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1 INTRODUCTION 

Functionally Graded Materials (FGM), due to their great 

properties are used in advanced engineering 

applications. High strength, corrosion, thermal 

resistance, hardness and low weight are some of their 

properties [1]. These inhomogeneous materials of made 

of isotropic matters and their properties are changed in 

one or more directions which cause unique and 

interstitial properties. Ceramic-Metal FG materials have 

both corrosion and abrasion resistance properties like 

ceramics and ductility like metals [2]. FG plates can be 

used in aerospace applications. Nowadays the demand 

for using FGMs are extremely increased in various 

industries, e.g. the structures facing buckling and post-

buckling [3].  

FGM can be represented as a non-homogenous material 

which its mechanical properties vary continuously along 

the thickness direction from top one surface to the 

bottom surface. This is achieved by varying the volume 

fraction of the constituents. FGM are typically designed 

for a specific function or application. Most of the times 

they are manufactured to achieve good strength to 

weight ratios and good thermal or electrical conductivity 

[4].  

The buckling behaviour of rectangular FGM plates 

subjected to compressive loads has attracted the 

attention of many researchers working on structural 

analysis and design. Many studies have been performed 

on buckling and its critical force under different 

mechanical and thermal loadings. Hashemi et al. has 

studied an exact solution for the buckling of isotropic 

rectangular Mindlin plates. They considered a 

combination of six different boundary conditions in 

which two opposite edges are simply supported. 

Monoaxial in-plane compressive loads on both 

directions were considered as well as equal biaxial 

compressive loads. They presented the non-dimensional 

critical buckling loads and mode shapes for the six cases 

analysed [5]. Featherston and Watson investigated the 

behaviour of a number of optimised fibre composite 

plates of differing geometry, simply supported along two 

edges and built in along the other two. In their analysis, 

they analysed  a varying combination of shear and in-

plane bending, for which no theoretical solution exists, 

and assessed the suitability of analytical techniques and 

finite element analysis to predict this behaviour [6]. 

Piscopo investigated the Shimpi theory for buckling 

analysis of thick rectangular plates and taking into 

account the shear deformations. The finite element 

method has long been recognized as one of the most 

effective numerical methods for analysing the buckling 

load of thin plate like structures under arbitrary loading 

and boundary conditions. Chin et al. presented a finite 

element method using thin-plate elements. This method 

was capable of predicting the buckling capacity of 

arbitrarily shaped thin-walled structural members under 

any general load and boundary conditions [7]. 

Mohammadi, et al. obtained an exact solution for the 

buckling analysis of thin functionally graded rectangular 

plates. Their work is based on the classical plate theory 

and using the principle of minimum total potential 

energy, the equilibrium Equations are obtained [8]. 

Javaheri and Eslami studied the thermal buckling of FG 

plates using shell and plates theory and energy principals 

[9]. Applying high order displacement field and five 

stability Equations, they found an acceptable solution. 

Najafizadeh et al. investigated the buckling of an almost 

thick FG plate using first order shear deformation theory 

[10]. They derived a stability Equation and found that by 

solving this Equation, one can estimate the experimental 

critical buckling force. Ma and Wang used the third 

order shear deformation theory to solve the 

axisymmetric bending problem of a circular FG plate 

[11]. Kim and Na used Finite Element Method (FEM) to 

investigate the buckling response of FG plate [12]. Han 

et al studied the mechanical and thermal buckling of a 

FGM cylindrical shell analytically and numerically [13]. 

In this paper, analytical and finite element solutions of 

mechanical buckling of a thick FG plate have been 

investigated. The novelty of the present work is to obtain 

closed-form solutions for the buckling loads based on 

the third order shear deformation theory and FEM 

approach. First, the procedure of developing the critical 

buckling force by third order shear theory has been 

presented and then the stability Equations have been 

reduced from 5 to 2. In continue, the problem has been 

solved using numerical simulation by ABAQUS. At the 

end, to validate the FEM, results have been compared 

and validated with analytical solution.  

2 GENERAL EQUATIONS DEVELOPMENT 

Consider a FG plate with the planar dimension of ‘a’ and 

‘b’, and ‘h’ in thickness which the properties vary 

through the thickness direction (-h/2, h/2) due to 

following relations: 

2

2
m cm

z h
P P P

h

 
   

 
                                                        (1) 

cm c mP P P                                                                        (2) 

 

In “Eq. (1)” P denotes the properties like elastic 

modulus, density and so on. The subscripts m and c 

mention the metal and ceramic, respectively. The 

Poisson’s ratio is also assumed to be constant through 

the thickness. Third order shear deformation theory is 

used as: 
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  0, ,w x y z w                                                                    (5) 

 

Where u , v  and w  are displacements along x, y and z 

directions, respectively. Also 
0u , 

0v  and 
0w are the mid-

plane displacements and, 
1u  and 

1v  are the rotations 

about x and y axes, respectively. The fundamental 

relations of a FG plate due to third order shear 

deformation theory are as follow: 

 

    

     

0 0

1 2 42

0 0 2 2

2 3 5 4 5 7

1
, , [ , ,

1

, , , , ]

x x x x y

x y x y

N M P E E E

E E E k k E E E k k

 


 

 


   

   (6) 

 

    

     

0 0

1 2 42

0 0 2 2

2 3 5 4 5 7

1
, , [ , ,

1

, , , , ]

y y y y

y x y x

N M P E E E

E E E k k E E E k k

 


 

 


   

      (7) 

 

   

   

0

1 2 4

0 2

2 3 5 4 5 7

1
, , [ , ,

2(1 )

, , , , ]

xy xy xy xy

xy xy

N M P E E E

E E E k E E E k







 

                         (8) 

 

 
 

   0 1

1 3 3 5

1
, , ,

2 1
x x xz xzQ R E E E E k


   

             (9) 

 

 
 

   0 1

1 3 3 5

1
, , ,

2 1
y y yz yzQ R E E E E k


   

          (10) 

Where: 
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And: 
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In “Eq. (96 to 10)”, 
iN ، 

iM ، 
iP ، 

iQ  and 
iR  are the 

components of stress and are calculated as: 
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In addition, the equilibrium Equation of a FG plate based 

on the third order shear deformation theory is a system 

of five Equations as follows: 
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Using fundamental Equations related to third order shear 

deformation theory, the equilibrium Equation reduces 

to: 
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Where: 
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The equilibrium Equation can be derived according to 

Brash et al research [13]. In this research it was assumed 

that equilibrium of plate can be expressed by 
0u , 

0v  and

0w . The displacement vector of a point in vicinity of 

equilibrium state is shown by 1u , 1v  and 1w . So, the 

total displacement of this point is: 
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Where, 1

xN , 
1

yN  and 
1

xyN represent the linear force 

growth corresponding to 1u , 1v  and 1w , respectively. 

By substitution of presented relations in equilibrium 

Equation, the stability Equations are achieved. After that 

the terms containing superscript 1, are reduced from the 

Equations due to satisfaction of equilibrium Equation. 

Also, nonlinear terms containing superscript 1, are 

reduced from the Equations because of negligibility in 

value. The final equilibrium Equation is written as: 
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In these Equations, the superscripts, 1 and 0 denote the 

stability and equilibrium, respectively. 

3 MECHANICAL LOADING CASE 

A simply supported plate has been considered which xF  

and yF  uniform forces are exerted on x= 0, a and y=0, b, 

respectively. The resultant pre-buckling components 

are: 

 

0 x

x

F
N

b
                                                                          (43) 

 

0 y

y

F
N

a
                                                                         (44) 

 
0 0xyN                                                                              (45) 

 

Substitution of these components in equilibrium 

Equation, results in formation of two differential 

Equation with incremental variables, 1w and  1 1

1, 1,yxu v . 
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To solve this system of Equation, one can use the 

following approximate solution. 

 

1

1 cos sinmn
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Finally, the critical buckling load can be calculated: 
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R is a dimensionless parameter which describes the 

loading situation. In the case of bi-axial compression, x-

axis compression and compression-tension bi-axial 

loading, R is assumed as positive, zero and negative, 

respectively. 

4 NUMERICAL SIMULATION 

The ABAQUS software is a powerful tool in solving 

structural and non-structural problems in buckling and 

post-buckling cases. Using “Lanczos” and “Subspase” 

solvers, ABAQUS can predict mode shapes and critical 

buckling. In this paper, numerical buckling of FG plate 

in various thickness to width ratios and loadings has 

been investigated and the results have been validated 

with analytical Equations. In this manner, FG plates with 

planar dimension of a=1 and b=0.5, in twenty different 

thickness to width ratios (h/b) starting form 0.01 with the 

step of 0.2, have been considered which are shown in 

“Fig. 1”.  

 

 

Fig. 1 Considered FG plate. 

 

The FG plate has been considered as a composition of 

Aluminum and Alumina with linear properties variation 

through the thickness. The properties of Aluminum and 

Alumina are illustrated in “Table 1”. 

 
Table 1 The properties of Aluminum and Alumina 

Material State E (GPa) ϑ 

Aluminum Metal 70 0.3 

Alumina Ceramic 380 0.3 

 

In the properties module of ABAQUS software, one 

cannot define the FG material. So, the USDFLD 

subroutine has been applied to define the FG plate 

properties. In this manner, first the properties were 

coded in MATLAB software for twenty different 

thicknesses to width ratios and introduced to ABAQUS 

as field variables. 

In the solution, the “Lanczos” was used and buckling 

forces and the first three mode shapes were derived from 

software. The longitudinal boundary condition is 

assumed to be simply supported. In the first case, a 1 

newton compressive uni-axial load (introduced by R=0) 

was exerted on longitudinally. After validation with 

analytical relations, R was considered as 1 and -1, and 

results were obtained. The shell element S4R with 

seeding size of 2 mm was applied for all models. It 

should be mentioned that due to 20 thickness ratio and 3 

different R, 60 samples were modeled and the results 

were obtained. 
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5 RESULTS AND DISCUSSION 

To validate the models, numerical solution was 

compared with the calculated critical buckling load in a 

FG plate, the results of uni-axial compression loading 

with R=0 combined with TSDT and CPT were used 

(Eq.14). The critical buckling load vs. h/b for R=0, is 

shown in “Fig. 2”. 

 

 
Fig. 2 Critical buckling load obtained from CPT, TSTD 

and numerical approach using USDFLD in ABAQUS 

software. 

 

The results obtained from three approaches with R=0, 

have similar response against h/b. By increasing the R, 

critical buckling load increases because of increment in 

thickness of plate and this increment is more intense in 

higher h/b values. Based on the obtained results and 

presented by other researchers [9], using CPT results in 

predicting the higher critical buckling value in FG plates 

compared with real values. FSDT and TSDT result in 

more accurate prediction compared with CPT. 

Based on “Fig. 2”, the results obtained from numerical 

solution and analytical solution (TSDT) are in good 

agreement, and both results are better than CPT [4] 

results due to realistic conditions, which demonstrate 

that numerical solution by USDFLD subroutine in 

ABAQUS software can predict the critical buckling load 

in FG plates in different boundary conditions accurately. 

Three first mode shapes contours of FG plate with 

h/b=0.05 under buckling are shown in “Fig. 3”. 

After validation of the results, critical buckling load and 

first, second and third mode shapes of plate with 

different R=0, 1 and -1 have been studied. Critical 

buckling load curve in first, second and third mode at 

various R values and h/b are illustrated in “Fig. 4, 5 and 

6”, respectively. 

According to “Fig. 4 to 6”, by increasing the h/b, 

increment in critical buckling load in first, second and 

third modes occurs which is more intense in higher h/b 

values. In addition, it has been illustrated that critical 

buckling load increases by increasing the mode 

numbers. This increment is more intense at R=0 

compared with other values of R.  

 

 

 
Fig. 3 Three first mode shapes contours of FG plate with 

h/b=0.05 and R=0. 

 

 
Fig. 4 Critical buckling load in first mode. 

 

According to “Fig. 4”, the conditions R=0 and R= -1 

coincide which results are same in calculation of critical 

buckling force in first mode. This outcome can be seen 

in Eslami and Javaheri’s paper [9], too. Critical buckling 

force at higher h/b, in R=1 shows 10% decrement 

compared with R=0 and R=-1. 



Int  J   Advanced Design and Manufacturing Technology, Vol. 15/ No. 3/ September – 2022                                 53 

  

© 2022 IAU, Majlesi Branch 
 

 
Fig. 5 Critical buckling load in second mode. 

 

 
Fig. 6 Critical buckling load in third mode. 

 

According to “Fig. 5 and 6”, the critical buckling force 

curve in second and third modes with R=0, is wider than 

other values of R and its maximum is 2.5 times higher. 

Finally based on “Fig. 3 to 5”, it was observed that in 

every buckling mode, the maximum force is related to 

R=0, R= -1 and R=1, respectively. According to 

presented Figures, bi-axial loading (R=1) is the most 

favorable situation for buckling occurrence in FG plate 

and lower force is required to start buckling. Also, the 

most resistant situation to start buckling is the situation 

related to R=0 which buckling occurs at higher force 

values. Buckling modes displacement contours related 

to R=1 and R= -1 are shown in “Fig.6 and 7”, 

respectively. According to “Fig. 4, 5 and 8”, the shape 

of first mode of buckling in all loading situation are same 

and buckling occurs at mid-plane, but second and third 

modes are different which may be due to bi-axial 

loading. 

 

 

Fig. 7 Displacement contours and three first modes of 

buckling (R=1). 

 

 

 

Fig. 8 Displacement contours and three first modes of 

buckling (R=-1). 
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6 CONCLUSIONS 

In this paper, buckling of FG plate was investigated 

using analytical and numerical approaches. Analytical 

relations were used to estimate the critical buckling 

force. Also, the ABAQUS software was used to estimate 

the critical buckling force in 60 different positions. Uni-

axial compressive (R=0), bi-axial compressive (R=1) 

and bi-axial compressive-tension loadings (R=-1) were 

exerted on plate. The width and length of plate were 

considered as constant value and only thickness of plate 

was assumed to change in different positions. The effect 

of thickness change was investigated on critical buckling 

load and mode shapes and following results were 

obtained: 

 The results obtained from numerical simulation are 

in good agreement with analytical results using 

TSDT. 

 By increasing the thickness to with ratio (h/b), the 

critical buckling force increases in all loading cases 

and this increment is more intense at higher h/b 

values. 

 The highest force growth related to buckling mode 

change occurs at R=0 and this increment is more 

intense at higher h/b values. 

 The critical buckling force in second and third modes 

at R=0 situation are significantly higher compared to 

other loadings and the maximum values are 

approximately 2.5 times higher. 

 Based on force analysis, the highest force value is 

related to R=0, R=-1 and R=1, for three first modes. 

 Based on the results, bi-axial loading (R=1) is the 

most favorable situation for buckling occurrence in 

FG plate and lower force is required to start buckling. 

Also, the most resistant situation to start buckling is 

the situation related to R=0 which buckling occurs at 

higher force values. 
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