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Abstract: Thanks to their high strength-to-weight ratio, lightweightness, and excellent energy absorption, 
composite lattice panels can be used in the aerospace, marine, automotive, and other industries. These 
structures can be used as an alternative to string-reinforced structures, honeycomb (core) sandwich panels, 
and aluminum grid structures. In this paper, a composite lattice panel is first fabricated from glass/epoxy by 
hand lay-up method using a silicon rubber mold. In this method, a Kagome composite lattice panel with 
twelve layers of resin-impregnated fibers was fabricated during a continuous process. After fabrication, the 
test panel was shown under three-point bending and failure modes. Also, a numerical simulation of three-
point bending was performed in ABAQUS software. Then, the simulation results were compared with those 
of the experimental test, indicating a good convergence between the experimental test results and the finite 
element ones up to the point of failure. Due to changes in directions of force, these structures have a high 
ability to withstand damage, and therefore, continue to withstand the load after the failure of one or more 
ribs. Also, there is no sudden and sharp drop in the load-bearing capacity of the structure despite the force 
being maximized, which can be attributed to the high energy absorption of such structures. Instead, the force 
decreases slowly with fluctuations, and the structure continues to absorb energy until final failure. Therefore, 
such lightweight structures can be used in applications where energy absorption is of great importance.  
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1 INTRODUCTION 

The properties of composites depend on various factors, 

such as the type and percentage of ingredients, the shape 

and arrangement of the reinforcement, and the 

connection of the components to each other. Thanks to 

benefits such as high specific strength, lightness, and 

corrosion resistance, composite lattice structures are 

widely used today in the aerospace, missile, and marine 

industries. A lattice composite structure is created by 

connecting the composite ribs that form a continuous 

two-dimensional (or plate-like) or three-dimensional (or 

spatial) set. This set of ribbons (or ribbons) turns a 

structure into a lattice, consisting of continuous, tough, 

rigid, and strong fibers. Therefore, composite lattice 

structures have more applications than metal structures 

due to their high strength, lightweight ratio, and design 

flexibility. The main part of lattice structures is the 

lattice part, which is made of a series of very thin strips 

called ribs. The fibers in the ribs must maintain their 

strength and cohesion. Also, the layers in the ribs should 

not lose their alignment. Composite lattice panels can be 

used in structures where stiffness, strength, lightness, 

and energy absorption are important [1]. 

For example, composite lattice panels can be used in the 

bed of solar cells, most of which are now made of 

aluminum honeycomb with graphite/epoxy coating [2]. 

Solar cell panels must meet the minimum structural 

stiffness requirements. The natural frequency is usually 

considered to be greater than the given value to ensure 

that the panel vibrations do not lead to a resonance 

phenomenon on the satellite. Isogrid composite panels 

are predicted to be more rigid than honeycomb structures 

at a certain weight [2]. Unlike honeycomb structures, 

isogrid structures do not have an intermediate core that 

prevents heat from flowing along the depth of the panel; 

Therefore, the temperature difference along the depth of 

isogrid lattice panels is much smaller than honeycomb 

panels [2]. Composite lattice panels can be used in 

applications where energy absorption is considered as an 

important parameter, including car doors and roofs [1] 

and [3]. For example, it is used on the roof of a Ford Tire 

(“Fig. 1”). 

 

 
Fig. 1 Simulated car with composite lattice roof [3]. 

Thomas Kim (2000) [2], [4] investigated the method of 

construction and behavior of cylinders as well as 

composite lattice plates under compressive force. The 

results showed that ribs play a vital role in the buckling 

of these structures, which can withstand structural 

damage and also remain resistant to compressive forces 

following the failure of one or more ribs due to multiple 

load paths. Heibrich et al. [5] proposed two methods for 

constructing composite lattice structures using 

developed molds. 

Gann and Gibson [6] analytically and experimentally 

investigated the energy absorption in a composite lattice 

structure under transverse loading. The results of tests 

and simulations showed the excellent impact resistance 

of the mentioned structures and the highest energy 

absorption after the initial failure. It has also been 

observed that the maximum amount of force on the shell 

face is greater. On the other hand, the absorption of 

specific energy and displacement range is considerably 

larger if force is applied to the shell-less face. Fan et al. 

(2007) investigated sandwich panels with a carbon fiber-

reinforced hexagonal lattice core [7]. Experimental 

results showed that the carbon-fiber-reinforced lattice 

structure is stiffer and stronger than foam and 

honeycombs. Ribs are required in at least three different 

directions to achieve shear strength of the lattice 

structure; Therefore, a hexagonal lattice structure can be 

considered as an optimal choice. Matiala conducted a 

comprehensive study on fabrication, analysis, and 

testing of composite lattice panels [8]. In this study, 

eight groups of panels were made, including multilayer, 

three groups of lattice panels with a different number of 

fiber bundles, stranded dry and then vacuumed, group 5, 

the sandwich panel with lattice core, group 6, shell-less 

panel, group seventh, the sandwich panel with a foam 

core, and the eighth group, foam without a shell. The 

results showed a higher impact resistance and a much 

more focused impact area of the lattice panel compared 

to the other panels. Prakash Jadaw also conducted a 

series of studies on increasing the performance of 

composite lattice plates under transverse loads, the 

results of which were published in 2007 [1]. The main 

purpose of this study was to optimize the geometry of 

lattice structures to increase the absorption of specific 

energy under a quasi-static and dynamic transverse 

impact. Fan et al. (10) investigated and compared the 

bending performance of carbon fiber sandwich 

composites with lattice core [9]. Ahmadi and Khalili (9) 

also investigated sandwich panels with lattice core under 

tensile load [10]. Numerical and laboratory results are 

compared to obtain a more desirable structure in terms 

of structural strength against bending and tension. 

Mahmoudi et al. (11) designed, fabricated, and tested 

lattice sandwich panels [11]. They were subjected to a 

three-point bending test to investigate their behavior 
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against transverse quasi-static loads. According to the 

results of the practical test, the lattice core continued to 

withstand the load even after the procedures were 

exhausted, and no cracks were observed between the 

layers and the core due to the adhesion and proper 

processing of the resin. Also, it was found that the 

parameter of increased strength is affected by weight, 

mostly by changing the fiber material of the surfaces 

from glass to carbon and not by increasing the thickness 

of the surfaces. 

This study first briefly reviews the method of 

constructing a composite lattice panel with a hexagonal 

structure. It is followed by a three-point bending test to 

evaluate the strength of the panel as well as a comparison 

between the experimental test results and the finite 

element results. 

2 HOW TO MAKE COMPOSITE LATTICE PANEL 

Composite lattice structures can be fabricated using 

different methods, mainly on the type and material of the 

mold. Silicone molds are one of the best ways to make 

composite lattice panels because of the high thermal 

expansion of the silicone and the ability to easily 

separate it from the part. The silicone used as a silicone 

mold for the winding of lattice structures is RTV-2, 

which is a liquid and is baked in ambient air. To mold 

silicone, a mold is required to cast the silicon. For this 

purpose, a plexiglass mold was used (“Fig. 2”). It is 

made by a laser cutting method and has high 

dimensional accuracy. 

 

 
Fig. 2 Plexiglass Molds for molding liquid silicone. 

 

After the mold is ready for silicone casting, the silicone 

and its hardener are mixed in 100 to 3.5 ratios with an 

industrial mixer for 10 minutes. Twenty-four hours after 

casting in a silicone mold, the liquid silicone was cured 

at room temperature and prepared for fiber spinning. 

Figure 3 shows the final silicone mold after leaving the 

plexiglass mold. 

 
Fig. 3 Silicon rubber mold. 

 

The composite lattice panel was fabricated using S-type 

glass fibers and Araldite LY556 epoxy resin. For this 

purpose, the fibers were first impregnated with resin in 

a resin bath and then guided into silicone mold grooves 

for threading. Twelve layers of fibers are used 

continuously to fill the silicone mold. The pins 

embedded in the four sides of the silicone mold were 

used in the direction of the mold grooves to guide the 

fiber path. Figure 4 shows the silicone mold filled with 

fibers and ready for baking. After the grooves were 

filled, a Teflon strip was placed on the piece, followed 

by a heavy steel plate so that the fibers were on top of 

each other, and the resin was spread evenly [5]. Then, an 

autoclave was used for baking the panel. The filled 

silicone mold was placed in the autoclave for baking for 

4 hours at 80 degrees and 3 hours at 140 degrees. After 

baking, the lattice panel was removed from the 

autoclave. The excess was then cut using a composite 

saw, and finally, the lattice panel and silicone mold were 

pulled out. 

3 PROPERTIES OF MATERIALS 

After the samples were fabricated and tested, the 

volumetric percentage of fibers was measured using the 

ASTM D2584 combustion test, which was 39%. After 

determining the volumetric percentage of fibers and the 

properties of the fibers and resins used, the longitudinal 

elastic properties and Poisson's ratio were obtained by 

the law of mixtures and the transverse and shear 

properties using the Halpin-Tsai equations. “Table 1” 

shows the properties of the ribs. 

 
Table 1 The elastic properties of ribs 

1638 c (kg/m3)ρ 

39 Vf (%) 

22.05 E1(GPa) 

7.63 E2=E3(GPa) 

2.37 G12=G13(GPa) 

3.13 G23(GPa) 

0.29 13ν=12ν 

0.22 23ν 



Int.  J.   Advanced Design and Manufacturing Technology             4 

  
Table 2 Strength properties of ribs 

645 SL+(MPa) 

2038 SL-(MPa) 

54 ST+(MPa) 

130 ST-(MPa) 

46 SLT(MPa) 

 

Also, the strength of the composite was obtained using 

the micromechanical method, with the results shown in 

Table 2. Notably, a higher volumetric percentage of 

fibers does not necessarily mean higher strength [12]. 

An increase in the volumetric percentage of fibers leads 

to increased stiffness, while an increase of more than 

35% in the volumetric percentage of fibers leads to 

decreased strength [12]. The properties of ribs are highly 

dependent on the parameters of the fabrication process, 

such as the tensile strength of the fibers, the viscosity of 

the resin, and the mold used to shape the ribs. 

4 QUASI-STATIC TRANSVERSE LOADING TEST 

The three-point bending test of the panel was performed 

using a 15-ton SANTAM universal testing device with 

an automatic pneumatic jaw. According to “Fig. 4”, the 

two sidebars are fixed and fully attached to their bases, 

on which the panel is placed, and the third bar is located 

in the middle on the panel, connected to the upper jaw of 

the device, through its base. To provide quasi-static 

conditions, the movable jaw of the device, to which the 

center bar is attached, moves downwards at a 

displacement rate of 2 mm/min. The axis distance 

between the two supports is 255.86 mm, and the load is 

applied to the middle of the distance between the two 

supports. 

 

 
Fig. 4 Three-point bending test of composite grid panel. 

5 FINITE ELEMENT ANALYSIS 

For the finite element analysis of the composite lattice 

panel, the SC8R element was used in ABAQUS 

software, an eight-node linear hexahedral element. The 

number of elements used is equal to 12640. Figure 5 

shows a view of the finite element model used in the 

analysis. 

 

 
Fig. 5 Finite element model of composite lattice panels in 

three-point bending. 

6 TEST RESULTS 

Figure 6 shows the force-displacement curve of a three-

point bending test of a composite grid panel. The 

maximum force borne by the structure is 3156 N. At a 

displacement of about 35 mm, the test was stopped, but 

the structure continued to absorb energy. In this case, the 

structure failed to achieve complete failure (i.e., panel 

splitting). 

 

 
Fig. 6 Force-displacement curve of grid composite panel 

in three-point bending. 
 

Composite lattice panels without shells have not been 

fabricated and tested yet. The panels that have been 

fabricated so far have all been in the form of sandwich 

structures with two shells and a lattice structure as the 

core or with one shell on one side of the panel. 

Deployment of forces on the side of the shell and ribs in 

these structures induces different behaviors at the 

maximum tolerable force and also shows the energy 

absorption of these structures [13]. The maximum force 

is obtained when force is applied to the shell and not to 
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the ribs, while more specific energy absorption is 

achieved by applying force to the ribs. 

In the bending test of this fabricated specimen, the first 

crack sound was heard in the structure after a 

displacement of approximately 20-21 mm, characterized 

by a small drop in the curve shown in “Fig. 6”. After this 

small drop, the force curve increased again to a 

displacement of about 25 mm. However, after this 

displacement, a sudden drop is observed in a 

displacement of about 27.5 mm, followed by 

intermittent oscillations in the curve [6]. Energy 

absorption continues until the final failure of the 

structure. As the force increases, the longitudinal tensile 

stress increases in the underlying layers, leading to their 

earlier failure compared to other layers (“Fig. 7”). 

 

 
Fig. 7 Failure in bottom layers. 

 

Failure modes are different in compression mode. This 

assumption is proved by observing the difference in 

longitudinal tensile-compressive strength. As shown in 

“Fig. 8”, the top layers of the panel fail due to the 

buckling of the fibers due to the longitudinal 

compressive stress. Nevertheless, the structure has 

continued to withstand the load after this failure, which 

occurred in several ribs, due to multiple force 

distribution paths [2]. Do and Rosen (14) defined the 

buckling of fibers in the bed of the matrix material as a 

state of rupture of these materials [14]. 

 

 
Fig. 8 Fiber buckling in the upside layers of the panel. 

The final structural failure was not possible due to the 

limitations of the test device displacement and the 

maximum force exerted by the tolerance of the fixture. 

7 FINITE ELEMENT TEST RESULTS 

Figure 9 compares the experimental and finite element 

test results. As can be seen, there is a good convergence 

between the finite element test results and the 

experimental test results up to the point of failure, and 

the difference in the maximum load tolerance is 5.6%. 

 

 
Fig. 9 Comparing experimental tests and finite element 

curve. 

8 CONCLUSIONS 

This paper examines composite lattice panels fabricated 

with S-Glass/epoxy under three-point bending. The 

main results are as follows: 

1. Panels fabricated using silicone molds have 

very good rigidity and strength. 

2. In a three-point bending load, the force 

decreases slowly and does not decrease sharply at once. 

3. The failure process includes the failure of the 

lower layers of the panel under longitudinal tension and 

then the buckling of the fibers in the upper layers of the 

panel under longitudinal pressure. However, the 

structure continued to withstand the force after the 

failure of the multilayer fibers. Also, no cracks were 

observed between the layers. 

4. There is an acceptable agreement between the 

results of finite element simulations and those of 

experimental tests, indicating the high capability of the 

software method in bending simulations with damage to 

the composite lattice structure. 
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