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1 INTRODUCTION 

Layer composites, despite their favorable thermal and 

mechanical properties, have some disadvantages at 

high temperatures such as failure due to shrinkage and 

stress concentration due to rapid changes in material 

properties at the interface between them. FG materials, 

in which mechanical and thermal properties are 

constantly changing gradually, are suitable options for 

solving this problem. In recent years, FG materials 

have been widely used in aerospace industries, high-

temperature environments such as nuclear reactors and 

chemical equipment [1]. Principally in most 

engineering applications, FG materials are formed from 

two phase metal and ceramic, but the amount and type 

of placement of FG material components to reduce 

stress concentration and improve material resistance are 

very important issues that have been neglected [2-6]. 

To date many scholars have investigated FG materials. 

Goupee et. al [7] provided two-dimensional 

optimization for the production of FGM materials using 

a non-network method and a genetic algorithm. Due to 

the fact that this type of material exhibits good 

performance in difficulty conditions, the proposed 

method focuses on metal-ceramic materials. Zhang et 

al. [8] investigated the wave propagation and the 

dynamic response of a layered inhomogeneity structure 

using finite element method. They examined the 

general changes in the properties of material such as 

density, Poisson's coefficient, and elastic modulus at 

each element's surface using a general parametric 

formulation. 

Hosseini et al. [9], presented numerical simulation of 

the emitting wave propagation in heterogeneous 

continuous material. In their research, the propagation 

of stress and displacement wave was investigated in a 

one-dimensional FGM material that was affected by a 

load. The governing equations were obtained on the 

FGM plate which was hit by the loading, and the 

numerical method, which was based on the differential 

method, was used to simulate the stress and 

displacement wave in a one-dimensional FGM plate 

with different boundary conditions. Cao et al. [10] 

studied the propagation of the lamb wave in 

functionally graded media using the power series 

technique. In order to investigate the behavior of the 

lamb waves propagating in the FG media which was 

affected by thermal stress and its mechanical properties 

continuously were changed along the thickness, the 

power series method, whose high convergence and high 

accuracy were proven, was used to derive theoretical 

results. Sun et al. [11] examined wave propagation and 

transient response of the FG plate under the impact in 

the thermal environment. It should be noted that the FG 

plate was considered infinitely, and also the effects of 

temperature were discussed. Using the results of this 

study, they found that the frequency and velocity of 

wave propagation on FG plates were significantly 

reduced by increasing the surface temperature of the 

plate. Noh et al. [12] examined a reliable design that 

was based on the optimization of the distribution of 

volume fractions in functionally graded materials. In 

this optimization method, a limited number of volume 

fractions of different layers of the FG material and its 

material properties as a variable were considered. 

Using the results of the numerical experiments that the 

desired optimization method was used in them, they 

presented an optimal volume fraction distribution that 

was highly reliable and applicable at the stages of 

targeted material production. Zafarmand and his 

colleague [13] presented a three-dimensional dynamic 

and propagation of the stress wave on thick plates 

against impact load. In their research, the mechanical 

properties of the material (elasticity and density 

modulus) are continuously in line with thickness and 

based on the power distribution and the Poisson ratio is 

assumed to be constant. Also, Asgari [14], optimized 

material in a heterogeneous cylinder intended for wave 

propagation. He optimized the distribution of volume 

fractions in a hollow thick heterogeneous cylinder 

which was subjected to internal compression loading. 

The volume fractions of the materials in the limited 

number of design points were considered as variables 

and at each optional point in the cylinder were obtained 

by means of third degree interpolation functions. Two 

functions were considered for optimization. 1- 

Optimization of stress wave size in the material at 

specified time interval. 2- Optimization of 

displacement at the outer surface of the cylinder. To 

find the general solution of the problem, optimizing a 

multi-objective genetic algorithm with an internal finite 

element function was used. Daneshjou et al. [3] 

examined wave propagation and transient response of a 

functionally graded cylinder filled with liquid and rigid 

core using the inverse Laplace transform method. The 

equations of motion were extracted according to the 

definition of the problem as a plain strain. Using 

numerical results, they found that with the increase in 

the radius of the rigid core, von Mises stress was 

significantly reduced.  Bednarik et al. [15] examined 

propagation of the one-dimensional longitudinal elastic 

waves in line with the thickness of a plate made of FG 

materials. Amiri et.al [16] investigated the effect of 

material distribution on torsional stress wave 

propagation. Yang and Liu [17] proposed a new 

boundary element method for modeling 2-D wave 

propagation problems in FGM materials in frequency 

domain. They investigated gradation direction and 

frequency on the wave propagation. 

In this research, the finite difference method is used to 

study the propagation of two-dimensional wave in a 

functionally graded material. To distribute the 
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constructive elements of the material, two distribution 

modes are used: 1- The power law distribution and 2-

Third degree interpolation. In the following, using a 

single-objective genetic algorithm, optimizing the 

volume fractions of the material and the type of 

distribution are discussed. Then, the components of 

displacement, strain, and stress diagrams have been 

discussed. The main novelty of this research is finding 

and optimizing the material distribution in FGMs so 

that when stress wave propagates on it, the stress in 

different point reduces to the least possible amount. 

2 MODELING PROCEDURE  

In this section, the equations for the 2D wave 

propagation in functionally graded plate will be 

extracted. In this paper, two different modes have been 

considered for obtaining volume fractions. 

First case: 

The FG plate discussed in this study consists of several 

gradient phases. This means that the FG plate consists 

of four different materials, as shown in “Fig. 1ˮ , two 

materials used in this plate are ceramics (c1, c2 ) and 

two other materials are metals (m1, m2). 

 

 
Fig. 1 Cartesian coordinate with 2D material distribution. 

 

The volume fraction of each one of the elements used 

in this FG plate can be obtained by “Eq. (1)ˮ  [18]: 
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To use volume fractions, the following rules in “Eq. 

(2)ˮ  should be considered [14]: 
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Second case: 

In the previous case, the volume fractions are defined 

by the power law function, and since the linear 

distribution of the volume fractions of the four 

materials is not necessarily the optimal distribution of 

the volume fractions, in the second case, the 

distribution of materials will be optimized so that the 

mechanical properties of the material will be improved. 

The volume fraction of each material in the second case 

in the Cartesian coordinates 

1 2 1 2[ ... ] [ ... ]m nD x x x y y y   is obtained from the 

equation 3 [19]: 
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In this regard, the H functions are basically Hermitian 

functions, V,x indicates the derivation of V with respect 

to x and V,y is the derivation of V with respect to y and 

V,xy shows the derivation with respect to x and y. 

2.1. Governing Equation 

A FG plate, as shown in “Fig. 2ˮ  with specific length 

and width L, is considered and the properties of the 

constituent materials in the longitudinal and transverse 

directions are varying. The problem is expressed in 

Cartesian coordinates (x, y, z). 
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Fig. 2 Functionally graded plate in Cartesian coordinates. 
 

The 3D governing equations of motion in Cartesian 

coordinates for this FG plate is given in “Eq. (4)ˮ  [20]: 
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(4) 

 

Where, u, v and w are the displacement components, 

the stress components are defined by displacements as 

follows [21]: 
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Where, Txx, Tyy and Tzz are normal stresses in x, y and z 

directions respectively, Txy, Tyz and Txz are shear stress 

components. λ and μ are lame constants that are 

expressed in terms of: 
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For a two-dimensional wave, displacement vectors are 

defined as follows: 
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When the “Eq. (5)ˮ  is replaced in “Eq. (4)ˮ , the 

equations are as follows: 
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2.2. Boundary Condition and Initial Condition 
Initial conditions are indicated at t = 0 as “Eq. (9)ˮ : 
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Governing boundary condition in “Eq. (9)ˮ  at (

0 x a  ) and ( 0 y b  ): 
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In “Eq. (10)ˮ , ρ is the density and cl is the longitudinal 

wave speed. The following boundary conditions are 

also considered: 
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2.3. Loading Condition 
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It is assumed that the plate is subjected to a time pulse 

loading. The variation of this load is defined in terms of 

time as “Eq. (12)ˮ . 

 
6

6

6

6
6

6

6 6

6

1 10
10 10 ( )

10 10

1 10
( 20 10 )

10 10

( ) 10 10 ( ) 20 10 ( )

0 20 10 ( )

t t s

t

P t s t s

t s









 



 
 



 

  


    


  




 
(12) 

 
Figure 3 presents the graph of this loading in terms of time. 

 

 
Fig. 3 Impact loading graph for FGM plate. 

3 FINITE DIFFERENCE METHOD  

Different analytical and numerical methods can be used 

to solve wave equations. One of the numerical methods 

used to solve a wave equation is the finite difference 

method. This method is based on the Taylor expansion 

and the simple application of derivative definition. In 

short, the explanation of this approach shows that the 

space is fully divided to equal distances. Afterwards, all 

space is created by points. Then, by introducing the 

initial conditions and boundary conditions, the 

properties of all points will be obtained. In this 

research, the explicit central difference method is used 

[22]. 

3.1. Approximation of the Central Difference 

Method 

First, we make the following important statement about 

the derivatives of partial differential equations: 

Derivatives in the partial differential equation are 

approximated using the linear combination of function 

values in the network points. 

 

 
Fig. 4 A domain grid for specific interval 0 to X. 

 

Using derivative fundamental definition and according 

to “Fig. 4ˮ , the first derivative of the first order for the 

hypothesized function is computed as follows: 
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Using the definition of “Eq. (13)ˮ  for the second-order 

derivative, we have: 
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According to “Fig. 5ˮ , the derivation with respect to x 

and y is calculated from the following relation: 

 

 
Fig. 5 Two-dimensional networking in Finite difference 

method [22]. 
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Since in the finite difference method, the time interval 

is also regular networking, the time derivative of the 

desired function can be calculated in the same way. 

The centered-difference equations of the second-order 

derivatives of a displacement component, such as u(x, 

y, t) and v(x, y, t) at the node (i, j) with respect to time t 

are given by:  
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Δt is the size of the time interval, k refers to the time 

index and i, j indicate the position of the points in the 

network. 

That way, the finite difference equations of the second-

order derivatives of the displacement components u(x, 

y, t) and v(x, y, t) at the node (i, j) with respect to the 

spatial variables x  and y  are shown in “Eq. (17)ˮ  
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By substituting the “Eq. (16-17)ˮ  within the “Eq. 

(8)ˮ , the two-dimensional equation of wave 

propagation in a functionally graded plate is reduced to 

a finite difference equation in “Eq. (18 and 19)ˮ : 
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4 RESULTS AND DISCUSSION 

To study the wave propagation in two dimensions in a 

plate made of FGM materials, a plane strain media with 

a square cross section is considered as follows. The 

Cartesian coordinates x and y along the longitudinal 

and transverse are shown in “Fig. 6ˮ . 

 

 
Fig. 6 A plate made of functionally graded materials. 

 
In “Fig. 7ˮ , we select ABCD on the plate and examine 

it. In this figure, there are also points that are shown for 

getting data and comparing the selected results. 

 

 
Fig. 7 Selected points for getting data. 

 

First case 

As in the previous section noted, the first case of 

materials distribution is considered as a power law 

function. In this case, the dimensions of the plate are 

considered as square (1 m × 1 m). 

The coordinates of the data points are assumed in this 

case as “Table 1ˮ . 

 
Table 1 The coordinates of the selected points  

Q N M P  

0.8 0.2 0.2 0.8 X(m) 

0.1 0.1 0.8 0.8 Y(m) 

The properties of the two-dimensional FG plate are also 

defined in the “Table 2ˮ . 
 

Table 2 Material properties of functionally graded plate 

 
3

( )
kg

m


 

E(GPa) Material 
Constituent

s 

0.3

1 
4515 115 Ti6Al4 V 

1m 

0.3

3 
2715 69 Al1100 

2m 

0.1

4 
3210 440 Sic 

1c 

0.2

1 
3470 150 2 3Al O 

2c 

 

In this case, the volume fraction chart is depicted for 

the four materials in the FG plate for nx = ny = 1. 

As shown in the diagrams in “Fig. 8ˮ , the distribution 

of materials is linearly from zero to 1, and also 

according to “Fig. 7ˮ , it is determined that point A of 

C2, point B of C1, point C of M2 and the point D of 

M1. 
 

 
(a) 

 

(b) 
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(c) 

 
(d) 

Fig. 8 Variation of volume fraction of materials in first 

case. 

 

In order to verify the results, the plate is assumed to be 

homogeneous. This assumption is obtained by inserting 

0n   in “Eq. (1)ˮ  and also the stress applied to the 

plate is considered as a two-dimensional wave. The 

specification of the material used for the homogeneous 

plate is given in “Table 3ˮ . 

 
Table 3. Mechanical properties of plate for homogeneous 

state 

 3( / )kg m E(GPa) Material 

0.31 4515 115 Ti6Al4 V 

 

In order to ensure the equations and results obtained, 

the displacement value at a point in the network is 

compared in “Fig. 9ˮ  with the results of the research 

using the two-dimensional wave theory that is 

calculated analytically by the method of separation of 

variables in [24] and [25]. 

 

 

 
Fig. 9 Validation Chart for a point in the network. 

 

In “Fig. 10ˮ , the graphs of the displacements in the 

direction x and y , namely ,u v displacements for the 

nx = 1, 0.2, 10 and ny = 1, 0.4, 10 are plotted. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 10 Distributions of the displacement component u  in 

terms of time for the points: (a): M, (b): N, (c): P, and (d): Q 

in first case. 

 

According to “Fig. 10ˮ , because of the point N located 

on the waves of two stresses at a time, it can be seen 

that the maximum displacement of u at the point N and 

the volume fraction 10 is 0.7 μm. As well as the role of 

the volume fractional power, in n = 10, it is possible to 

place more ceramics than metal at this point. At point 

Q, the conditions are like the point N. Also in the 

volume fraction 10, the maximum displacement is as 

high as 0.6 μm and the minimum displacement is as 

high as 0.1 μm. 

It is worth mentioning that nx = 0.2 and ny = 0.4 are 

considered for drawing graphs that in the interval of 

different volume fraction, using the minimum function 

of MATLAB software, the appropriate volume fraction 

to detect the effective optimal stress is searched. 

Finally, the two volume fractions indicated with the 

following stress are considered as the most appropriate 

option: 

 
6

eff
σ =2.4548×10 pa=2.4548 Mpa  

In the following, according to “Fig. 11ˮ , displacement 

( v ) variation in time charts are plotted for nx = 1, 1, 

10, separated by points M, N, P, and Q. 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 11 Distributions of the displacement component v  in 

terms of time for the points: (a): M, (b): N, (c): P, and (d): Q 

in first mode. 
 

According to “Fig. 11ˮ , it can be seen that the 

maximum displacement along y direction is related to 

the point Q, occurred at nx = 0.2, ny = 0.4 and equal to 

approximately 1 μm. The reason for this is the position 

of the point Q in the path of the shock wave and also 

the volume fraction power in y direction in relation to x 

direction is higher. In “Fig. 12ˮ , the strain variation 

graphs in terms of time are plotted separately for the 

four-point M, N, P and Q. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12 Distributions of the strain in terms of time for the 

points: (a): M, (b): N, (c): P, and (d): Q in first mode. 
 

With respect to “Fig. 12ˮ , we can find that the 

maximum strain occurs at the points N and Q, in the 

volume fraction 10n  . At the point N, the maximum 

strain was -5.3 μm/m. As we know, negative strain 

means compression. The reason for this is that this 

point is located at the beginning of the propagation path 

of two stress wave. Also, the volume fraction power 

also influences the exacerbation of this event, that way, 

in 10x yn n  , the point N is of the sic type, and 

this causes an increase in the strain value at this point. 

In “Fig. 13ˮ , the stress charts are plotted for four 

points: 
 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Fig. 13 Distributions of the stress in terms of time for the 

points: (a): M, (b): N, (c): P and, (d): Q in first mode. 
 
As shown in “Fig. 13ˮ , the highest stress occurred in 

this case is related to the point M and the lowest stress 

is also related to the point N. Also, at points, M, N, P, 

the highest stress was in the state nx = ny = 1 and the 

lowest stress was in the state nx = 0.2, ny = 0.4, but at 

the point Q, the maximum stress value occurs in the 

state nx = 0.2, ny = 0.4 and the minimum stress value 

occurs in the state nx = ny = 1. The reason for this is that 

the linear distribution of the material in the plate causes 

a lot of stress in the body, but if we consider the 

volume fractional power in decimal form and the 

distribution of the material according to it, then we will 

have a better combination of materials in every place, 

and this will reduce the stress at any point in the plate. 

Of course, it should be noted that at point Q, due to the 

effects of a recurrence wave in the time interval of 300 

to 400 μs, the volume fraction nx = 0.2, ny = 0.4 has 

recorded the highest stress. 

In “Fig. 14ˮ , the von Mises stress-time graphs are 

plotted separately for the four-point M, N, P and Q. 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 14 Distributions of the von Mises stress in terms of 

time for the points: (a): M, (b): N, (c): P and, (d): Q in first 

mode. 
 

According to “Fig. 14ˮ , the maximum von Mises 

stress value occurred at the point M in the state. Given 

that the point M is at the beginning of the path of wave 

motion, and also the distribution of the volume fraction 

that caused the lower amount of the first metal (m1) to 

be placed at this point, it was expected to witness the 

highest stress at this point. At the point N, as expected, 

in the nx = 0.2, ny = 0.4 except for the first moments, in 

the remaining moments, minimum value of von Mises 

stress was reported. At the point P, the lowest stress 

value was observed in nx = ny = 10, which is due to the 

distribution of the volume fraction of the material and 

the location of this point in the return wave path. 

Second case 

As stated in the previous section, another mode of 

distribution of the volume fraction of the material in the 

functionally graded plate is obtained with having the 

volume fraction in 4 points of the network and 

derivatives xy, y, x by using the “Eq. (3)ˮ . A possible 

model of distribution of the volume fractions of 4 

materials in the FG plate is shown in “Fig. 15ˮ . 

 

 
(a) 

 
(b) 

 
(c) 

(d) 
Fig. 15 Variation of volume fraction for the four materials 

in second mode. 
 

In the following, we use a single objective genetic 

algorithm to optimize the distribution of materials. This 

algorithm is used to optimize the placement of 

functionally graded material together in order to 

achieve a main stress or von Mises stress to the 

minimum value in functionally graded plate. 

For this purpose, the objective function of the 

algorithm is defined as follows: 
 

( ) ( ) ( , , )i vonmisesF X F V x y t   
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It should be noted that the algorithm's constraints in the 

present study are defined in two states: 

1- Input Constraints: 
 

1 2 1 2

2 1 1 2

1

0 1,0 1, 0 1, 0 1

m m c c

c c m m

V V V V

V V V V

   

       

 

 

2- Output Constraints: 
 

 max vonmises y   

 

Following the implementation of the single-objective 

genetic algorithm in MATLAB software, the following 

results were obtained. 

In the description of “Fig. 16ˮ , it should be noted that 

at each repetition of the algorithm, the best person in 

the population has the best value for fitness of the 

objective function with the black point, and the average 

fitness of the entire population is determined by the 

blue color. As it is clear from the diagram, from the 

repetition of 150, the graph has converged, and at the 

last one, the 200th, the mean of fitness and the best fit 

are found to be equal. In the following, the optimal 

volume fraction distribution for 4 materials is 

presented. 

 

 

Fig. 16 Graph of fitness value by number of generations 

(This plot has low quality). 
 

According to “Fig. 17ˮ , the optimal distribution of 

volume fractions obtained will cause the minimum 

value of concentration stress at any point in the 

network. The correctness of this claim is examined by 

plotting the von Mises stress diagram for an arbitrary 

point in the network compared to the volume fraction 

in the first mode. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 17 Optimal distribution of the volume fraction of the 

functionally graded material. 
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As it is shown in “Fig. 18ˮ , von Mises stress variations 

have experienced a significant loss in optimal mode 

than variations in various volume fractions. Therefore, 

it can be concluded that by designing a volume fraction 

of functionally graded materials optimally, access to a 

lower concentration of stress in these materials is 

provided. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 18 Comparison of von Mises stress in optimum with 

volume fraction power. 

5 CONCLUSION 

The main purpose of this study was to analyze and 

optimize the effect of materials distribution on a 

functionally graded plate. Generally, according to the 

obtained results, it is clear that any variation in the 

properties of the materials causes significant changes in 

the amount of stress produced by longitudinal waves. 

Also, variation of displacement and strain are no 

exception. According to the material properties changes 

in two directions, the variation of stress and strain are 

different in all points. So firstly, research was 

conducted on the propagation of a wave on a FG plate 

whose properties have been linearly changed, and 

stresses, strains and displacements have been studied. 

Then, with optimization, we see less stress reduced in 

different parts of the FG plate. 
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