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Abstract: The constant growth of energy consumption, increased fuel costs, non-

renewable fossil fuel sources, and environmental pollution caused by increased emission 

of greenhouse gases, and global warming highlight the need for the analysis and 

optimization of main energy generation bases, i.e. power plants. The Artificial Neural 

Network (ANN) is a useful novel method for better processing information and 

controlling, and optimizing and modeling industrial processes. For the first time in this 

study, an ANN was designed and applied to data extracted from modeling and analyzing 

a 60 MW combined heat and power generation power plant. To this end, the error 

backpropagation network was selected as the optimal network, and the generator load or 

capacity, condenser pressure, and Feedwater temperature were considered inputs to the 

ANN. The energy and exergy efficiencies of the power plant and the overall energy and 

exergy losses of the cycle were considered outputs of the ANN. The ANN was coded and 

designed with the help of MATLAB. The Genetic Algorithm (GA) was used to obtain 

the optimal values of input parameters and the minimum losses and maximum 

efficiencies based on the first and second laws of thermodynamics. 
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1 INTRODUCTION 

The vital role of electricity in the industrial and 

economic infrastructure and the huge amounts of 

investment in this sector makes proper utilization and 

efforts necessary for optimizing the power industry. 

Most thermal power plants are old but play a key role in 

supplying the required electricity. Identifying the 

minimum and maximum energy losses in different parts 

of power plants and estimating the optimal first- and 

second-law efficiencies with the maximum values for 

components and the power plant greatly help the proper 

design and improvement of thermal power plants 

bringing useful environmental and economic outcomes. 

Different methods are used for repowering and 

optimizing to achieve better performance in power 

plants. The ANN and GA are useful methods for this 

purpose and have been extensively used in the literature. 

Jack et al. used an ANN based on the simulation results 

of a physical model for optimizing and minimizing the 

costs of a CHP plant. According to their results, the 

ANN reduced the time required for analyzing the system 

by more than 7000 times. The optimization results also 

confirmed the role of exact prediction of the 

performance of each piece of equipment using a physical 

model. The computational time decreased in this study 

while improving the optimization accuracy [1]. In 

another study, after modelling and obtaining the results 

for different modes in Bandar Abbas Steam Power Plant, 

Nikbakht et al. optimized the power cycle by the GA 

using the exergy efficiency and power generation cost 

functions. The Pareto diagram displaying cost variations 

versus the exergy efficiency plays a key role in selecting 

the proper investment mode [2]. The GA and the 

feedforward ANN with multiple hidden layers were 

considered for the optimal estimation of daily power 

consumption in a real university building in the UK. 

Considering the significant relationship between the 

influential factors and power consumption in the real 

world, the use of multiple hidden layers improves the 

prediction accuracy of the ANN. The optimal 

architecture of the model is generally determined by a 

very complex time-consuming trial-and-error process. 

To cope with this problem, the GA was used for the 

automatic design of an optimal architecture with 

improved generalizability. Data measured during 1.5 

years was used for training and testing the proposed 

model [3]. An intelligent GA-based ANN was employed 

to deal with the estimation error, long delays, high 

inertia, and the nonlinear nature of the steam 

temperature controlled in the power plant. The GA 

allows optimization, global searching, rapid 

convergence, and improvement of the network weights. 

The simulation results confirmed the superiority of the 

intelligent ANN control system over the conventional 

control system in terms of control and robustness [4]. 

Full repowering methods can be used as efficient, 

previously experienced, and generalizable techniques 

considering the large number of old power plants and the 

need to rebuild the vital power generation sector. This 

method is usually used for repowering power plants at 

the end of their useful life. In such cases, the initial 

capital costs significantly decrease as compared to the 

construction of a combined cycle with the same 

specifications. Taking into account the unit price of 

electricity and the exergy efficiency of Besat Power 

Plant as objective functions, Hosseinalipour et al. 

obtained the most optimal technical-economic 

specifications of the repowering cycle of Baset Power 

Plant using the GA optimization technique in single- and 

two-objective optimization scenarios. Using the full 

repowering method and GA optimization, a 12-17% 

increase was obtained in the thermal efficiency [5]. 

Adding a gas turbine to the steam power plants is also 

known as a repowering method to enhance the 

specifications of the steam cycle and heat recovery from 

additional cycles. Repowering methods can be divided 

into partial and overall repowering techniques. Parallel 

Feedwater heating is considered a novel partial 

repowering method. Mehrpanahi et al. applied this 

method to Shahid Rajaei Power Plant. The electricity 

price and exergy efficiency were considered objective 

functions in the single- and two-objective optimizations. 

The use of the GA led to reasonable results for improved 

performance of the cycle [6]. 

In this study, an ANN is used for processing data 

extracted from analyzing and modeling the considered 

power plant. The GA [7-12] is used to obtain the optimal 

values for the variable thermodynamic parameters of the 

cycle, the minimum losses, the maximum first- and 

second-law efficiencies, and the power generation 

conditions with the maximum efficiency. 

2 PROBLEM STATEMENT 

For the first time in this study, an ANN is designed and 

applied to data extracted from modeling and analyzing 

the considered power plant. The error backpropagation 

network was selected as the optimal network, and the 

generator load or capacity, the condenser pressure, and 

the Feedwater temperature were considered inputs to the 

ANN. Power plant energy and exergy analysis (first and 

second laws of thermodynamics), and the overall energy 

and exergy losses of the cycle were considered the ANN 

outputs. The generator loads and capacities were 15, 30, 

45, and 60 MW, and the Feedwater temperatures were 

200, 210, 220, and 230˚C. The condenser pressure 
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ranged from 0.050 to 0.175 bar. These values were 

considered inputs to the designed ANN. Considering 

these inputs, 96 data were extracted from 

thermodynamic modelling of the cycle for each output. 

3 ANN ARCHITECTURE AND TRAINING 

Neural networks can be regarded as information 

processing systems. By training the ANN with the 

learning algorithms, the neural network makes the 

output vector closer to the target by changing and 

modifying the weight vector and biases. 

This study aims to achieve optimal conditions for a 

power plant with maximum efficiency and minimum 

energy and exergy losses. The results are analyzed by 

the error backpropagation ANN in which the output 

error is computed by comparing the output rate with the 

desired value or the experimental value. The network 

has a feedforward architecture in which input data to the 

network are processed feedforward, and the output of 

each layer barely affects the next layer. Figure 1 

schematically displays the architecture of the designed 

ANN.   

 

Fig. 1 The architecture of the error backpropagation 

network [11]. 

 

To analyze the results using the error backpropagation 

network, the generator load or capacity, the condenser 

pressure, and the Feedwater temperature were 

considered inputs to the ANN. The energy and exergy 

efficiencies of the power plant and the overall energy 

and exergy losses of the cycle, were considered the ANN 

outputs. The ANN was coded and designed with the help 

of MATLAB. 

Considering the role of ANN training and architecture in 

the output of the improved network performance, the 

network architecture was examined by varying the 

number of neurons in the hidden layer (10, 15, and 20 

neurons). Various training methods were considered for 

the error backpropagation networks, and the best 

training method and network architecture were selected 

for outputs. The results are given in “Tables 1 to 4”. 

After multiple tests and comparison of the performance 

of the ANN with different architectures and training 

methods, the error backpropagation network via a single 

secret layer and 10 neurons trained by the Levenberg-

Marquardt algorithm was considered the best network 

with a good performance for analyzing the study results. 

“Tables 1 to 4” show a significant decrease in the mean 

squared error (MSE) of all four outputs in the 

Levenberg-Marquardt algorithm. The learning rules of 

the Levenberg-Marquardt algorithm are as follows:   

 

𝒙𝑘+1 = 𝒙𝑘 − [𝑱𝑘
𝑇𝑱𝑘 + 𝜇𝑘𝑰]

−1𝑱𝑘
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Where, 𝒆𝑇 = [𝑒1 𝑒2 ⋯ 𝑒𝑁] and e shows the error 

(difference) between the existing output and the desired 

worth. 𝜇𝑘 checks the convergence quickness so that it 

increases to accelerate training as the error increases. In 

contrast, it decreases to guarantee convergence of the 

algorithm when the error decreases. 

 
Table 1 Contrast of network architectures and training styles 

for the initial output 

Training type 

Neurons 

numbers in the 

hidden layer 

Mean square 

error (MSE) 

MATLAB default 20 0.00094 

MATLAB default 15 0.0000092 

MATLAB default 10 0.000000514 

Gradient descent 

training (traingd) 
10 0.45 

Gradient descent 

with momentum 

training (traingdm) 

10 0.88 

Variable learning 

rate (traingda) 
10 0.22 

Variable learning 

rate (traindgx) 
10 0.058 

Resilient back 

propagation (trainrp) 
10 0.008 

Conjugate gradient 

(traincgf) 
10 0.046 

Conjugate gradient 

(traincgp) 
10 0.028 

Conjugate gradient 

(traincgb) 
10 0.017 

Conjugate gradient 

(trainscg) 
10 0.013 

Quasi-Newtonian 

(trainbfg) 
10 0.0024 

Quasi-Newtonian 

(trainoss) 
10 0.17 

Levenberg 

Marquardt (trainlm) 
10 0.00000215 
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Table 2 Contrast of network architectures and training styles 

for the second output 

Training type 

Neurons 

numbers in the 

hidden layer 

Mean square 

error (MSE) 

MATLAB default 20 0.000266 

MATLAB default 15 0.00000677 

MATLAB default 10 0.000000136 

Gradient descent 

training (traingd) 
10 0.163 

Gradient descent 

with momentum 

training (traingdm) 

10 5.06 

Variable learning 

rate (traingda) 
10 1.27 

Variable learning 

rate (traindgx) 
10 0.16 

Resilient back 

propagation 

(trainrp) 

10 0.095 

Conjugate gradient 

(traincgf) 
10 0.015 

Conjugate gradient 

(traincgp) 
10 0.146 

Conjugate gradient 

(traincgb) 
10 0.084 

Conjugate gradient 

(trainscg) 
10 0.015 

Quasi-Newtonian 

(trainbfg) 
10 0.003 

Quasi-Newtonian 

(trainoss) 
10 0.2 

Levenberg 

Marquardt (trainlm) 
10 0.00000154 

 

Table 3 Contrast of network architectures and training styles 

for the third output 

Training type 

Neurons 

numbers in 

the hidden 

layer 

Mean square 

error (MSE) 

MATLAB default 20 1202.84 

MATLAB default 15 544.68 

MATLAB default 10 252.31 

Gradient descent 

training (traingd) 
10 584698785.16 

Gradient descent with 

momentum training 

(traingdm) 

10 3602804076.61 

Variable learning rate 

(traingda) 
10 10315158.62 

Variable learning rate 

(traindgx) 
10 3701847.85 

Resilient back 

propagation (trainrp) 
10 280775.64 

Conjugate gradient 

(traincgf) 
10 1832222.88 

Conjugate gradient 

(traincgp) 
10 389779.9 

Conjugate gradient 

(traincgb) 
10 362442.54 

Conjugate gradient 

(trainscg) 
10 337732.16 

Quasi-Newtonian 

(trainbfg) 
10 3865188.29 

Quasi-Newtonian 

(trainoss) 
10 4846449.38 

Levenberg Marquardt 

(trainlm) 
10 574.16 

 

Table 4 Contrast of network architectures and training styles 

for the fourth output 

Training type 

Neurons 

numbers in the 

hidden layer 

Mean square 

error (MSE) 

MATLAB default 20 1584.15 

MATLAB default 15 489.62 

MATLAB default 10 171.93 

Gradient descent 

training (traingd) 
10 24445553224.9 

Gradient descent 

with momentum 

training (traingdm) 

10 5819427709.58 

Variable learning 

rate (traingda) 
10 50957217.11 

Variable learning 

rate (traindgx) 
10 47142966.22 

Resilient back 

propagation (trainrp) 
10 3551275.95 

Conjugate gradient 

(traincgf) 
10 2304328.88 

Conjugate gradient 

(traincgp) 
10 49396333.66 

Conjugate gradient 

(traincgb) 
10 66943211.48 

Conjugate gradient 

(trainscg) 
10 6070721.82 

Quasi-Newtonian 

(trainbfg) 
10 5272623.91 

Quasi-Newtonian 

(trainoss) 
10 40014703.3 

Levenberg 

Marquardt (trainlm) 
10 64.295 

4 GENETIC ALGORITHMS 

Influenced by the evolutionary manner in nature, the 

Genetic Algorithm (GA) solves problems. Like in 

nature, the GA makes a population of creatures and 

obtains an optimum set or an optimum creature through 

certain operations. According to the GA structure, after 

recognizing and modeling the problem, and forming the 

initial population to achieve the final solution, namely 

the optimal values for the problem parameters, an 

iterative process should be repeated to meet the end 

conditions. Given the problem geometry, a multi-
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objective optimization problem is solved in this study by 

the GA with specifications in “Table 5”. The GA forms 

an elementary population of N random arrangements [7-

9]: 

 

�̅�𝑖𝑗 ∈ [−𝜔,+𝜔] 𝜔 > 0,                                                         (3) 

 

𝑤𝑖𝑗𝑘 ∈  [−𝜔,+𝜔] 𝜔 > 0,                                              (4) 
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                                                                                    (6) 

 

𝑃(𝑍, 𝑡 + 1) = 𝑃(𝑍, 𝑡)
𝑓(𝑍)

𝑓̅
(1 − {𝑃𝑐𝑙𝑜𝑠𝑠𝑒𝑠}) +

{𝑃𝑐𝑔𝑎𝑖𝑛𝑠}                                                                         (7) 

 

This is moreover part of an idealized model of a 

rudimentary GA. The potentiality of “losses” and 

“gains” for the string Z = 000 is calculated below, while 

PI0 = 1 signifies the possibility of crossover [10]. 

 

Losses = 𝑃I0𝑓(111)𝑓�̅�(111, 𝑡) +
𝑃I0𝑓(101)𝑓�̅�(101, 𝑡) + 𝑃I1𝑓(110)𝑓�̅�(110, 𝑡) +
𝑃I2𝑓(011)𝑓�̅�(011, 𝑡),                                                  (8) 

 
𝐺𝑎𝑖𝑛𝑠
= 𝑃I0𝑓(001)𝑓̅𝑃(001, 𝑡)𝑓(100)𝑓�̅�(100, 𝑡)             
+ 𝑃I1𝑓(010)𝑓�̅�(010, 𝑡)𝑓(100)𝑓�̅�(100, 𝑡)

+ 𝑃I1𝑓(011)𝑓�̅�(011, 𝑡)𝑓(100)𝑓�̅�(100, 𝑡) 
𝑃I2𝑓(001)𝑓�̅�(001, 𝑡)𝑓(110)𝑓̅𝑃(110, 𝑡)   +
𝑃I2𝑓(001)𝑓�̅�(001, 𝑡)𝑓(010)𝑓̅𝑃(010, 𝑡)                   (9) 

 

Table 5 The GA specifications 

Specifications Factor 

Number of variables 3 

The upper limit of 

variations 
60, 0.175, 230 

The lower limit of 

variations 
15, 0.05, 200 

Population size 50 

Display level ‘iter’ 

Plot function (plotFcn) ‘gaplotparet’ 

Pareto fraction 0.6 

5 RESULTS AND DISCUSSION 

As previously mentioned, this study aimed to design and 

apply an ANN on data extracted from modeling and 

analyzing the 60 MW combined heat and power 

generation power plant. The error backpropagation 

network was selected as the optimal network for this 

purpose. The generator load or capacity, the condenser 

pressure, and the Feedwater temperature were 

considered inputs to the neural network. The energy and 

exergy efficiencies of the power plant and the overall 

exergy and energy losses of the cycle were considered 

the ANN outputs. The results obtained from the selected 

network are analyzed in the following sections. 

5.1. The Performance Diagram of The Optimal 

Network 

To ensure the accuracy of the designed neural network, 

besides the training dataset for the network, a dataset is 

automatically used for validation and some data in the 

test dataset to examine error variations. When a network 

is well trained, the error decreases in both the test and 

validation datasets and error propagation ends. The 

performance or efficiency diagrams versus the epoch 

show error variations in datasets. As shown in “Figs. 2 

to 5”, the most excellent network appearance for the first 

output, i.e., the energy efficiency, is obtained at epoch 

724 with an MSE of 0.00000215.  

 

 
Fig. 2 The optimal performance of the network for the 

first output. 

 

 
Fig. 3 The optimal performance of the network for the 

second output. 
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It was seen that the best network performance for the 

second (exergy efficiency), third (energy losses), and 

fourth outputs is obtained at epochs 501, 92, and 466 

with an MSE of 0.00000154, 574.16, and 64.295. 

 

 
Fig. 4 The optimal performance of the network for the 

third output. 

 

 
Fig. 5 The optimal performance of the network for the 

fourth output. 

5.2. The Regression Diagram for The Optimal 

Network 

A major challenge facing linear regression is to reduce 

diversity among the predicted & observed values in 

existing data. A lower difference indicates better 

consistency between the predicted and observed values 

so that the regression approaches a desired value of 

unity. Figures 6 to 9 show the regression diagrams of the 

optimal network for the first to fourth outputs. As shown 

in “Figs. 6 to 9”, three regression diagrams are plotted to 

separately analyze the accuracy. The 4th diagram tests 

the three datasets together to plot the accuracy diagram. 

For all four outputs, any dataset with a regression value 

of 1 shows a very good accuracy suggesting that the 

designed neural network  was well and adequately 

trained and well predicted all untrained points. 

Consequently, the network is reliable with sufficient 

accuracy to analyze the study results. 

 
Fig. 6   Regression chart at first output of the optimum 

network.  

 

 
Fig. 7   Regression chart at the second output of the optimum 

network 
 

5.3. The Network Consequences at Trained Points  

Figures 10 and 11 display the results for the optimal 

neural network. As shown, the power plant efficiency 

increases with increasing the generator load as it 

approaches the production capacity of the power plant 
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(60 MW). The maximum exergy and energy efficiencies 

are obtained at full loading of the cycle when the 

generator is at a maximum capacity of 60 MW. Peaks 

appear with increasing the Feedwater temperature. 
 

 
Fig. 8   Regression chart at the third output of the optimum 

network. 

 

 
Fig. 9   Regression chart at the fourth output of the optimum 

network. 

 
Fig. 10   Energy efficiency against the load at various 

Feedwater temperatures. 

 

 
Fig. 11   Exergy efficiency against load at various Feedwater 

temperatures. 

 

The observed increase in the exergy and energy 

efficiencies can be justified considering the design of the 

power plant cycle at full load. The increased efficiency 

seems logical with increasing the power plant output 

relative to the required input of the cycle. Figures 10 and 

11 show the uptrend of the power plant efficiency by 

increasing the generator capacity. The peaks in the 

diagrams decrease with decreasing the Feedwater 

temperature. Fuel consumption by the boiler decreases 

with increasing the water temperature in the boiler as it 

requires less thermal energy for vaporizing water in the 

turbine. As a result, energy consumption and thermal 

exergy of the boiler decrease leading to an increase in 

the exergy and energy efficiencies of the boiler. This in 

turn positively affects the overall performance of the 

cycle causing an increase in the overall energy and 

exergy efficiencies of the power plant. 

As expected, the exergy and energy losses of the cycle 

increase with increasing the production load of the 
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power plant. Figures 12 and 13 show an uptrend for both 

energy and exergy losses with increasing the generator 

capacity. The peaks decrease with increasing the 

Feedwater temperature. Fuel consumption by the boiler 

decreases with increasing the water temperature in the 

boiler improving the cycle performance while reducing 

the energy and exergy losses. 

 

 
Fig. 12   Total energy losses against the load at various 

Feedwater temperatures. 

 

 
Fig. 13   Total exergy losses against load at various 

Feedwater temperatures. 

 
Energy losses also increase despite an increase in the 

energy and exergy efficiencies at the maximum load of 

the power plant equipment and the generator. The 

energy and exergy losses could be decreased up to a 

certain limit by increasing the Feedwater temperature 

using specific equipment under certain conditions. 

5.4. Application of the Designed Neural Network at 

New Points 

In addition to the optimal performance at trained points, 

an optimal neural network must also show an acceptable 

performance at untrained points. To this end, the 

network was tested at new points and the results are 

displayed for the four outputs respectively in “Figs. 14 

to 17”. These results are consistent with those obtained 

for the trained points in “Figs. 10 to 13”. According to 

“Figs. 14 and 15”, the peaks for the first and second 

outputs occur at the maximum load and Feedwater 

temperature. The energy and exergy efficiencies 

increase as the Feedwater temperature and the 

production load increase. 

 

 
Fig. 14   Effect of load and Feedwater temperature on the first 

output. 

 

 
Fig. 15   Effect of load and Feedwater temperature on the 

second output. 

 

As shown in “Figs. 16 and 17”, the peaks for the third 

and fourth outputs occur at the maximum load factor and 

minimum Feedwater temperature. Thus, more energy 

and exergy are lost at lower Feedwater temperatures, 

because more fuel is consumed or more energy and 

exergy are consumed from the thermodynamic point of 

view when low-temperature water enters the boiler. 

Certainly, the consumed energy and exergy are not 

totally useful and losses increase with increasing fuel 

consumption. Notably, with increasing the Feedwater 

temperature, energy losses sharply decline even at the 

maximum generator capacity. However, the exergy 
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losses slowly decrease with increasing the Feedwater 

temperature at the full load of the power plant. 

 

 
Fig. 16   Effect of load and Feedwater temperature on the 

third output. 

 

 
Fig. 17   Effect of load and Feedwater temperature on the 

fourth output. 
 

Figures 18 to 21 display the effect of the condenser 

pressure and generator capacity at a constant Feedwater 

temperature on the energy and exergy efficiencies and 

the total energy and exergy losses. As shown in “Figs. 

18 and 19”, the utmost energy and exergy efficiencies 

are achieved by decreasing the condenser pressure and 

increasing the generator capacity. As the condenser 

pressure decreases, the vacuum at the end of the turbine 

increases and end-stage vapors are sucked into the 

condenser. This process facilitates the movement of 

steam along the turbine and reduces the resistance to 

steam movement. Also, a larger share of steam energy is 

converted into electrical energy. As shown in “Figs. 20 

and 21”, the energy and exergy losses decrease with a 

relatively same slope with decreasing the pressure 

condenser and load factor. In other words, the energy 

lost at higher condenser pressures can be converted into 

useful work, and the energy and exergy losses can be 

minimized by reducing the condenser pressure. 
 

 
Fig. 18   Effect of load and condenser pressure on the first 

output. 

 

 
Fig. 19   Effect of load and condenser pressure on the second 

output. 

 

 
Fig. 20   Effect of load and condenser pressure on the third 

output. 
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Fig. 21   Effect of load and condenser pressure on the fourth 

output. 

 

 
Fig. 22   The error chart for the initial output 

 

 
Fig. 23   The histogram for the initial output. 

5.5. Network Error 

As mentioned in the network accomplishment part, the 

MSE of the network varies with the network architecture 

and training method. Moreover, the number of data, data 

scattering, and classification affect the network error and 

the study results. Figures 22 to 29 show the error and 

histogram diagrams for all four outputs of the network.  

 
Fig. 24   The error chart for the second output. 

 

 
Fig. 25   The histogram for the second output. 

 
Fig. 26   The error chart for the third output.   
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Fig. 27   The histogram for the third output. 

 

 
Fig. 28   The error chart for the fourth output.   

 

 
Fig. 29   The histogram for the fourth output. 

 

As shown in the error diagrams, data discretization and 

scattering have good density and accuracy in the 

designed neural network. However, the histograms show 

that the gaps where data are not available cause an error 

in the network. 

5.6. Optimization of Results by The Genetic 

Algorithm 

The GA aims to discover the optimum benefits for the 

problem outputs. In multi-objective optimization when 

the outputs are competing, by overcoming some points 

over other ones, an optimum curve named the Pareto 

front is obtained by the GA. This diagram is a set of 

optimal solutions from which the best solution can be 

selected according to the problem geometry and 

limitations. Figures 30 and 31 show the optimal 

solutions for the first and second, and the third and 

fourth outputs, respectively. 

 

 
Fig. 30   The Pareto front diagram for the first and second 

outputs. 

 

 
Fig. 31   The Pareto front diagram for the third and fourth 

outputs. 
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This study aims to achieve the maximum efficiency and 

the minimum energy and exergy losses. Accordingly, 

from the optimal solutions obtained by the GA, the best 

solutions in the output space were obtained in the 23rd 

Pareto where the energy efficiency, exergy efficiency, 

energy losses, and exergy losses are 28.4%, 27.2%, 

2539.2 kW, and 71963.7 kW, respectively. The best 

solutions in the input space are 229.99˚C, 0.0502 bar, 

and 31.67 MW, respectively for the Feedwater 

temperature, the condenser pressure, and the optimal 

generator capacity. The optimal solutions are listed in 

“Table 6”. 
 

Table 6 The optimal points in the input and output spaces 

obtained from the GA 

Num

ber 

Load 

[MW] 

Energy 

Efficie

ncy 

[%] 

Exergy 

Efficie

ncy 

[%] 

Energy 

Losses 

[KW] 

Exergy 

 Losses 

[KW] 

1 59.305 29.547 28.357 
5048.2

92 

134664.

984 

2 30.405 28.197 27.023 
2428.6

74 

69109.4

36 

3 59.295 29.546 28.356 
5054.4

29 

134647.

379 

4 16.395 25.346 24.662 
1327.4

48 

37166.3

34 

5 24.117 26.539 26.254 
1909.8

38 

54732.8

01 

6 35.468 28.748 27.439 
2860.4

85 

80605.3

37 

7 17.621 25.426 24.983 
1421.2

03 

39926.4

66 

8 55.038 29.404 28.241 
4627.7

73 

124975.

984 

9 27.499 27.554 26.732 
2171.3

99 

62410.8

55 

10 59.305 29.546 28.357 
5047.9

85 

134667.

348 

11 15.001 25.283 24.263 
1217.3

45 

34044.8

80 

12 42.403 29.013 27.806 
3444.0

52 

96351.2

77 

13 50.942 29.275 28.122 
4224.7

72 

115679.

178 

14 45.827 29.115 27.945 
3747.6

31 

104104.

766 

15 47.097 29.148 27.986 
3865.2

41 

107009.

842 

16 15.328 25.262 24.327 
1248.7

11 

34824.5

33 

17 26.042 27.107 26.526 
2058.2

40 

59149.3

30 

18 44.266 29.071 27.887 
3605.6

05 

100558.

348 

19 56.132 29.441 28.272 
4732.1

99 

127454.

901 

20 41.113 28.975 27.750 
3331.0

74 

93422.1

15 

21 22.088 26.037 25.927 
1756.5

2 

50074.8

15 

22 43.992 29.065 27.878 
3581.5

57 

99930.9

33 

23 31.669 28.401 27.147 
2539.1

71 

71963.7

04 

24 38.394 28.884 27.614 
3101.3

42 

87255.7

86 

25 19.544 25.595 25.412 
1569.7

09 

44315.2

55 

26 51.583 29.295 28.141 
4286.5

18 

117135.

385 

27 49.379 29.227 28.073 
4078.9

69 

112133.

979 

28 53.608 29.358 28.199 
4492.2

98 

121733.

563 

29 39.590 28.910 27.670 
3202.9

74 

90016.5

55 

30 52.287 29.312 28.157 
4355.3

97 

118752.

508 

6 CONCLUSIONS 

An ANN was used for better processing the simulation 

results of a 60 MW combined heat and power generation 

power plant. The optimum network with proper 

performance was selected. Through multiple tests, the 

optimal architecture and training method were 

determined to ensure the accurate performance of the 

designed neural network. The results are summarized 

below: 

1. Despite an increase in the energy and exergy 

efficiencies of the power plant at the maximum load of 

equipment and generator, the energy and exergy losses 

also increased. By heating the Feedwater and raising its 

temperature, the energy and exergy losses can be 

reduced up to a certain value. 

2. With increasing the Feedwater temperature, energy 

losses sharply declined even at the maximum generator 

capacity. However, the exergy losses slowly decreased 

with increasing the Feedwater temperature at the full 

load of the power plant. Huge amounts of energy and 

exergy are lost in the boiler when low-temperature water 

entered the boiler. By raising the Feedwater temperature, 

energy losses could be compensated even at full load. 

However, the exergy losses significantly decreased by 

increasing the Feedwater temperature and decreasing the 

produced load. 

3. Maximum energy and exergy efficiencies were 

obtained by decreasing the condenser pressure and 

increasing the generator capacity. On the other hand, the 

energy and exergy losses decreased with a relatively 

same slope by decreasing the pressure condenser and 

load. In other words, the energy losses at higher 

condenser pressures can be converted into useful work, 
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and the energy and exergy losses can be minimized by 

reducing the condenser pressure. 

4. From the optimal solutions obtained from the GA, the 

best solutions in the output space were 28.4%, 27.2%, 

2539.2 kW, and 71963.7 kW, respectively for the first-

law efficiency (energy), second-law efficiency (exergy), 

energy losses, and exergy losses. The best solutions in 

the input space were 229.99˚C, 0.0502 bar, and 31.67 

MW, respectively for the Feedwater temperature, the 

condenser pressure, and optimal generator capacity. 
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