

 

 
(b) Transient response of microbeam for ωs=2 

 

Fig. 13    Time history of tip microbeam for, 

E=1(KV/mm), p=1, q=2, and for various values of the 

electric field and C-F boundary condition with 

damping matrix. 
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(a) Transient response of microbeam for ωs=31.4 

 
(b) Transient response of microbeam for ωs=2 

Fig. 14 Time history of tip microbeam for, E=1(KV/mm), 

p=1, q=2, and for various values of the electric field and C-F 

boundary condition with LQG controller. 
 

 
(a) Transient response of microbeam- no dempping 

 
(b) Effects of demping on microbeam 

Fig. 15    Comparisons of tip displacement responses 

of the microbeam with and without damping. 

 

 
(a) LQG controller on microbeam. 

 
(b) Bode diagram 

Fig. 16    The tip deflection responses of the ER 

sandwich beam with and without the LQG control and 

subject to a dynamic load 
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CONCLUSION 

In this article, we used the mesh less method of radial 

basis functions for vibration analysis of sandwich 

microbeam which showed the effectiveness of this 

method and the exact answers for free and forced 

vibrations showed a high convergence rate compared 

with other numerical methods for various boundary 

conditions. This method can be combined with other 

numerical methods such as finite difference. Also, the 

importance of controller application (LQG) in reduction 

of transient vibrations was focused on. Combination of 

RBF method with control methods can be easily done. 

This method is applicable to all viscoelastic material 

models. The study shows that with increasing volume 

fractions index, the natural frequency decreases and the 

loss factor is increased. As the thickness of the faces, the 

loss factor is first increased and then reduced. In the case 

of core, with the increase of the electric field and the core 

thickness, the natural frequency and loss factor increase 

simultaneously, due to the increase in system stiffness 

and the increase of stored strain energy. Also, with the 

increase in the length scale, parameter of the natural 

frequency increase and the loss factor decreases. The 

design of the optimal control feedback on the electric 

field indicates that there is less setting time and 

amplitude displacement. 
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